Data exchange and schema mappings

S. Amano M. Arenas L. Libkin F. Murlak

Fagin-Kolaitis-Popa-Miller, ICDT'03
Fagin-Kolaitis-Popa-Tan, PODS'04

Data exchange

» Source schema, target schema; need to transfer data between
them.

» A typical scenario:
» Two organizations have their legacy databases, schemas
cannot be changed.

» Data from organization 1 needs to be transfered to data from
organization 2.

» Queries need to be answered against the transferred data.

Data Exchange

D

SOURCE
DATABASE

O

Source Schema S

5

TARGET
DATABASE

Target Schema T

Outline

» data exchange problem
» universal solutions
> target constraints

> composing mappings

Data exchange problem

An example

» We want to create a target database with the schema
Flight(city1,city2,aircraft,departure,arrival)
Served(city,country,population,agency)

» We don't start from scratch: there is a source database

containing relations
Route(source,destination,departure)
BG(country,city)

» We want to transfer data from the source to the target.

Relationships between source and target

How to specify the relationship?

| |

ROUTE‘ Source[Dest [Departure‘ ‘ cityl [city2 aircraft [departure[arrival FLIGHT

{

BG Country City ‘ city [country[population [agency ‘ SERVED

Relationships between source and target cont'd

» Formal specification: we have a relational calculus query over
both the source and the target schema.

» The query is of a restricted form, and can be thought of as a
sequence of rules:

Route(cl, c2, dept) — Flight(cl,c2,_, dept, _)
Route(city, _, _), BG(city, country) — Served(city, country, _, _)
Route(_, city,), BG(city, country) — Served(city, country, _, _)

Targets

» Target instances should satisfy the rules.
» What does it mean to satisfy a rule?

» Formally, a source S and a target T satisfy a rule
Route(cl, c2, dept) — Flight(cl, c2, _, dept, _)
if they satisfy the constraint

Ver, o, d(Route(cl, ¢, d) — Jag, ap (F/ight(cl, C,a1,d, 32))>

Targets

» What happens if there no values for some attributes, e.g.
aircraft, arrival?

» We put in null values or some real values.

» But then we may have multiple solutions!

Targets

Source Database:

ROUTE:

Source Destination | Departure
Edinburgh | Amsterdam 0600
Edinburgh London 0615
Edinburgh | Frankfurt 0700

Look at the rule

BG:
Country City
UK London
UK Edinburgh
NL Amsterdam
GER Frankfurt

Route(cl, 2, dept) — Flight(cl, c2, _, dept, _)

The left hand side is satisfied by

Route(Edinburgh, Amsterdam, 0600)

But what can we put in the target?

Targets

Rule: Route(cl, c2, dept) — Flight(cl, c2, _, dept, _)
Satisfied by: Route(Edinburgh, Amsterdam, 0600)
Possible targets:

» Flight(Edinburgh, Amsterdam, L;, 0600, L5)

» Flight(Edinburgh, Amsterdam, B737, 0600, L)

» Flight(Edinburgh, Amsterdam, L, 0600, 0845)

» Flight(Edinburgh, Amsterdam, L, 0600, L)

» Flight(Edinburgh, Amsterdam, B737, 0600, 0845)
They all satisfy the constraints!

Which target to choose?

» One of them happens to be right:
— Flight(Edinburgh, Amsterdam, B737, 0600, 0845)
» But in general we do not know this; it looks just as good as

— Flight(Edinburgh, Amsterdam, '"The Spirit of St Louis’, 0600,
1300), or
— Flight(Edinburgh, Amsterdam, F16, 0600, 0620).

» Goal: look for the “most general” solution.

» How to define “most general”: can be mapped into any other
solution.

» It is not unique either, but the space of solution is greatly
reduced.

» In our case Flight(Edinburgh, Amsterdam, L, 0600, L5) is
most general as it makes no additional assumptions about the
nulls.

Universal solutions

Universal solutions

» A homomorphism is a mapping h : Nulls — Nulls U Constants.

» For example, h(L1) = B737, h(Lly) = 0845.

» If we have two solutions T7 and T», then his a
homomorphism from T; into T if for each tuple t in T7, the
tuple h(t) is in Ty.

» For example, if we have a tuple

t = Flight(Edinburgh, Amsterdam, 11,0600, L 5)
then

h(t) = Flight(Edinburgh, Amsterdam, B737, 0600, 0845).

» A solution is universal if there is a homomorphism from it into
every other solution.

> (We shall revisit this definition later, to deal with nulls
properly.)

Universal solutions: still too many of them

» Take any n > 0 and consider the solution with n tuples:

Flight(Edinburgh, Amsterdam, 11, 0600, 1p)
Flight(Edinburgh, Amsterdam, 13, 0600, L4)

Flight(Edinburgh, Amsterdam, 15,-1, 0600, ;)

» It is universal too: take a homomorphism

W) = 1y ifiis odd
' 1o if i is even

» It sends this solution into
Flight(Edinburgh, Amsterdam, 13, 0600, ,)

Universal solutions: cannot be distinguished by CQs

» There are queries that distinguish large and small universal
solutions (e.g., does a relation have at least 2 tuples?)

» But these cannot be distinguished by conjunctive queries

» Because: if L;,..., L, witness a conjunctive query, so do
h(Lj),...,h(L;) — hence, one tuple suffices
» In general, if we have

» a homomorphism h: T — T/,
» a conjunctive query @
» a tuple t without nulls such that t € Q(T)

» then t e Q(T')

Universal solutions and conjunctive queries

> If

» T and T’ are two universal solutions
» @ is a conjunctive query, and
> tis a tuple without nulls,

then
te Q(T) & teQ(T)

because we have homomorphisms T — T’ and T/ — T.
» Furthermore, if
» T is a universal solution, and T" is an arbitrary solution,
then
te Q(T) = teQ(T")

Universal solutions and conjunctive queries cont'd

» Now recall what we learned about answering conjunctive
queries over databases with nulls:

» T is a naive table
> the set of tuples without nulls in Q(T) is precisely
certain(Q, T) — certain answers over T

» Hence if T is an arbitrary universal solution

certain(Q, T) ﬂ{Q)| T'is a solution}

» ({Q(T’) | T'is a solution} is the set of certain answers in
data exchange under mapping M: certainy(Q, S). Thus

certainy (@, S) = certain(Q, T)

for every universal solution T for S under M.

Universal solutions cont’d

» To answer conjunctive queries, one needs an arbitrary
universal solution.

» We saw some; intuitively, it is better to have:
Flight(Edinburgh, Amsterdam, L1;, 0600, 1,)
than
Flight(Edinburgh, Amsterdam, 11, 0600, Lp)
Flight(Edinburgh, Amsterdam, 13, 0600, L4)
Flight(Edinburgh, Amsterdam, 1,,-1, 0600,)

» We now define a canonical universal solution.

Canonical universal solution

» Convert each rule into a rule of the form:

SO(Xlw--)Xk?)/1a-~~>}/m) - w(xla"'axka Zla"'azn)

For example,
Route(cl, c2, dept) — Flight(cl, c2, _, dept, _)
becomes
Route(x1,x2,x3) — Flight(x1,x2,21,x3,2)
» Evaluate o(x1,...,Xn, Yi,-..,¥Ym) in S.

» For each tuple (a1,...,an, b1,...,bm) that belongs to the
result (i.e. v(a1,...,an, b1,...,bm) holdsin S), do the
following:

Canonical universal solution cont'd

» ... do the following:

» Create new (not previously used) null values Lq,..., L
» Put tuples in target relations so that

holds.
» What is ¢?

» It is normally assumed that %) is a conjunction of atomic
formulae, i.e.
R1(>_<1,21) VANV R,(>‘<,,2,)

» Tuples are put in the target to satisfy these formulae

Canonical universal solution cont'd

» Example: no-direct-route airline:
Oldroute(xy, x2) — Newroute(x1, z) A Newroute(z, x2)

» If (a1,a2) € Oldroute(as, a2), create a new null L and put

Newroute(ay, L)
Newroute(_L, ap)

into the target.

» Complexity of finding this solution: polynomial in the size of
the source S:

0] Z Evaluation of p on S
rules o —

Canonical universal solution and conjunctive queries

» Canonical solution: CANSOL(S).

» We know that if Q is a conjunctive query, then
certainy(Q,S) = certain(Q, T) for every universal solution
T for S under M.

» Hence
certainy(Q,S) = certain(Q, CANSOL(S))

» Algorithm for answering Q:

» Construct CANSOLuM(S)
» Apply naive evaluation to @ over CANSOLy(S)

Target constraints

Data exchange and integrity constraints

» Integrity constraints are often specified over target schemas

» In SQL's data definition language one uses keys and foreign
keys most often, but other constraints can be specified too.

» Adding integrity constraints in data exchange is often
problematic, as some natural solutions — e.g., the canonical
solution — may fail them.

Target constraints cause problems

» The simplest example:

» Copy source to target
» Impose a constraint on target not satisfied in the source

» Schema mapping:
» S(x,y) — T(x,y) and
» Constraint: the first attribute is a key
11]2
13
» Every target T must include these tuples and hence violates
the key.

» Instance S:

Target constraints: more problems

A common problem: an attempt to repair violations of constraints
leads to a sequence of tuple insertions.

» Source DeptEmpl(dept_id,manager_-name,empl_id)
> Target
- Dept(dept_id,manager_id,manager_name),
- Empl(empl_id,dept_id)
» Rule DeptEmpl(d,n,e) — Dept(d,z,n) AEmpl(e,d)
» Target constraints:
- Dept[manager_id] C Empl[empl_id]
- Empl[dept_id] C Dept[dept-id]

Target constraints: more problems cont'd

» Start with (CS, John, 001) in DeptEmpl.

» Put Dept(CS, L1, John) and Empl(001, CS) in the target

» Use the first constraint and add a tuple Empl(L;, L) in the
target

» Use the second constraint and put Dept(Lly, 13, 13") into
the target

» Use the first constraint and add a tuple Empl(L3, L4) in the
target

» Use the second constraint and put Dept(_Ll4, L5, L5") into
the target

» this never stops....

Target constraints: avoiding this problem

vV v v v Y

Change the target constraints slightly:
» Target constraints:
- Dept[dept_id,manager_id] C Empl[empl_id, dept_id]
- Empl[dept.id] C Dept[dept._id]

Again start with (CS, John, 001) in DeptEmpl.

Put Dept(CS, L1, John) and Empl(001, CS) in the target
Use the first constraint and add a tuple Empl(_L;, CS)

Now constraints are satisfied — we have a target instance!

What's the difference? In our first example constraints are
very cyclic causing an infinite loop. There is less cyclicity in
the second example.

Bottom line: avoid cyclic constraints.

Composing mappings

Schema mappings

» Rules used in data exchange specify mappings between
schemas.

» To understand the evolution of data one needs to study
operations on schema mappings.

» Most commonly we need to deal with composition.

Semantics

M composed with M>

//\

sheep sheep | | dog guards
Shaun Shaun Bitzer (Bitzer, Shaun)
Shirley Shirley (Bitzer, Shirley)

_/\/

My Mo

The closure problem

2:°%,

» Are mappings closed under composition?
» If not, what needs to be added?

Composition: when it works

» Example:
Y S(x1,x2,x3) — T(x1,x) A T(x2,x3)
A T(x1,x) — W(x,x,2)
» First modify into:
Y S(x1,x2,x3) — T(x1,x2)
S(x1,x2,x3) — T(x2,x3)
A T(x1,x) — W(x1,x,2)

» Then substitute in the definition of W:

5(X17X27.y) - W(Xl,Xz,Z)
5(y,X1,X2) - W(Xl,ijz)

togetX o A.

Composition: not without Skolem functions

sheep(x) —— sheep(x)

true ——» dog(y) sheep(x), dog(y) —= guards(y,x)

sheep sheep || dog guards
Shaun Shaun Bitzer (Bitzer, Shaun)
Shirley Shirley (Bitzer, Shirley)

If Vx sheep(x) - guards(x)

Composition: not without equality

» Mapping ¥:
Empl(e) — Mngr(e, m)
» Mapping A:
Mngr(e,m) — Mngr'(e, m)
Mngr(e,e) — SelfMng(e)
» Composition:

Empl(e) — Mngr'(e, f(e))
Empl(e) Ae = f(e) — SelfMng(e)

Composable class of mappings

Mappings with Skolem functions and equality compose!

» Replace all nulls by Skolem functions:
- Empl(e) — Mngr(e, m) becomes
Empl(e) — Mngr(e, f(e))
- A stays as before
» Use substitution:
- Mngr(e,m) — Mngr'(e, m) becomes
Empl(e) — Mngr'(e,f(e))
- Mngr(e,e) — SelfMng(e) becomes
Empl(e) A e =f(e) — SelfMng(e)

Complexity summery

» (5, T)e[x]: PTIME
(easy, relational query evaluation)
» (S, T) e [XoTl]: NP-complete
(FKPT'04; improved examples of hardness in LS'08)
> certain answers:
» undecidable for RA
» PTIME for CQ

(folklore)

