
F�PSS 2019
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Exercises
Exercise 1. Let Tr , var, (�) · (�) and =

�

be as on slides 8,10, 11 and 13.

(i) Prove by induction on the structure of trees t 2 Tr that the permutation action (�) · (�)
de�ned on slide 11 satis�es var(� · t) = {� a | a 2 var t}.

(ii) Show that for any a,a0 2 A and � 2 PermA that � � (a a

0) and (� a � a

0) � � are equal
permutations.

(iii) Hence prove by induction on the derivation of t =
�

t

0 from the rules inductively de�ning
=
�

on slide 13 that if t =
�

t

0, then � · t =
�

� · t 0 holds for any � 2 PermA.

(iv) Deduce that if (a b) · t =
�

(a0 b) · t 0 holds for some b 2 A � ({a,a0} [ var(t t 0)), then it
holds for any such b. Use this to prove that =

�

is an equivalence relation.

Exercise 2. Let Tr and � be as on slides 8 and 18. �e �nite set fv t of free variables of t 2 Tr
is recursively de�ned by:

fv(Va) = {a}
fv(A(t, t 0)) = (fv t) [ fv t 0)
fv(L(a, t)) = (fv t) � {a}.

(i) Prove that for all � 2 PermA and t 2 Tr , fv(� · t) = {� a | a 2 fv t}.

(ii) Prove that for all t 2 Tr , ((8a 2 fv t)� a = a), � · t =
�

t .
[Hint: proceed by induction on the size |t | of abstract syntax trees t , where |Va | = 0,
|A(t, t 0)| = |t | + |t 0| + 1 and |L(a, t)| = |t | + 2, say. Note that |(a a

0) · t | = |t |, so that
in the induction step for L(a, t) one can suitably freshen the bound variable, L(a, t) =

�

L(a0, (a a

0) · t), and apply the induction hypothesis to (a a

0) · t .]

(iii) Deduce that the smallest support of an element c 2 � is fv t for any t 2 Tr in the �-
equivalence class c .

Exercise 3. (i) Show that in the category Nom the product of two objects X and Y is given
by their cartesian product as sets X ⇥ Y = {(x,�) | x 2 X ^ � 2 Y } with PermA-action
� ·(x,�) = (� ·x, � ·�). (In other words, show that the two product projections fst(x,�) = x

and snd(x,�) = � are morphisms in Nom; and that given any Z 2 Nom and morphisms
X

f � Z

��! Y , there is a unique morphism Z

hf ,�i����! X ⇥ Y satisfying fst � hf , �i = f and
snd � hf , �i = �.)

(ii) Prove that for all (x,�) 2 X ⇥ Y , supp(x,�) = suppx [ supp�.
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Exercise 4. Show that a morphism X

f�! Y in Nom is an isomorphism (that is, there is some,
necessarily unique, morphism X

� � Y with � � f = id
X

and f

�
� = id

Y

) i� the function f is not
only equivariant, but also a bijection.

Exercise 5. Continuing Exercise 3, show that Nom is a cartesian closed category. To do this,
show that the exponential of two nominal sets X and Y is given by the nominal set X �fs Y
of �nitely supported functions de�ned on slide 21. You have to de�ne an equivariant function
(X �fs Y ) ⇥ X

ap�! Y with the property that for any Z 2 Nom and morphism Z ⇥ X f�! Y , there
is a unique morphism Z

cur f����! (X �fsY ) satisfying ap � (cur f ⇥ idX ) = f (where Z ⇥X cur f ⇥idX�������!
(X �fs Y ) ⇥ X is by de�nition the morphism hcur f � fst , sndi).
Exercise 6. Show that name abstraction nominal sets [A]X de�ned on slide 28 give a right
adjoint to the functor (�) ⇤ A : Nom! Nom which sends each X 2 Nom to

X ⇤ A , {(x,a) 2 X ⇥ A | a # x}

(with PermA-action inherited from the product X ⇥ A) and each morphism X

f�! Y to the
morphism X ⇤ A f ⇤A���! Y ⇤ A de�ned by (f ⇤ A)(x,a) = (f x,a).

To do this, �rst show that there is a well-de�ned equivariant function (�) @ (�) : ([A]X ) ⇤
A ! X satisfying (haix) @ b = (a b) · x . �is is called concretion and is the counit of the

adjunction: show that if Y ⇤ A f�! X , then there is a unique morphism Y

f̂�! [A]X satisfying
f (�,a) = ( f̂ �) @ a, for all (�,a) 2 Y ⇤ A.
Exercise 7. Coproducts in Nom are given by disjoint union, X +Y , {(0, x) | x 2 X }[ {(1,�) |

� 2 Y } with PermA-action given by

(
� · (0, x) = (0, � · x)
� · (1,�) = (1, � · �).

Show that [A](X + Y ) is isomorphic to ([A]X ) + ([A]Y ).
Exercise 8. Show that [A]A is isomorphic in the category Nom to the coproduct A + 1.

Exercise 9. Every set S determines a nominal set by endowing it with the trivial permutation
action � · s = s . (What is the support of s in this case?) We call such nominal sets discrete. For
any discrete nominal set S , show that [A]S is isomorphic to S in Nom.

Exercise 10. Show that for any X ,Y 2 Nom, [A](X ⇥ Y ) is isomorphic to ([A]X ) ⇥ ([A]Y ).
Exercise 11. Show that for any X ,Y 2 Nom, [A](X �fs Y ) is isomorphic to ([A]X ) �fs ([A]Y ).
Exercise 12. Show that a subset S of the nominal setA is �nitely supported i� it is either �nite
or co�nite (that is, its complement A � S is �nite).

Exercise 13. Suppose �(a) and �0(a) are properties of atomic names a 2 A whose extensions
{a | �(a)} and {a | �0(a)} give �nitely supported subsets of A (see slide 21). Writing ( Na)�(a)
to indicate that {a | �(a)} is a co�nite set of atoms (that is, its complement in A is �nite), show
that this ‘freshness quanti�er’ has the following properties:
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(i) ¬( Na)�(a) , ( Na) ¬�(a).

(ii) (( Na)�(a) ^ ( Na)�0(a)) , ( Na) (�(a) ^ �0(a)).

(iii) (( Na)�(a) _ ( Na)�0(a)) , ( Na) (�(a) _ �0(a)).

(iv) (( Na)�(a)) ( Na)�0(a)) , ( Na) (�(a)) �

0(a)).

If X 2 Nom and �(a, x) determines a �nitely supported subset of A ⇥ X , what in general is
the relationship between (9x 2 X )( Na)�(a, x) and ( Na)(9x 2 X )�(a, x)? And between (8x 2
X )( Na)�(a, x) and ( Na)(8x 2 X )�(a, x)?

Exercise 14. Use the �-structural recursion theorem for �-terms from slide 38 to prove the fol-
lowing �-structural induction principle for the nominal set � of �-terms modulo �-equivalence:
if P 2 Pfs� satis�es

(8a 2 A) a 2 P
^ (8e1, e2 2 �) e1 2 P ^ e2 2 P ) e1 e2 2 P
^ ( Na)(8e 2 �) e 2 P ) �a. e 2 P

then (8e 2 �) e 2 P . [Hint: for any nominal set X , PfsX is isomorphic to X �fs 2; so we can
apply the recursion principle to functions from � to 2.]
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