
Data exchange and schema mappings

S. Amano M. Arenas L. Libkin F. Murlak

Fagin-Kolaitis-Popa-Miller, ICDT’03

Fagin-Kolaitis-Popa-Tan, PODS’04

Data exchange

◮ Source schema, target schema; need to transfer data between
them.

◮ A typical scenario:
◮ Two organizations have their legacy databases, schemas

cannot be changed.
◮ Data from organization 1 needs to be transfered to data from

organization 2.
◮ Queries need to be answered against the transferred data.

Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T

TARGET

DATABASE

?????

Outline

◮ data exchange problem

◮ universal solutions

◮ target constraints

◮ composing mappings

Data exchange problem

An example

◮ We want to create a target database with the schema

Flight(city1,city2,aircraft,departure,arrival)
Served(city,country,population,agency)

◮ We don’t start from scratch: there is a source database
containing relations

Route(source,destination,departure)
BG(country,city)

◮ We want to transfer data from the source to the target.

Relationships between source and target

How to specify the relationship?

SERVED

ROUTE Source Dest Departure FLIGHTcity1 city2 aircraft departure arrival

Country CityBG agencypopulationcountrycity

Relationships between source and target cont’d

◮ Formal specification: we have a relational calculus query over
both the source and the target schema.

◮ The query is of a restricted form, and can be thought of as a
sequence of rules:

Route(c1, c2, dept) → Flight(c1, c2, , dept,)

Route(city , ,), BG (city , country) → Served(city , country , ,)

Route(, city ,), BG (city , country) → Served(city , country , ,)

Targets

◮ Target instances should satisfy the rules.

◮ What does it mean to satisfy a rule?

◮ Formally, a source S and a target T satisfy a rule

Route(c1, c2, dept) → Flight(c1, c2, , dept,)

if they satisfy the constraint

∀c1, c2, d
(

Route(c1, c2, d) → ∃a1, a2

(

Flight(c1, c2, a1, d , a2)
)

)

Targets

◮ What happens if there no values for some attributes, e.g.
aircraft, arrival?

◮ We put in null values or some real values.

◮ But then we may have multiple solutions!

Targets

Source Database:

ROUTE: BG:

Source Destination Departure

Edinburgh Amsterdam 0600

Edinburgh London 0615

Edinburgh Frankfurt 0700

Country City

UK London

UK Edinburgh

NL Amsterdam

GER Frankfurt
Look at the rule

Route(c1, c2, dept) → Flight(c1, c2, , dept,)

The left hand side is satisfied by

Route(Edinburgh, Amsterdam, 0600)

But what can we put in the target?

Targets

Rule: Route(c1, c2, dept) → Flight(c1, c2, , dept,)
Satisfied by: Route(Edinburgh, Amsterdam, 0600)
Possible targets:

◮ Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

◮ Flight(Edinburgh, Amsterdam, B737, 0600, ⊥)

◮ Flight(Edinburgh, Amsterdam, ⊥, 0600, 0845)

◮ Flight(Edinburgh, Amsterdam, ⊥, 0600, ⊥)

◮ Flight(Edinburgh, Amsterdam, B737, 0600, 0845)

They all satisfy the constraints!

Which target to choose?

◮ One of them happens to be right:

– Flight(Edinburgh, Amsterdam, B737, 0600, 0845)

◮ But in general we do not know this; it looks just as good as

– Flight(Edinburgh, Amsterdam, ’The Spirit of St Louis’, 0600,
1300), or

– Flight(Edinburgh, Amsterdam, F16, 0600, 0620).

◮ Goal: look for the “most general” solution.

◮ How to define “most general”: can be mapped into any other
solution.

◮ It is not unique either, but the space of solution is greatly
reduced.

◮ In our case Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2) is
most general as it makes no additional assumptions about the
nulls.

Universal solutions

Universal solutions

◮ A homomorphism is a mapping h : Nulls → Nulls ∪ Constants.

◮ For example, h(⊥1) = B737, h(⊥2) = 0845.

◮ If we have two solutions T1 and T2, then h is a
homomorphism from T1 into T2 if for each tuple t in T1, the
tuple h(t) is in T2.

◮ For example, if we have a tuple

t = Flight(Edinburgh, Amsterdam,⊥1, 0600,⊥2)

then

h(t) = Flight(Edinburgh, Amsterdam, B737, 0600, 0845).

◮ A solution is universal if there is a homomorphism from it into
every other solution.

◮ (We shall revisit this definition later, to deal with nulls
properly.)

Universal solutions: still too many of them

◮ Take any n > 0 and consider the solution with n tuples:

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
Flight(Edinburgh, Amsterdam, ⊥3, 0600, ⊥4)
. . .
Flight(Edinburgh, Amsterdam, ⊥2n−1, 0600, ⊥2n)

◮ It is universal too: take a homomorphism

h′(⊥i) =

{

⊥1 if i is odd

⊥2 if i is even

◮ It sends this solution into

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

Universal solutions: cannot be distinguished by CQs

◮ There are queries that distinguish large and small universal
solutions (e.g., does a relation have at least 2 tuples?)

◮ But these cannot be distinguished by conjunctive queries

◮ Because: if ⊥i1
, . . . ,⊥ik

witness a conjunctive query, so do
h(⊥i1

), . . . , h(⊥ik
) — hence, one tuple suffices

◮ In general, if we have
◮ a homomorphism h : T → T ′,
◮ a conjunctive query Q
◮ a tuple t without nulls such that t ∈ Q(T)

◮ then t ∈ Q(T ′)

Universal solutions and conjunctive queries

◮ If
◮ T and T ′ are two universal solutions
◮ Q is a conjunctive query, and
◮ t is a tuple without nulls,

then
t ∈ Q(T) ⇔ t ∈ Q(T ′)

because we have homomorphisms T → T ′ and T ′ → T .

◮ Furthermore, if
◮ T is a universal solution, and T ′′ is an arbitrary solution,

then
t ∈ Q(T) ⇒ t ∈ Q(T ′′)

Universal solutions and conjunctive queries cont’d

◮ Now recall what we learned about answering conjunctive
queries over databases with nulls:

◮ T is a naive table
◮ the set of tuples without nulls in Q(T) is precisely

certain(Q,T) – certain answers over T

◮ Hence if T is an arbitrary universal solution

certain(Q,T) =
⋂

{Q(T ′) | T ′is a solution}

◮

⋂

{Q(T ′) | T ′is a solution} is the set of certain answers in
data exchange under mapping M: certainM(Q,S). Thus

certainM(Q,S) = certain(Q,T)

for every universal solution T for S under M.

Universal solutions cont’d

◮ To answer conjunctive queries, one needs an arbitrary
universal solution.

◮ We saw some; intuitively, it is better to have:

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

than
Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
Flight(Edinburgh, Amsterdam, ⊥3, 0600, ⊥4)
. . .
Flight(Edinburgh, Amsterdam, ⊥2n−1, 0600, ⊥2n)

◮ We now define a canonical universal solution.

Canonical universal solution

◮ Convert each rule into a rule of the form:

ϕ(x1, . . . , xk , y1, . . . , ym) → ψ(x1, . . . , xk , z1, . . . , zn)

For example,

Route(c1, c2, dept) → Flight(c1, c2, , dept,)

becomes

Route(x1, x2, x3) → Flight(x1, x2, z1, x3, z2)

◮ Evaluate ϕ(x1, . . . , xn, y1, . . . , ym) in S .

◮ For each tuple (a1, . . . , an, b1, . . . , bm) that belongs to the
result (i.e. ϕ(a1, . . . , an, b1, . . . , bm) holds in S), do the
following:

Canonical universal solution cont’d

◮ . . . do the following:
◮ Create new (not previously used) null values ⊥1, . . . ,⊥k

◮ Put tuples in target relations so that

ψ(a1, . . . , an, ⊥1, . . . ,⊥k)

holds.

◮ What is ψ?

◮ It is normally assumed that ψ is a conjunction of atomic
formulae, i.e.

R1(x̄1, z̄1) ∧ . . . ∧ Rl(x̄l , z̄l)

◮ Tuples are put in the target to satisfy these formulae

Canonical universal solution cont’d

◮ Example: no-direct-route airline:

Oldroute(x1, x2) → Newroute(x1, z) ∧ Newroute(z , x2)

◮ If (a1, a2) ∈ Oldroute(a1, a2), create a new null ⊥ and put

Newroute(a1,⊥)
Newroute(⊥, a2)

into the target.

◮ Complexity of finding this solution: polynomial in the size of
the source S :

O





∑

rules ϕ → ψ

Evaluation of ϕ on S





Canonical universal solution and conjunctive queries

◮ Canonical solution: CanSolM(S).

◮ We know that if Q is a conjunctive query, then
certainM(Q,S) = certain(Q,T) for every universal solution
T for S under M.

◮ Hence

certainM(Q,S) = certain(Q,CanSolM(S))

◮ Algorithm for answering Q:
◮ Construct CanSolM(S)
◮ Apply naive evaluation to Q over CanSolM(S)

Target constraints

Data exchange and integrity constraints

◮ Integrity constraints are often specified over target schemas

◮ In SQL’s data definition language one uses keys and foreign
keys most often, but other constraints can be specified too.

◮ Adding integrity constraints in data exchange is often
problematic, as some natural solutions – e.g., the canonical
solution – may fail them.

Target constraints cause problems

◮ The simplest example:
◮ Copy source to target
◮ Impose a constraint on target not satisfied in the source

◮ Schema mapping:
◮ S(x , y) → T (x , y) and
◮ Constraint: the first attribute is a key

◮ Instance S :
1 2

1 3

◮ Every target T must include these tuples and hence violates
the key.

Target constraints: more problems

A common problem: an attempt to repair violations of constraints
leads to a sequence of tuple insertions.

◮ Source DeptEmpl(dept id,manager name,empl id)

◮ Target

- Dept(dept id,manager id,manager name),
- Empl(empl id,dept id)

◮ Rule DeptEmpl(d , n, e) → Dept(d , z , n) ∧ Empl(e, d)

◮ Target constraints:

- Dept[manager id] ⊆ Empl[empl id]
- Empl[dept id] ⊆ Dept[dept id]

Target constraints: more problems cont’d

◮ Start with (CS, John, 001) in DeptEmpl.

◮ Put Dept(CS, ⊥1, John) and Empl(001, CS) in the target

◮ Use the first constraint and add a tuple Empl(⊥1, ⊥2) in the
target

◮ Use the second constraint and put Dept(⊥2, ⊥3, ⊥3’) into
the target

◮ Use the first constraint and add a tuple Empl(⊥3, ⊥4) in the
target

◮ Use the second constraint and put Dept(⊥4, ⊥5, ⊥5’) into
the target

◮ this never stops....

Target constraints: avoiding this problem

◮ Change the target constraints slightly:
◮ Target constraints:

- Dept[dept id,manager id] ⊆ Empl[empl id, dept id]
- Empl[dept id] ⊆ Dept[dept id]

◮ Again start with (CS, John, 001) in DeptEmpl.

◮ Put Dept(CS, ⊥1, John) and Empl(001, CS) in the target

◮ Use the first constraint and add a tuple Empl(⊥1, CS)

◮ Now constraints are satisfied – we have a target instance!

◮ What’s the difference? In our first example constraints are
very cyclic causing an infinite loop. There is less cyclicity in
the second example.

Bottom line: avoid cyclic constraints.

Composing mappings

Schema mappings

◮ Rules used in data exchange specify mappings between
schemas.

◮ To understand the evolution of data one needs to study
operations on schema mappings.

◮ Most commonly we need to deal with composition.

Semantics

M1 composed with M2

M1 M2

The closure problem

◮ Are mappings closed under composition?

◮ If not, what needs to be added?

Composition: when it works

◮ Example:

Σ : S(x1, x2, x3) → T (x1, x2) ∧ T (x2, x3)
∆ : T (x1, x2) → W (x1, x2, z)

◮ First modify into:

Σ : S(x1, x2, x3) → T (x1, x2)
S(x1, x2, x3) → T (x2, x3)

∆ : T (x1, x2) → W (x1, x2, z)

◮ Then substitute in the definition of W :

S(x1, x2, y) → W (x1, x2, z)
S(y , x1, x2) → W (x1, x2, z)

to get Σ ◦ ∆.

Composition: not without Skolem functions

Composition: not without equality

◮ Mapping Σ:
Empl(e) → Mngr(e,m)

◮ Mapping ∆:

Mngr(e,m) → Mngr’(e,m)
Mngr(e, e) → SelfMng(e)

◮ Composition:

Empl(e) → Mngr’(e, f (e))
Empl(e) ∧ e = f (e) → SelfMng(e)

Composable class of mappings

Mappings with Skolem functions and equality compose!

◮ Replace all nulls by Skolem functions:

- Empl(e) → Mngr(e,m) becomes
Empl(e) → Mngr(e, f (e))

- ∆ stays as before

◮ Use substitution:

- Mngr(e,m) → Mngr’(e,m) becomes
Empl(e) → Mngr’(e, f (e))

- Mngr(e, e) → SelfMng(e) becomes
Empl(e) ∧ e = f (e) → SelfMng(e)

Complexity summery

◮ (S ,T) ∈ [[Σ]]: PTIME
(easy, relational query evaluation)

◮ (S ,T) ∈ [[Σ ◦ Γ]]: NP-complete
(FKPT’04; improved examples of hardness in LS’08)

◮ certain answers:
◮ undecidable for RA
◮ PTIME for CQ

(folklore)

