Data exchange and schema mappings

S. Amano M. Arenas L. Libkin F. Murlak

Fagin-Kolaitis-Popa-Miller, ICDT'03 Fagin-Kolaitis-Popa-Tan, PODS'04

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Data exchange

- Source schema, target schema; need to transfer data between them.
- A typical scenario:
 - Two organizations have their legacy databases, schemas cannot be changed.
 - Data from organization 1 needs to be transferred to data from organization 2.

• Queries need to be answered against the transferred data.

Data Exchange

Outline

- data exchange problem
- universal solutions
- target constraints
- composing mappings

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Data exchange problem

An example

We want to create a target database with the schema Flight(city1,city2,aircraft,departure,arrival) Served(city,country,population,agency)

We don't start from scratch: there is a source database containing relations

> Route(source,destination,departure) BG(country,city)

We want to transfer data from the source to the target.

Relationships between source and target

How to specify the relationship?

Relationships between source and target cont'd

- Formal specification: we have a *relational calculus query* over both the source and the target schema.
- The query is of a restricted form, and can be thought of as a sequence of rules:

 $Route(c1, c2, dept) \rightarrow Flight(c1, c2, _, dept, _)$ $Route(city, _, _), BG(city, country) \rightarrow Served(city, country, _, _)$ $Route(_, city, _), BG(city, country) \rightarrow Served(city, country, _, _)$

Targets

- Target instances should satisfy the rules.
- What does it mean to satisfy a rule?
- Formally, a source S and a target T satisfy a rule

 $Route(c1, c2, dept) \rightarrow Flight(c1, c2, _, dept, _)$

if they satisfy the constraint

 $\forall c_1, c_2, d \left(\textit{Route}(c_1, c_2, d) \rightarrow \exists a_1, a_2 \left(\textit{Flight}(c_1, c_2, a_1, d, a_2) \right) \right)$

Targets

What happens if there no values for some attributes, e.g. aircraft, arrival?

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- We put in null values or some real values.
- But then we may have multiple solutions!

Source Database:

ROUTE:

BG:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

6			Country	City
Source	Destination	Departure	UK	London
Edinburgh	Amsterdam	0600	-	
Edinburgh	London	0615	UK	Edinburgh
			NL	Amsterdam
Edinburgh	Frankfurt	0700	GER	Frankfurt
			GER	Franklurt

Look at the rule

Route(c1, c2, dept)
$$\rightarrow$$
 Flight(c1, c2, _ , dept, _)

The left hand side is satisfied by

Route(Edinburgh, Amsterdam, 0600)

But what can we put in the target?

Targets

Rule: Route(c1, c2, dept) \rightarrow Flight(c1, c2, _ , dept, _) Satisfied by: Route(Edinburgh, Amsterdam, 0600) Possible targets:

- Flight(Edinburgh, Amsterdam, \perp_1 , 0600, \perp_2)
- ► Flight(Edinburgh, Amsterdam, B737, 0600, ⊥)
- ► Flight(Edinburgh, Amsterdam, ⊥, 0600, 0845)
- Flight(Edinburgh, Amsterdam, \perp , 0600, \perp)
- Flight(Edinburgh, Amsterdam, B737, 0600, 0845)

They all satisfy the constraints!

Which target to choose?

- One of them happens to be right:
 - Flight(Edinburgh, Amsterdam, B737, 0600, 0845)
- But in general we do not know this; it looks just as good as
 - Flight(Edinburgh, Amsterdam, 'The Spirit of St Louis', 0600, 1300), or
 - Flight(Edinburgh, Amsterdam, F16, 0600, 0620).
- ▶ Goal: look for the "most general" solution.
- How to define "most general": can be mapped into any other solution.
- It is not unique either, but the space of solution is greatly reduced.
- In our case Flight(Edinburgh, Amsterdam, ⊥₁, 0600, ⊥₂) is most general as it makes no additional assumptions about the nulls.

Universal solutions

Universal solutions

▶ A homomorphism is a mapping h : Nulls → Nulls ∪ Constants.

• For example, $h(\perp_1) = B737$, $h(\perp_2) = 0845$.

- If we have two solutions T₁ and T₂, then h is a homomorphism from T₁ into T₂ if for each tuple t in T₁, the tuple h(t) is in T₂.
- For example, if we have a tuple

 $t = \mathsf{Flight}(\mathsf{Edinburgh}, \mathsf{Amsterdam}, \bot_1, 0600, \bot_2)$

then

h(t) = Flight(Edinburgh, Amsterdam, B737, 0600, 0845).

- A solution is universal if there is a homomorphism from it into every other solution.
- (We shall revisit this definition later, to deal with nulls properly.)

Universal solutions: still too many of them

► Take any n > 0 and consider the solution with n tuples: Flight(Edinburgh, Amsterdam, ⊥₁, 0600, ⊥₂) Flight(Edinburgh, Amsterdam, ⊥₃, 0600, ⊥₄) ... Flight(Edinburgh, Amsterdam, ⊥_{2n-1}, 0600, ⊥_{2n})

It is universal too: take a homomorphism

$$h'(\perp_i) = \begin{cases} \perp_1 & \text{if } i \text{ is odd} \\ \perp_2 & \text{if } i \text{ is even} \end{cases}$$

It sends this solution into

Flight(Edinburgh, Amsterdam, \perp_1 , 0600, \perp_2)

Universal solutions: cannot be distinguished by CQs

- There are queries that distinguish large and small universal solutions (e.g., does a relation have at least 2 tuples?)
- But these cannot be distinguished by conjunctive queries
- ▶ Because: if $\perp_{i_1}, \ldots, \perp_{i_k}$ witness a conjunctive query, so do $h(\perp_{i_1}), \ldots, h(\perp_{i_k})$ hence, one tuple suffices

- In general, if we have
 - a homomorphism $h: T \to T'$,
 - ► a conjunctive query Q
 - a tuple t without nulls such that $t \in Q(T)$

• then $t \in Q(T')$

Universal solutions and conjunctive queries

► If

- T and T' are two universal solutions
- Q is a conjunctive query, and
- t is a tuple without nulls,

then

$t \in Q(T) \Leftrightarrow t \in Q(T')$

because we have homomorphisms $T \to T'$ and $T' \to T$. Furthermore, if

 \blacktriangleright T is a universal solution, and $T^{\prime\prime}$ is an arbitrary solution, then

 $t \in Q(T) \Rightarrow t \in Q(T'')$

Universal solutions and conjunctive queries cont'd

- Now recall what we learned about answering conjunctive queries over databases with nulls:
 - T is a naive table
 - ► the set of tuples without nulls in Q(T) is precisely certain(Q, T) – certain answers over T
- ► Hence if *T* is an arbitrary universal solution

certain $(Q, T) = \bigcap \{Q(T') \mid T' \text{ is a solution}\}\$

► ∩{Q(T') | T'is a solution} is the set of certain answers in data exchange under mapping M: certain_M(Q, S). Thus

 $\operatorname{certain}_{M}(Q,S) = \operatorname{certain}(Q,T)$

for every universal solution T for S under M.

Universal solutions cont'd

 To answer conjunctive queries, one needs an arbitrary universal solution.

• We saw some; intuitively, it is better to have:

Flight(Edinburgh, Amsterdam, \perp_1 , 0600, \perp_2) than Flight(Edinburgh, Amsterdam, \perp_1 , 0600, \perp_2) Flight(Edinburgh, Amsterdam, \perp_3 , 0600, \perp_4) ... Flight(Edinburgh, Amsterdam, \perp_{2n-1} , 0600, \perp_{2n}) \blacktriangleright We now define a canonical universal solution.

Canonical universal solution

Convert each rule into a rule of the form:

 $\varphi(x_1,\ldots,x_k, y_1,\ldots,y_m) \rightarrow \psi(x_1,\ldots,x_k, z_1,\ldots,z_n)$

For example,

 $Route(c1, c2, dept) \rightarrow Flight(c1, c2, _, dept, _)$

becomes

 $Route(x_1, x_2, x_3) \rightarrow Flight(x_1, x_2, z_1, x_3, z_2)$

- Evaluate $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ in S.
- For each tuple (a₁,..., a_n, b₁,..., b_m) that belongs to the result (i.e. φ(a₁,..., a_n, b₁,..., b_m) holds in S), do the following:

Canonical universal solution cont'd

... do the following:

- Create new (not previously used) null values \bot_1, \ldots, \bot_k
- Put tuples in target relations so that

 $\psi(a_1,\ldots,a_n,\perp_1,\ldots,\perp_k)$

holds.

- ► What is ψ?
- ► It is normally assumed that \u03c6 is a conjunction of atomic formulae, i.e.

$$R_1(\bar{x}_1, \bar{z}_1) \wedge \ldots \wedge R_l(\bar{x}_l, \bar{z}_l)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Tuples are put in the target to satisfy these formulae

Canonical universal solution cont'd

Example: no-direct-route airline:

 $Oldroute(x_1, x_2) \rightarrow Newroute(x_1, z) \land Newroute(z, x_2)$

 If (a₁, a₂) ∈ Oldroute(a₁, a₂), create a new null ⊥ and put Newroute(a₁, ⊥) Newroute(⊥, a₂)

into the target.

Complexity of finding this solution: polynomial in the size of the source S:

$$O\left(\sum_{\text{rules }\varphi \to \psi} \text{Evaluation of }\varphi \text{ on }S\right)$$

Canonical universal solution and conjunctive queries

- Canonical solution: $CANSOL_M(S)$.
- We know that if Q is a conjunctive query, then certain_M(Q, S) = certain(Q, T) for every universal solution T for S under M.
- Hence

 $\operatorname{certain}_{M}(Q, S) = \operatorname{certain}(Q, \operatorname{CanSOL}_{M}(S))$

- ► Algorithm for answering *Q*:
 - Construct CANSOL_M(S)
 - Apply naive evaluation to Q over CANSOL_M(S)

Target constraints

Data exchange and integrity constraints

- Integrity constraints are often specified over target schemas
- In SQL's data definition language one uses keys and foreign keys most often, but other constraints can be specified too.
- Adding integrity constraints in data exchange is often problematic, as some natural solutions – e.g., the canonical solution – may fail them.

Target constraints cause problems

- The simplest example:
 - Copy source to target
 - Impose a constraint on target not satisfied in the source
- Schema mapping:
 - $S(x,y) \rightarrow T(x,y)$ and
 - Constraint: the first attribute is a key
- $\blacktriangleright \text{ Instance } S: \begin{array}{c|c} 1 & 2 \\ \hline 1 & 3 \end{array}$
- Every target T must include these tuples and hence violates the key.

Target constraints: more problems

A common problem: an attempt to repair violations of constraints leads to a sequence of tuple insertions.

- Source DeptEmpl(dept_id,manager_name,empl_id)
- Target
 - Dept(dept_id,manager_id,manager_name),
 - Empl(empl_id,dept_id)
- ▶ Rule DeptEmpl(d, n, e) → Dept(d, z, n) ∧ Empl(e, d)

- Target constraints:
 - $\mathsf{Dept}[\mathsf{manager_id}] \subseteq \mathsf{Empl}[\mathsf{empl_id}]$
 - $\mathsf{Empl}[\mathsf{dept_id}] \subseteq \mathsf{Dept}[\mathsf{dept_id}]$

Target constraints: more problems cont'd

- Start with (CS, John, 001) in DeptEmpl.
- ▶ Put Dept(CS, \bot_1 , John) and Empl(001, CS) in the target
- ► Use the first constraint and add a tuple Empl(⊥1, ⊥2) in the target
- ► Use the second constraint and put Dept(⊥₂, ⊥₃, ⊥₃') into the target
- ► Use the first constraint and add a tuple Empl(⊥₃, ⊥₄) in the target
- ► Use the second constraint and put Dept(⊥4, ⊥5, ⊥5') into the target

this never stops....

Target constraints: avoiding this problem

- Change the target constraints slightly:
 - Target constraints:
 - $\mathsf{Dept}[\mathsf{dept_id},\mathsf{manager_id}] \subseteq \mathsf{Empl}[\mathsf{empl_id}, \mathsf{dept_id}]$
 - $\mathsf{Empl}[\mathsf{dept_id}] \subseteq \mathsf{Dept}[\mathsf{dept_id}]$
- ► Again start with (CS, John, 001) in DeptEmpl.
- ▶ Put Dept(CS, \perp_1 , John) and Empl(001, CS) in the target
- Use the first constraint and add a tuple $\operatorname{Empl}(\bot_1, \operatorname{CS})$
- Now constraints are satisfied we have a target instance!
- What's the difference? In our first example constraints are very cyclic causing an infinite loop. There is less cyclicity in the second example.

Bottom line: avoid cyclic constraints.

Composing mappings

Schema mappings

- Rules used in data exchange specify mappings between schemas.
- To understand the evolution of data one needs to study operations on schema mappings.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Most commonly we need to deal with composition.

Semantics

(ロ)、(型)、(E)、(E)、(E)、(D)、(O)

The closure problem

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

- Are mappings closed under composition?
- If not, what needs to be added?

Composition: when it works

Example:

First modify into:

▶ Then substitute in the definition of *W*:

$$egin{array}{rcl} S(x_1,x_2,y)&
ightarrow&W(x_1,x_2,z)\ S(y,x_1,x_2)&
ightarrow&W(x_1,x_2,z) \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

to get $\Sigma \circ \Delta$.

Composition: not without Skolem functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Composition: not without equality

• Mapping Σ : Empl(e) \rightarrow Mngr(e, m)

Mapping Δ:

 $Mngr(e, m) \rightarrow Mngr'(e, m)$ $Mngr(e, e) \rightarrow SelfMng(e)$

Composition:

 $\begin{array}{rcl} \mathsf{Empl}(e) & \to & \mathsf{Mngr'}(e, f(e)) \\ \mathsf{Empl}(e) \wedge e = f(e) & \to & \mathsf{SelfMng}(e) \end{array}$

Composable class of mappings

Mappings with Skolem functions and equality compose!

- Replace all nulls by Skolem functions:
 - $\operatorname{Empl}(e) \to \operatorname{Mngr}(e, m)$ becomes $\operatorname{Empl}(e) \to \operatorname{Mngr}(e, f(e))$
 - Δ stays as before
- Use substitution:
 - $Mngr(e, m) \rightarrow Mngr'(e, m)$ becomes $Empl(e) \rightarrow Mngr'(e, f(e))$
 - $\begin{array}{rcl} \ \mathsf{Mngr}(e,e) \ \to \ \mathsf{SelfMng}(e) \ \mathsf{becomes} \\ & \mathsf{Empl}(e) \land e = f(e) \ \to \ \mathsf{SelfMng}(e) \end{array}$

Complexity summery

(S, T) ∈ [[∑]]: PTIME (easy, relational query evaluation)

 (S, T) ∈ [[Σ ∘ Γ]]: NP-complete (FKPT'04; improved examples of hardness in LS'08)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- certain answers:
 - undecidable for RA
 - PTIME for CQ

(folklore)