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Andrew Pitts, Nominal Sets and Functional Programming
Exercises

Exercise 1. Let Tr, var, (—) - (=) and =, be as on slides 8,10, 11 and 13.

(i) Prove by induction on the structure of trees t € Tr that the permutation action (—) - (—)
defined on slide 11 satisfies var(rr - t) = {ma | a € vart}.

(ii) Show that for any a,a’ € A and 7 € Perm A\ that 7 o (a a’) and (7ra 7w a’) o & are equal
permutations.

iii) Hence prove by induction on the derivation of t =, t’ from the rules inductively definin
p y y g
=, on slide 13 that if t =, t/, then 7 - t =, 7 - t’ holds for any 7 € Perm A\.

(iv) Deduce that if (a b) - t =, (@’ b) - t’ holds for some b € A — ({a,a’} U var(t t’)), then it
holds for any such b. Use this to prove that =, is an equivalence relation.

Exercise 2. Let Tr and A be as on slides 8 and 18. The finite set fv ¢ of free variables of t € Tr
is recursively defined by:

tv(Va) = {a}
ftv(A(t, ") = (fvt) U v i)
tv(L(a, t)) = (fvt) — {a}.

(i) Prove that for all 7 € PermA andt € Tr,fv(r - t) = {ma | a € tvit}.

(ii) Prove thatforallt € Tr,(Vaefvt)ra=a) © m -t =, t.
[Hint: proceed by induction on the size |¢| of abstract syntax trees t, where |Va| = 0,
|A(t,t")| = |t| + |t'| + 1 and |L(a,t)| = |t| + 2, say. Note that |(a a’) - t| = |t|, so that
in the induction step for L(a, t) one can suitably freshen the bound variable, L(a, ) =,
L(d,(a a’) - t), and apply the induction hypothesis to (a @’) - t.]

(iii) Deduce that the smallest support of an element ¢ € A is fvt for any t € Tr in the a-
equivalence class c.

Exercise 3. (i) Show that in the category Nom the product of two objects X and Y is given
by their cartesian product as sets X X Y = {(x,y) | x € X Ay € Y} with Perm A-action
m-(x,y) = (m-x, 7-y). (In other words, show that the two product projections fst(x, y) = x
and snd(x, y) = y are morphisms in Nom; and that given any Z € Nom and morphisms

X L Z 2 Y, there is a unique morphism Z SICA X x Y satisfying fsto (f, g) = f and

snde(f,g)=g)

(ii) Prove that for all (x,y) € X X Y, supp(x, y) = supp x U supp y.



Exercise 4. Show that a morphism X i) Y in Nom is an isomorphism (that is, there is some,
necessarily unique, morphism X &y with go f =idx and f o g = idy) iff the function f is not
only equivariant, but also a bijection.

Exercise 5. Continuing Exercise 3, show that Nom is a cartesian closed category. To do this,
show that the exponential of two nominal sets X and Y is given by the nominal set X —¢ Y
of finitely supported functions defined on slide 21. You have to define an equivariant function

X = Y)xX 2, Y with the property that for any Z € Nom and morphism Z X X ER Y, there
id
is a unique morphism Z <> (X -, ) satisfying ap = (cur f X idx) = f (where Zx X ~-"

(X = Y) X X is by definition the morphism (cur f o fst, snd)).

Exercise 6. Show that name abstraction nominal sets [A]X defined on slide 28 give a right
adjoint to the functor (=) * A : Nom — Nom which sends each X € Nom to

XA ={(x,a) e XxXA|a#x}

(with Perm A\-action inherited from the product X x A\) and each morphism X EN Y to the

#A\
morphism X * A f—> Y * A\ defined by (f * A)(x, a) = (f x, a).
To do this, first show that there is a well-defined equivariant function (-) @ (-) : ([A]X) =
A — X satisfying ({(a)x) @ b = (a b) - x. This is called concretion and is the counit of the

adjunction: show that if ¥ = A i) X, then there is a unique morphism Y i) [A]X satisfying
f(y,a) =(fy)@a,forall (y,a) e Y = A.

Exercise 7. Coproducts in Nom are given by disjoint union, X +Y = {(0,x) | x € X} U{(1,y) |
m-(0,x)=(0,7-x)

m-(Ly) =7 y)
Show that [A](X + Y) is isomorphic to ([A]X) + ([A]Y).

y € Y} with Perm A\-action given by

Exercise 8. Show that [A]A\ is isomorphic in the category Nom to the coproduct A\ + 1.

Exercise 9. Every set S determines a nominal set by endowing it with the trivial permutation
action 7 - s = s. (What is the support of s in this case?) We call such nominal sets discrete. For
any discrete nominal set S, show that [A\]S is isomorphic to S in Nom.

Exercise 10. Show that for any X, Y € Nom, [A](X X Y) is isomorphic to ([A]X) x ([A]Y).
Exercise 11. Show that for any X, Y € Nom, [A](X — Y) is isomorphic to ([A]X) —¢ ([A]Y).

Exercise 12. Show that a subset S of the nominal set A\ is finitely supported iff it is either finite
or cofinite (that is, its complement A\ — S is finite).

Exercise 13. Suppose ¢(a) and ¢’(a) are properties of atomic names a € A whose extensions
{a | p(a)} and {a | ¢’(a)} give finitely supported subsets of A (see slide 21). Writing (Va) ¢(a)
to indicate that {a | ¢(a)} is a cofinite set of atoms (that is, its complement in A\ is finite), show
that this ‘freshness quantifier’ has the following properties:
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(i) ~(Na)p(a) = (VNa)—¢(a).

(i) ((Ma)p(a) A (Na)¢'(a)) = (MNa)(e(a) A ¢'(a)).
(iii) ((Ma) p(a) v (MNa)¢'(a)) & (Na)(p(a) V ¢'(a)).
(iv) (M) p(a) = (Ma)¢'(a)) = (Na)(p(a) = ¢'(a)).

If X € Nom and ¢(a, x) determines a finitely supported subset of A X X, what in general is
the relationship between (3x € X)(Ma) ¢(a, x) and (Na)(3x € X) ¢(a, x)? And between (Vx €
X)Ma) p(a, x) and (Ma)(Vx € X) ¢(a, x)?

Exercise 14. Use the a-structural recursion theorem for A-terms from slide 38 to prove the fol-
lowing a-structural induction principle for the nominal set A of A-terms modulo a-equivalence:
if P € PgA satisfies

(VaeA)aeP
A(Ve,ep € A)er € PANes e P=>eje, €P
AMa)Vee A)ee P = Aa.ec P

then (Ve € A) e € P. [Hint: for any nominal set X, P X is isomorphic to X —¢ 2; so we can
apply the recursion principle to functions from A to 2.]



