Database Theory: First Assignment ## Filip Murlak Issued: April 12, 2010. Updated: April 17, 2010. Due: **April 27**, 2010. Each problem is worth 5 points. A correct answer without any proof or explanation will earn you at most 2-3 points. - 1. Let $SPCU^{\neq}$ denote SPCU algebra extended with inequality in selection formulae: $\sigma_{i\neq j}E$, $\sigma_{i\neq a}E$. Determine containment relations between SPCU, $SPCU^{\neq}$, and RA. - 2. The division operator, denoted:, is added to the named algebra as follows. For relations I and J with $\operatorname{sort}(I) \subseteq \operatorname{sort}(J)$, the value of J:I is the set of tuples $t \in \pi_{\operatorname{sort}(J)\setminus\operatorname{sort}(I)}J$ such that $(\{t\}\bowtie I)\subseteq J$. Show that relational algebra can simulate the division operator. - 3. Consider the following simple game played by Adam and Eve on a finite directed graph whose vertices are divided between the players. The game starts with a token being placed in a starting position. Next, the players move the token along the edges of the graph: the next position is chosen by the owner of the current position. Eve wins the play (finite or infinite) iff at some point the token reaches a designated target vertex, or the token gets trapped in a vertex belonging to Adam with no outgoing edges. Otherwise the play is won by Adam. Assume the arena is represented by relations: Move, storing edges between positions, Adam, storing Adam's positions, and Eve, storing Eve's positions. Write a FIXPOINT (i.e., WHILE⁺ or CALC+ μ^+) query that returns pairs of vertices (v,w) such that Eve has a winning strategy in the game described above with the starting position v and the target position w. Is there an equivalent CALC query? 4. Show that WHILE \equiv CALC on input databases with unary relations only (the program can use relations of arbitrary arity).