
1/35

Advanced nominal techniques

Murdoch J. Gabbay

3rd School on Foundations of Programming and
Software Systems

(FoPSS 2019, Warsaw, 10–15 September 2019)

14-15 September 2019

http://www.gabbay.org.uk

2/35

Thanks

It’s a pleasure to be here.

Thank you to the organisers.

Quiz: who self-identifies as primarily

1. A programmer?
2. A mathematician?
3. A computer scientist?

3/35

Foundations

Andrew once commented that I was the first ‘nominal native’. By
this he meant that I’ve never known anything else.

For these lectures I’ll work in Equivariant ZF set theory with Atoms
and Choice (EZFAC).

We’ll be native: names and permutations are furniture in our
universe.

You’re probably a ZFC native, and that’s fine, but it is only for
slightly arbitrary historical reasons.

The University of Warsaw library is a wonderful place to be able to
say this.

4/35

Foundations

Because we’re in EZFAC, our sets universe has powersets (as usual)
building up with

I a base set of atoms (urelemente) A and
I an equivariance axiom-scheme

(E) �(x1, . . . , xn), �(⇡·x1, . . . ,⇡·x1)

for every permutation ⇡ & assertion � on elements x1, . . . , xn.

5/35

Foundations

Lemma: Equivariance (E) is consistent with Choice.
If f : pow⇤(X)! X is a choice function on X , then ⇡·f is one on
⇡·X .

Choice functions cannot in general be arrows in the Schanuel topos
/ Category of Nominal Sets, and cannot be elements in the universe
of Fraenkel-Mostowski sets.

We would be wise to be careful not to mislead readers by translating
this precise mathematical fact imprecisely to a slogan that ‘nominal
techniques are inconsistent with the Axiom of Choice’, as Lemma
above illustrates.

6/35

Foundations

Every instance of (E) is derivable in ZFA. In symbols:

ZFA ✏ (E).

Thus EZFAC and ZFAC are equivalent, as are EZFA and ZFA!

However, the ZFA derivation of a �-instance of (E) scales with the
complexity of �. The above is a meta-theorem, parameterised over
the choice of �. This is

I fine if you’re handwaving but not fine if you’re not, and
I readers are typically unused to foundational meta-theorems

(unless historically familiar, e.g. consistency strength or
incompleteness arguments), and therefore distrustful of them.

7/35

Nominal algebra

I therefore take (E) as a direct axiom-scheme:

I whatever we say about elements mentioning one collection of
atoms (even if that collection is infinite!)

I must by (E) also be true if we permutatively rename those
atoms (even if the permutation is infinite!).

I think it might be helpful if we made these points more often and
more explicitly. See [equzfa].

So that’s our universe.

http://www.gabbay.org.uk/papers/equzfa.pdf

8/35

Nominal algebra

Let’s start with perhaps the simplest interesting logic: algebra, the
logic of equality.

What does algebra look like in a universe with atoms?

Nominal algebra has the syntax of nominal terms-in-context, and
the natural semantics in sets with atoms.

Assume sets a 2 A and X 2 X (unknowns). Terms of Nominal
Algebra:

s ::= a | ⇡·X | tf(s, . . . , s) | [a]s

I
a is an atom.

I ⇡·X is a permutation ⇡ suspended on a unknown X .
I tf is a term-former (fixed in a signature).
I [a]s is atoms-abstraction. The a in [a]s does not ↵-convert;

this is handled by the equational theory.

9/35

Judgements

We can easily type term-formers and terms, but I’ll use
untyped/monotyped syntax for simplicity.

A freshness constraint is a pair a#X of an atom and an unknown.

A freshness context � is a finite set of freshness constraints.

Nominal algebra judgements have the form

� ` s = t.

Call this an equality-in-freshness-context.

Looks very much like a rewrite-in-freshness-context � ` s ! t, but
what we do with equalities is different (soundness, completeness,
models, duality, HSP, derivation, etc).

10/35

Example judgements

These are expressive; we abbreviate id ·X to X :

a, b#X ` (a b)·X = X

b#X ` [b](b a)·X = [a]X

` sub([a]X ,Y) = sub0(X , a,Y)

a#Y ` sub(lam([a]X), b,Y) = lam([a]sub(X , b,Y))

I ↵-equivalence (top two equations are the theory of
↵-equivalence).

I Swappings.
I Atoms-abstraction.
I Substitution.
I The �-calculus.
I First-order logic.
I String diagrams, . . . and more to follow.

11/35

Models

Fix a nominal set M and a signature and

I interpretations [[tf]]M : Mn !M, and
I a function [-]M- : A⇥M!M such that a#[a]Mx always.

A valuation & maps unknowns to elements of M.

Given M, interpretation is:

[[⇡·X]]& = ⇡·&(X)

[[[a]s]]& = [a]M[[s]]&

[[tf(s1, . . . , sn)]]& = tfM([[s1]]& , . . . , [[sn]]&)

[[a#s]]& = (a#[[s]]&)

[[�]]& =
V
{a#&(X) | (a#X) 2 �}

[[� ` s = t]]& =
�
[[�]]&) [[s]]& = [[t]]&

�

12/35

Axioms

I An axiom is a judgement � ` s = t.
I A theory is (a signature and) a set of axioms.

Nominal algebra has the usual properties of nominal terms equality
built in, along with the following axioms:

a, b#X ` X = (a b)·X
b#X ` [a]X = [b](b a)·X

Above, X is shorthand for id ·X .

We can fix a signature and further axioms to get a theory.

13/35

Validity

A judgement is valid in a model M when for every valuation &,

[[�]]&) [[s]]& = [[t]]& .

The built-in axioms are valid

a, b#x) x = (a b)·x
b#x) [a]x = [b](b a)·x .

14/35

Abstraction

Atoms-abstraction turns up in the semantic theory [gabbay:nomahs],
so in this sense it’s inherent.

Still, we do not need to make it in-built; it can be axiomatised.
Assume a binary term-former abs:

b#X ` abs(a,X) = abs(b, (b a)·X)

Restriction is similarly axiomatisable:

b#X ` res(a,X) = res(b, (b a)·X)
a#X ` res(a,X) = X

Maribel Fernández and I studied these two side-by-side in a paper
[gabbay:nomrng]. Syntax was different, not least because Nominal
Algebra hadn’t been invented.

15/35

Axiomatise swappings

It’s surprisingly fun and useful to axiomatise swappings, even if
they’re in-built.

Assume a ternary term-former swap and for simplicity write
swap(s, t, u) as [s t]·u.

Can we spell out the theory of swappings using swap? The simplest
theory would be

` [a b]·x = (a b)·x .

But this is uninformative; it’s just a transation.

It’s instructive to be more explicit.

16/35

Axiomatise swappings

The canonical property of swappings in nominal sets is

a, b#x) (a b)·x = x .

So is this a full theory of swappings?

a, b#X ` [a b]·X = X

Are we missing any axioms?

Yes, just a few . . .

17/35

Axiomatise swappings

a, b#X ` [a b]·X = X

` [a a]·X = X

` [a b]·X = [b a]·X
` [a b]·[a b]·X = X

` [a b]·[c d]·X = [c d]·[a b]·X
` [a b]·[b d]·X = [a d]·[a b]·X

` [a b]·[c]X = [c] [a b]·X
` [a b]·[b]X = [a] [a b]·X

` [a b]·tf(X1, . . . ,Xn) = tf([a b]·X1, . . . , [a b]·Xn)

Above, a, b, c , d are specific atoms. In axioms, X get instantiated,
and a, b, c , d get permuted.

In axioms, atoms behave like variables ranging permutatively over A.

18/35

Axiomatise substitution

Let’s do something more semantically interesting now.

Assume a binary term-former sub and sugar sub([a]t, s) to s[a 7!t].

` tf(Y1, . . . ,Yn)[a 7!X] = tf(Y1[a 7!X], . . . ,Yn[a 7!X])

b#X ` ([b]Y)[a 7!X] = [b](Y [a 7!X])

Is this everything?

If not, what’s missing?

19/35

Axiomatise substitution: the theory Sub

Assume a binary term-former sub and

write sub([a]t, s) as t[a 7!s].

Then a theory of substitution is:

` tf(Z1, . . . ,Zn)[a 7!X] = tf(Z1[a 7!X], . . . ,Zn[a 7!X])
c#X ` ([c]Z)[a 7!X] = [c](Z [a 7!X])

a#Z ` Z [a 7!X] = Z

a#Y ` Z [a 7!X][b 7!Y] = Z [b 7!Y][a 7!X [b 7!Y]]

` a[a 7!X] = X

` Z [a 7!a] = Z

a#X ` [a]sub(X , a) = X

Soundness & completeness provable [gabbay:capasn-jv].

20/35

Axiomatise substitution: the theory Sub

Sub is a nominal algebraic abstraction of a thing that is often called
term algebras. I’d like to call a model of Sub a nominal term
algebra.

Why are these not axioms?

` b[a 7!X] = b

a

0#Z ` Z [a 7!x] = ((a0 a)·Z)[a0 7!X]

a

0#Z ` Z [a 7!a

0] = (a0 a)·Z

21/35

Axiomatise substitution: the theory Sub

These axioms are derivable.

` b[a 7!X] = b

a

0#Z ` Z [a 7!x] = ((a0 a)·Z)[a0 7!X]
a

0#Z ` Z [a 7!a

0] = (a0 a)·Z

E.g. the third one is derived as follows:

a

0#Z ` Z [a 7!a

0] = ((a0 a)·Z)[a0 7!a

0]
= (a0 a)·Z .

22/35

Models of Sub

Significant models of Sub include:

1. Syntax:
sub([a]t, s) is s[a:=t] [capasn-jv].

2. �-calculus,
We write [a]t as �a.t and t[a 7!s] as (�a.t)s.
(�-calculus is term algebra + computational content; models
differ; c.f. swapping sub axiom).

3. Fraenkel-Mostowski sets universe
is a model of Sub [gabbay:stusun].

4. Duality-based models,
e.g. [gabbay:semooc]. More on this later, I hope.

http://www.gabbay.org.uk/papers/capasn-jv.pdf

23/35

Nominal powersets

The nominal powerset is an interesting place. We can use nominal
algebra to explore it.

Consider a nominal set X, and its finitely-supported powerset
powfs(X).

I This is a poset via subset inclusion: X Y when X ✓ Y .
I It’s a Boolean algebra via intersection \ and complement X \ -.
I But it also has a new-quantifier for sets:

na.X = {x | Nb.x 2 (b a)·X}.

This is a sets version of N: if we think of X as a set of points, and
X 2 powfs(X) as a unary predicate on those points, then na.X
holds at x precisely when (b a)·X holds at x for fresh b.

24/35

Axioms of Banonas (nominal Boolean algebra with N)

Taken from [gabbay:stodnb]. Unary term-formers ¬ and N, binary
term-former ^.

Write ¬(s) as ¬s, ^(s, t) as s ^ t, and N([a]s) as Na.s:

(Commute) X ^ Y = Y ^ X

(Assoc) (X ^ Y) ^ Z = X ^ (Y ^ Z)
(Huntington) X = ¬(¬X ^ ¬Y) ^ ¬(¬X ^ Y)

(Swap) Na. Nb.X = Nb. Na.X
(Garbage) a#X ` Na.X = X

(Distrib) Na.(X ^ Y) = (Na.X) ^ (Na.Y)
(SelfDual) ¬ Na.X = Na.¬X

First three axioms are a compact axiomatisation of Boolean algebra.

Last four axiomatise na.X = {x 2 X | Nb.x 2 (b a)·X}.

(Why no axiom b#X ` Na.X = Nb.(b a)·X?)

25/35

Axioms of Banonas

Are these axioms sound?

In what sense are they complete and natural?

26/35

Recall: Prime filters

If B is a Boolean algebra then a prime filter on B is a subset p ✓ B
such that:

1. x ^ y 2 p if and only if x 2 p ^ y 2 p.
2. x 2 p if and only if ¬x 62 p.

27/35

Recall: Stone representation for Boolean algebra

I Take a Boolean algebra B.
I Write points(B) for the prime filters over B.
I For x 2 B, define

x

• = {p 2 points(B) | x 2 p} 2 pow2
fs(B)

B• = {x • | x 2 B} ✓ pow2
fs(B)

Theorem: x 7�! x

• bijects B with B•.

By prime filter conditions, -• converts conjunction ^ into
intersection \, negation ¬ into sets complement B• \ -. Thus:

I Any powerset is naturally a Boolean algebra.
I Any Boolean algebra is (isomorphic to) a Boolean algebra over

set; recipe above.

28/35

Representing Banonas

How does the picture look for Boolean algebras with N? These are
the Banonas of [stodnb].

The Banona axioms are sound for intersection, complement, and n
— but do we get an isomorphism?

What are correct notions of prime filter and -• that biject Banonas
with a powersets model?

By definition x

• = {p 2 points(B) | x 2 p}.

We expect lemmas that:

I (x ^ y)• = x

• \ y

•, and
I (¬x)• = B

• \ x •, and
I (Na.x)• = na.(x •)

= {p 2 points(B) | Nb.p 2 (b a)·(x •)}
= {p 2 points(B) | Nb.p 2 ((b a)·x)•} How this?
= {p 2 points(B) | Nb.(b a)·x 2 p}.

http://www.gabbay.org.uk/papers/stodnb.pdf

29/35

Representing Banonas

Let B be a Banona.

A prime filter on B is a finitely-supported subset p ✓ B such that:

1. x ^ y 2 p if and only if x 2 p ^ y 2 p.
2. x 2 p if and only if ¬x 62 p.
3. If a#p then x 2 p if and only if Na.x 2 p.

With these definitions, B bijects with B•.

In B•, condition 3 above translates to “if a#X then p 2 X if and
only if p 2 na.X ”.

So our axioms for Nare correct in the sense that any Banona can be
represented as a Banona over sets, in which Ncorresponds precisely
to the N-quantifier on nominal sets.

30/35

Representing Banonas

The paper [stodnb] contains more complexity than this.

I The proofs are quite subtle.
Critical point: how to expand a filter to a maximal filter, while
retaining finite support.
Critical point: a filter p ✓ B is maximal amongst p0 such that
supp(p0) ✓ supp(p), if and only if p is maximal amongst all p0.

I There’s a complete treatment of topologies and duality.

http://www.gabbay.org.uk/papers/stodnb.pdf

31/35

First-order logic

Assume X is a model of Sub, so X is an abstract notion of
term-algebra.

What structure does pow(X) inherit from Sub?

(This material comes from [stodfo].)

We get an amgis-algebra (dual of sigma-algebra).

Assume a ternary term-former amgis and write amgis(u, s, a) as
u[s [a]. Then axioms are:

Z [a [a] = Z

a#v ` Z [Y [b][X [a] = Z [X [b 7!Y] [a][Y [b]

http://www.gabbay.org.uk/papers/stodfo.pdf

32/35

First-order logic

Axioms are:

Z [a [a] = Z

a#v ` Z [Y [b][X [a] = Z [X [b 7!Y] [a][Y [b]

These axioms are coming from a duality property that

u[a 7!x] 2 p , u 2 p[x [a].

But note that a is abstracted on the left in u[a 7!x], but free on the
right in p[x [a].

Also, a point is a maximal theory, and maximal theories in first-order
logic tend to contain infinitely many choices (because they have a
term language; you may be forced to complete a theory with
infinitely many arbitrary choices, one for each possible value a term
can take).

So we shouldn’t expect p to have finite support. It won’t, in general.

33/35

First-order logic

Now let’s look at powfs(pow(X)). This is a Boolean algebra,
because it’s a powerset.

It inherits a �-action from the underlying �-action on pow(X).

How?? If P 2 powfs(pow(X)) and x 2 X then

p 2 P[a 7!x], Na0.p[x [a0] 2 (a0 a)·P .

This builds in ↵-equivalence, and we recover the full Sub axioms at
the level of powfs(pow(X)).

I Sub on X becomes
I Amgis on pow(X) becomes
I Sub on powfs(pow(X)).

34/35

First-order logic

Now how do we model universal quantification in powfs(pow(X))?

Given P 2 powfs(pow(X)), we can form:
S
{P 0 ✓ P | a#P

0}
S
{P 0 ✓ P | supp(P 0) ✓ supp(P) \ {a}}

T
{⇡·P | ⇡ 2 fix(supp(P) \ {a})

T
{P[a 7!x] | x 2 X}

Theorem:

1. These are all equal; write the result 8a.P .
2. Furthermore, (8a.P)[b 7!y] = 8a.(P[b 7!y]).

Proof: Many calculations. See [stodfo] and [semooc].

http://www.gabbay.org.uk/papers/stodfo.pdf
http://www.gabbay.org.uk/papers/semooc.pdf

35/35

Conclusions

Starting from nominal sets we can build a nominal algebra in a
natural way.

It’s compatible with nominal rewriting and in this sense there is a
path from computation to logic and back.

By analysing nominal powersets we can recover the foundations of
(nominal) logic, including the N-quantifier and first-order logic.

We create new theories of substitution (and its dual) along the way.

Representation and duality theorems can also be proved.

Just from looking at nominal powersets in EZFAC we get an
account of basic mathematical foundations entirely parallel to the
one developed (much of it here) based on ZFAC.

