FoPSS 2019

Andrew Pitts, Nominal Sets and Functional Programming Exercises

Exercise 1. Let Tr, var, $(-) \cdot(-)$ and $=_{\alpha}$ be as on slides $8,10,11$ and 13.
(i) Prove by induction on the structure of trees $t \in \operatorname{Tr}$ that the permutation action (-) $\cdot(-)$ defined on slide 11 satisfies $\operatorname{var}(\pi \cdot t)=\{\pi a \mid a \in \operatorname{var} t\}$.
(ii) Show that for any $a, a^{\prime} \in \mathbb{A}$ and $\pi \in \operatorname{Perm} \mathbb{A l}$ that $\pi \circ\left(a a^{\prime}\right)$ and $\left(\pi a \pi a^{\prime}\right) \circ \pi$ are equal permutations.
(iii) Hence prove by induction on the derivation of $t={ }_{\alpha} t^{\prime}$ from the rules inductively defining $={ }_{\alpha}$ on slide 13 that if $t={ }_{\alpha} t^{\prime}$, then $\pi \cdot t={ }_{\alpha} \pi \cdot t^{\prime}$ holds for any $\pi \in \operatorname{Perm~A.}$.
(iv) Deduce that if $(a b) \cdot t={ }_{\alpha}\left(a^{\prime} b\right) \cdot t^{\prime}$ holds for some $b \in \mathbb{A l}-\left(\left\{a, a^{\prime}\right\} \cup \operatorname{var}\left(t t^{\prime}\right)\right)$, then it holds for any such b. Use this to prove that $=_{\alpha}$ is an equivalence relation.

Exercise 2. Let Tr and Λ be as on slides 8 and 18. The finite set fv t of free variables of $t \in \operatorname{Tr}$ is recursively defined by:

$$
\begin{aligned}
\mathrm{fv}(\mathrm{~V} a) & =\{a\} \\
\mathrm{fv}\left(\mathrm{~A}\left(t, t^{\prime}\right)\right) & \left.=(\mathrm{fv} t) \cup \mathrm{fv} t^{\prime}\right) \\
\mathrm{fv}(\mathrm{~L}(a, t)) & =(\mathrm{fv} t)-\{a\} .
\end{aligned}
$$

(i) Prove that for all $\pi \in \operatorname{Perm~Al}$ and $t \in \operatorname{Tr}, \operatorname{fv}(\pi \cdot t)=\{\pi a \mid a \in \mathrm{fv} t\}$.
(ii) Prove that for all $t \in \operatorname{Tr},((\forall a \in \mathrm{fv} t) \pi a=a) \Leftrightarrow \pi \cdot t={ }_{\alpha} t$.
[Hint: proceed by induction on the size $|t|$ of abstract syntax trees t, where $|\mathrm{V} a|=0$, $\left|\mathrm{A}\left(t, t^{\prime}\right)\right|=|t|+\left|t^{\prime}\right|+1$ and $|\mathrm{L}(a, t)|=|t|+2$, say. Note that $\left\lvert\,\left(\begin{array}{ll}a & \left.a^{\prime}\right) \cdot t|=|t| \text {, so that }\end{array}\right.\right.$ in the induction step for $\mathrm{L}(a, t)$ one can suitably freshen the bound variable, $\mathrm{L}(a, t)={ }_{\alpha}$

(iii) Deduce that the smallest support of an element $c \in \Lambda$ is $\mathrm{fv} t$ for any $t \in \operatorname{Tr}$ in the α equivalence class c.

Exercise 3. (i) Show that in the category Nom the product of two objects X and Y is given by their cartesian product as sets $X \times Y=\{(x, y) \mid x \in X \wedge y \in Y\}$ with Perm Al-action $\pi \cdot(x, y)=(\pi \cdot x, \pi \cdot y)$. (In other words, show that the two product projections fst $(x, y)=x$ and $\operatorname{snd}(x, y)=y$ are morphisms in Nom; and that given any $Z \in$ Nom and morphisms $X \stackrel{f}{\leftarrow} Z \xrightarrow{g} Y$, there is a unique morphism $Z \xrightarrow{\langle f, g\rangle} X \times Y$ satisfying fst $\circ\langle f, g\rangle=f$ and snd $\circ\langle f, g\rangle=g$.)
(ii) Prove that for all $(x, y) \in X \times Y, \operatorname{supp}(x, y)=\operatorname{supp} x \cup \operatorname{supp} y$.

Exercise 4. Show that a morphism $X \xrightarrow{f} Y$ in Nom is an isomorphism (that is, there is some, necessarily unique, morphism $X \stackrel{g}{\leftarrow} Y$ with $g \circ f=i d_{X}$ and $f \circ g=i d_{Y}$) iff the function f is not only equivariant, but also a bijection.

Exercise 5. Continuing Exercise 3, show that Nom is a cartesian closed category. To do this, show that the exponential of two nominal sets X and Y is given by the nominal set $X \rightarrow_{\mathrm{fs}} Y$ of finitely supported functions defined on slide 21. You have to define an equivariant function $\left(X \rightarrow_{\mathrm{fs}} Y\right) \times X \xrightarrow{\text { ap }} Y$ with the property that for any $Z \in$ Nom and morphism $Z \times X \xrightarrow{f} Y$, there is a unique morphism $Z \xrightarrow{\operatorname{cur} f}\left(X \rightarrow_{\mathrm{fs}} Y\right)$ satisfying ap $\circ\left(\right.$ cur $\left.f \times i d_{X}\right)=f$ (where $Z \times X \xrightarrow{\text { cur } f \times i d_{X}}$ $\left(X \rightarrow_{\mathrm{fs}} Y\right) \times X$ is by definition the morphism 〈cur $f \circ \mathrm{fst}$, snd \rangle).

Exercise 6. Show that name abstraction nominal sets [Al] X defined on slide 28 give a right adjoint to the functor $(-) * \mathbb{A}:$ Nom \rightarrow Nom which sends each $X \in$ Nom to

$$
X * \mathrm{~A} \triangleq\{(x, a) \in X \times \mathbb{A} \mid a \# x\}
$$

(with Perm Al-action inherited from the product $X \times \mathrm{Al}$) and each morphism $X \xrightarrow{f} Y$ to the morphism $X * \mathrm{Al} \xrightarrow{f * \mathrm{~A}} Y * \mathrm{Al}$ defined by $(f * \mathrm{Al})(x, a)=(f x, a)$.

To do this, first show that there is a well-defined equivariant function (-) @ (-) : ([Al]X) * A $\rightarrow X$ satisfying $(\langle a\rangle x) @ b=(a b) \cdot x$. This is called concretion and is the counit of the adjunction: show that if $Y * \mathrm{Al} \xrightarrow{f} X$, then there is a unique morphism $Y \xrightarrow{\hat{f}}[\mathrm{Al}] X$ satisfying $f(y, a)=(\hat{f} y) @ a$, for all $(y, a) \in Y *$ Al.

Exercise 7. Coproducts in Nom are given by disjoint union, $X+Y \triangleq\{(0, x) \mid x \in X\} \cup\{(1, y) \mid$ $y \in Y\}$ with Perm Al-action given by $\left\{\begin{array}{l}\pi \cdot(0, x)=(0, \pi \cdot x) \\ \pi \cdot(1, y)=(1, \pi \cdot y) .\end{array}\right.$
Show that $[\mathrm{Al}](X+Y)$ is isomorphic to $([\mathrm{Al}] X)+([\mathrm{Al}] Y)$.
Exercise 8. Show that $[A \mathbb{A}] A$ is isomorphic in the category Nom to the coproduct $\mathbb{A}+1$.
Exercise 9. Every set S determines a nominal set by endowing it with the trivial permutation action $\pi \cdot s=s$. (What is the support of s in this case?) We call such nominal sets discrete. For any discrete nominal set S, show that $[\mathrm{Al}] S$ is isomorphic to S in Nom.

Exercise 10. Show that for any $X, Y \in \operatorname{Nom},[\mathrm{Al}](X \times Y)$ is isomorphic to $([\mathrm{Al}] X) \times([\mathrm{Al}] Y)$.
Exercise 11. Show that for any $X, Y \in \operatorname{Nom},[\mathrm{Al}]\left(X \rightarrow_{\mathrm{fs}} Y\right)$ is isomorphic to $([A l] X) \rightarrow_{\mathrm{fs}}([A \mathrm{~A}] Y)$.
Exercise 12. Show that a subset S of the nominal set $A \mathbb{A}$ is finitely supported iff it is either finite or cofinite (that is, its complement $\mathrm{Al}-S$ is finite).

Exercise 13. Suppose $\varphi(a)$ and $\varphi^{\prime}(a)$ are properties of atomic names $a \in \mathbb{A l}$ whose extensions $\{a \mid \varphi(a)\}$ and $\left\{a \mid \varphi^{\prime}(a)\right\}$ give finitely supported subsets of Al (see slide 21). Writing (Иa) $\varphi(a)$ to indicate that $\{a \mid \varphi(a)\}$ is a cofinite set of atoms (that is, its complement in Al is finite), show that this 'freshness quantifier' has the following properties:
(i) $\neg(И a) \varphi(a) \Leftrightarrow(И a) \neg \varphi(a)$.
(ii) $\left((И a) \varphi(a) \wedge(И a) \varphi^{\prime}(a)\right) \Leftrightarrow\left(\right.$ Иa) $\left(\varphi(a) \wedge \varphi^{\prime}(a)\right)$.
(iii) $\left((И a) \varphi(a) \vee(И a) \varphi^{\prime}(a)\right) \Leftrightarrow(И a)\left(\varphi(a) \vee \varphi^{\prime}(a)\right)$.
(iv) $\left((И a) \varphi(a) \Rightarrow\left(\right.\right.$ Иa) $\left.\varphi^{\prime}(a)\right) \Leftrightarrow\left(\right.$ Иa) $\left(\varphi(a) \Rightarrow \varphi^{\prime}(a)\right)$.

If $X \in \operatorname{Nom}$ and $\varphi(a, x)$ determines a finitely supported subset of $\mathrm{Al} \times X$, what in general is the relationship between $(\exists x \in X)(И a) \varphi(a, x)$ and $(И a)(\exists x \in X) \varphi(a, x)$? And between $(\forall x \in$ $X)(И a) \varphi(a, x)$ and $(И a)(\forall x \in X) \varphi(a, x)$?

Exercise 14. Use the α-structural recursion theorem for λ-terms from slide 38 to prove the following α-structural induction principle for the nominal set Λ of λ-terms modulo α-equivalence: if $P \in \mathrm{P}_{\mathrm{fs}} \Lambda$ satisfies

$$
\begin{aligned}
& (\forall a \in \mathrm{Al}) a \in P \\
& \wedge\left(\forall e_{1}, e_{2} \in \Lambda\right) e_{1} \in P \wedge e_{2} \in P \Rightarrow e_{1} e_{2} \in P \\
& \wedge(\text { Иa) }(\forall e \in \Lambda) e \in P \Rightarrow \lambda a . e \in P
\end{aligned}
$$

then $(\forall e \in \Lambda) e \in P$. [Hint: for any nominal set $X, \mathrm{P}_{\mathrm{fs}} X$ is isomorphic to $X \rightarrow_{\mathrm{fs}} 2$; so we can apply the recursion principle to functions from Λ to 2.]

