
Synthesizing transformations from XML schema mappings

Claire David
University Paris-Est Marne
Claire.David@univ-mlv.fr

Piotr Hofman
University of Warsaw

ph209519@mimuw.edu.pl

Filip Murlak
University of Warsaw

fmurlak@mimuw.edu.pl

Michał Pilipczuk
University of Bergen

michal.pilipczuk@ii.uib.no

ABSTRACT
XML schema mappings have been developed and studied in the
context of XML data exchange, where a source document has to
be restructured under the target schema according to certain rules.
The rules are specified with a mapping, which consists of a set of
source-to-target dependencies based on tree patterns. The problem
of building a target document for a given source document and a
mapping has polynomial data complexity, but is still intractable due
to high combined complexity.

We consider a two layer architecture for building target in-
stances, inspired by the Church synthesis problem. We view the
mapping as a specification of a document transformation, for which
an implementation must be found. The static layer inputs a map-
ping and synthesizes a single XML-to-XML query implementing
a valid transformation. The data layer amounts to evaluating this
query on a given source document, which can be done by a special-
ized query engine, optimized to handle large documents.

We show that for a given mapping one can synthesize a query
expressed in an XQuery-like language, which can be evaluated in
time proportional to the evaluation time of the patterns used in the
mapping. In general the involved constant is high, but it can be
improved under additional assumptions. In terms of overall com-
plexity, if the arity of patterns is considered constant, we obtain
a fixed-parameter tractable procedure with respect to the mapping
size, which improves previously known upper bounds.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases—Data
translation; I.7.2 [Document and Text Processing]: Document
Preparation—XML

General Terms
Theory, Languages, Algorithms

Keywords
data exchange, building solutions, document transformations,
queries returning trees

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT’14 March 24-28, 2014, Athens, Greece.
Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
One of the challenges of data management is dealing with het-

erogeneous data. A typical scenario is that of data exchange, in
which the source instance of a database has to be restructured under
the target schema according to certain rules. The rules are speci-
fied in a declarative fashion, as source-to-target dependencies that
express properties of the target instance, based on properties of the
source instance.

Mapping between relational schemas are well understood (see
recent surveys [3, 5, 6, 18]). Prototypes of tools for specifying and
managing mappings have been developed and some have been in-
corporated into commercial ETL (extract-transform-load) systems
[14, 20, 23]. In the XML context, while commercial ETL tools
often claim to provide support for XML schema mappings, this is
typically done by means of dependencies that essentially establish
connections between attributes in two schemas of a restricted form.
In research literature, a more expressive formalism of XML schema
mappings was developed using tree patterns in order to specify
complex transformations exploiting the tree structure of XML doc-
uments [1, 4].

For such mappings, the problem of constructing a valid target
instance for a given source instance is highly non-trivial due to the
subtle interplay between the properties imposed by the dependen-
cies and the structural constraints of the target schema. For a fixed
mapping the target instance can be constructed in polynomial time,
but in terms of combined complexity the problem is NEXPTIME-
hard [8]. In this work we analyze the problem in the spirit of
parametrized complexity: we cannot beat the NEXPTIME lower
bound, but we can still hope for polynomial data complexity with
the degree of the polynomial independent of the mapping. More-
over, from the practical point of view it is desirable to separate the
static part of the computation, dealing only with the mapping, from
the data-dependent part. Ideally, the data stage should rely as much
as possible on a specialized query engine, optimized to handle large
data.

We consider a generic two-layer architecture for building tar-
get instances. Inspired by the Church synthesis problem [10], and
later work on schema mappings [17, 21], we view the mapping as
a declarative specification of a document transformation, for which
a working implementation must be synthesized. The static layer
inputs a mapping and synthesizes an XML-to-XML query (in an
XQuery-like language) implementing a valid transformation. The
data layer amounts to evaluating the query on a given source doc-
ument. The challenge is to synthesize a query whose data com-
plexity does not exceed drastically the data complexity of queries
involved in the dependencies.

Our contributions. We show that given a mappingM one can
synthesize an implementing query qM that can be evaluated on the
source tree T in time CM · |T |O(r), where r is the maximal num-
ber of variables in the patterns used inM. That is, the complexity
is fixed-parameter tractable wrt. the size of the mapping, if r is
considered a fixed constant; we refer to the books of Downey and
Fellows [13] or Flum and Grohe [15] for an introduction to the
parametrized complexity. Constant CM may be large in general,
but we identify a class of tractable mappings, where CM is poly-
nomial in the size ofM and minimal target documents.

Our approach relies on the idea of splitting the target schema
into several templates, which are later filled with data values and
multiple instances of generic small fragments of trees in such a
way that all the dependencies are satisfied. The most costly part
is choosing the constants to fill in the attributes in the fixed part of
the template. The brute-force method of trying all possible values
from the source tree has unacceptable data complexity. We give
three different methods to solve this problem more efficiently:

• a branching algorithm that fixes the attributes iteratively us-
ing tuples extracted from the source tree by source-side pat-
terns, and backtracks in case of failure;
• a method exploiting the concept of kernelization, which

amounts here to finding a small subset of tuples, sufficient
to determine the attributes of the template;
• an algorithm that splits the source schema into templates and

uses the fact that for absolutely consistent mappings (admit-
ting a valid target instance for each source instance) the at-
tributes of the target template depend only on the attributes
of the source template.

The three methods give similar complexity bounds, but the ideas
behind them are very different. We believe that together they offer
deeper understanding of the problem, as well as a broader spectrum
of techniques to be used in solutions tailored for real-life scenarios.
Our algorithm for tractable mappings refines the brute-force solu-
tion, using ideas similar to the ones behind the third approach.

Related work. In the classical setting of relational data ex-
change with mappings given by source-to-target tuple-generating
dependencies, there is no reason for a two layer architecture since
the mapping itself can be used to construct target solutions by
means of the chase procedure. A two layer architecture has been
considered for a different kind of mappings, describing two-way
data flows between databases and applications [21]. These map-
pings are compiled into Entity SQL views defining the application’s
data model in terms of the database instance, and vice versa.

Most research on the synthesis of XML transformations fo-
cuses on building complex transformations from existing ones by
means of high level operations [6, 20]. Synthesizing transforma-
tions from a declarative specification is considered in [17], but the
setting allows only simple schemas in which elements contain sev-
eral subelements and several collections of subelements of the same
type. The dependencies are expressed in terms of child relation and
element types. The solution amounts to producing small XML doc-
uments which are then merged into a single document conforming
to the schema; the focus is on performing the merge efficiently. In
our approach there is no merging involved; the structural condi-
tions of the schema are analyzed beforehand and reflected in the
templates.

Organization. After recalling the basic notions (Sect. 2) and in-
troducing the transformation language (Sect. 3), we describe a sim-
ple approach which essentially casts the solution building algorithm

from [8] in our two layer setting. Next we describe the branching
algorithm (Sect. 5), the kernelization method (Sect. 6), and the al-
gorithm for absolutely consistent mappings (Sect. 7). Finally, we
discuss the tractable case (Sect. 8) and conclude with ideas for fu-
ture work (Sect. 9). Some arguments are moved to the Appendix.

2. PRELIMINARIES

Data trees. The abstraction of XML documents we use is data
trees: unranked labelled trees storing in each node a data value, i.e.,
an element of a countable infinite data domain D. For concreteness,
we will assume that D contains the set of natural numbers N. For-
mally, a data tree over a finite labelling alphabet Γ is a structure
T = 〈T, ↓, ↓+,→,→+, labT , ρT 〉, where

• the set T is an unranked tree domain, i.e., a prefix-closed
subset of N∗ such that n · i ∈ T implies n · j ∈ T for all
j < i;

• the binary relations ↓ and→ are the child relation (n ↓ n · i)
and the next-sibling relation (n · i→ n · (i+ 1));

• ↓+ and→+ are the transitive closures of ↓ and→ ;

• labT : T → Γ is the labelling function;

• ρT : T → D assigns data values to nodes. We say that a node
s ∈ T stores the value d when ρT (s) = d.

When the interpretations of ↓,→, labT , ρT are understood, we
write just T instead of T . We use the terms “tree” and “data tree”
interchangeably.1 We write |T | for the number of nodes of T .

Forests and contexts. A forest is a sequence of trees. We
write F +G for the concatenation of forests F , G and L+M for
{F + G

∣∣ F ∈ L,G ∈ M} for sets of forests L, M . If L = {F}
we write simply F +M .

A multicontext C over an alphabet Γ is a tree over Γ∪{◦} such
that ◦-labelled nodes have at most one child. The nodes labelled
with ◦ are called ports. A context is a multicontext with a single
port, which is additionally required to be a leaf. A leaf port u can
be substituted with a forest F , which means that in the sequence
of the children of u’s parent, u is replaced by the roots of F . An
internal port u can be substituted with a context C′ with one port
u′: first the subtree rooted at u’s only child is substituted at u′,
then the obtained tree is substituted at u. Formally, the ports of a
multicontext store data values just like ordinary nodes, but these
data values play no role and we will leave them unspecified.

For a context C and a forest F we write C ·F to denote the tree
obtained by substituting the unique port of C with F . If we use a
context D instead of the forest F , the result of the substitution is
a context as well. Again, we extend the operation · to two sets of
contexts in the natural way.

Schemas. A document type definition (DTD) over a labelling al-
phabet Γ is a pair D = 〈rD, PD〉, where

• rD ∈ Γ is a distinguished root symbol;

• PD is a function assigning regular expressions over Γ to the
elements of Γ, usually written as σ → e, if PD(σ) = e.

1A different abstraction allows several attributes in each node, each
attribute storing a data value [1, 4]. Attributes can be modelled
easily with additional children, without influencing the complexity
of the problems we consider.

Figure 1: Homomorphisms witness satisfaction (solid and
dashed arrows are child and descendant relations).

A data tree T conforms to a DTD D, if its root is labelled with rD
and for each node s ∈ T the sequence of labels of children of s is
in the language of PD(labT (s)). The set of data trees conforming
to D is denoted L(D). Unless stated otherwise, we assume rD is a
fixed label r.

A forest DTD is defined like a DTD, only instead of a single
root symbol it has a regular expression. For a forest DTD D =
〈e, PD〉, L(D) is the set of forests of the form T1T2 . . . Tp whose
sequence of root labels σ1σ2 . . . σp is a word in the language of e
and Ti ∈ L(〈σi, PD〉).

A context DTD over Γ is a DTDD over Γ∪{◦} such that each
tree over Γ ∪ {◦} conforming to D has exactly one node (a leaf)
labelled with ◦.

Patterns. Patterns were originally invented as convenient syntax
for conjunctive queries on trees [9, 16]. While XML schema map-
pings literature mostly concentrates on tree-shaped patterns, defin-
able in XPath-like syntax [1, 4], without disjunction the full ex-
pressive power of conjunctive queries is only guaranteed by DAG-
shaped patterns. Following [8] we base our mappings on DAG-
shaped patterns.

A (pure) pattern π over Γ can be presented as

π = 〈V,Ec, Ed, En, Ef , labπ, ξπ〉

where 〈V,Ec∪Ed∪En∪Ef 〉 is a finite DAG whose edges are split
into child edges Ec, descendant edges Ed, next sibling edges En,
and following sibling edges Ef ; labπ is a partial function from V
to Γ; ξπ is a partial function from V to some set of variables. The
range of ξπ , denoted Rg ξπ , is the set of variables used by π; the
arity of π is |Rg ξπ|; ‖π‖ is the size of the underlying DAG.

A data tree T = 〈T, ↓, ↓∗,→,→∗, labT , ρT 〉 satisfies a pattern
π = 〈V,Ec, Ed, En, Ef , labπ, ξπ〉 under a valuation θ : Rg ξπ →
D, denoted T |= πθ, if there exists a homomorphism h : π → T
i.e., a function µ : V → T such that

• µ : 〈V,Ec, Ed, En, Ef 〉 → 〈T, ↓, ↓∗,→,→∗〉 is a homo-
morphism of relational structures;

• labT (µ(v)) = labπ(v) for all v ∈ Dom labπ; and

• ρT (µ(u)) = θ(ξπ(u)) for all u ∈ Dom ξπ .

We write π(x̄) to express that Rg ξπ ⊆ x̄. For π(x̄), instead of πθ
we usually write π(ā), where ā = θ(x̄). We say that T satisfies
π, denoted T |= π, if T |= πθ for some θ. Figure 1 shows an
example of a pattern and a homomorphism.

Note that we use the usual non-injective semantics, where dif-
ferent vertices of the pattern can be witnessed by the same tree
node, as opposed to injective semantics, where each vertex is
mapped to a different tree node [11]. Under the adopted semantics

Figure 2: Dependencies are expressed with patterns.

patterns are closed under conjunction: π1∧π2 can be expressed by
the disjoint union of π1 and π2.

We enrich pure patterns with explicit equalities and inequalities
between data variables, i.e., if π(x̄) is a pure pattern and η(x̄) is
a conjunction of equalities and inequalities over x̄, then π′(x̄) =
(π, η)(x̄) is a (non-pure) pattern. We write T |= π′(ā) if T |=
π(ā) and η(ā) holds.

Schema mappings. A schema mapping M = 〈Ds,Dt,Σ〉
consists of a source DTD Ds, a target DTD Dt, and a set Σ of
(source-to-target) dependencies that relate source and target in-
stances. Dependencies are expressions of the form:

π(x̄) −→ π′(x̄, ȳ) ,

where π, π′ are patterns and each variable in x̄ is used in the pure
pattern underlying π (the usual safety condition).

A pair of trees (T, T ′) satisfies the dependency above if for all
ā, T |= π(ā) implies T ′ |= π′(ā, b̄) for some b̄. Given a source
T ∈ L(Ds), a target T ′ ∈ L(Dt) is a solution for T underM if
(T, T ′) satisfies each dependency in Σ. We letM(T) stand for the
set of all solutions for T .

EXAMPLE 1. LetM = 〈Ds,Dt,Σ〉, where Ds is r→ c; c→
a∗b∗, Dt is r → (c|d)a∗; a → b∗, and Σ consists of the single
dependency in Fig. 2. UnderM each source tree has a solution. On
the other hand, if we replace the target DTD with r→ (c|d)a; a→
b∗, only trees that store the same data value in all a-nodes have
solutions.

3. TRANSFORMATION LANGUAGE
For the transformation language we choose a fragment of

XQuery, extended with an additional construct for manipulating
contexts. We use the following streamlined syntax:

q(x̄) ::= σ(xi)
[
q′(x̄)

] ∣∣ q′(x̄), q′′(x̄)
∣∣ first(q′(x̄))∣∣ e(x̄)

∣∣ ρ(e(x̄))∣∣ if b(x̄) then q′(x̄) else q′′(x̄)∣∣ let y := q′(x̄) return q′′(x̄, y)∣∣ for y in q′(x̄) where b(x̄, y) return q′′(x̄, y)

b(x̄) ::= q(x̄) = q′(x̄)
∣∣ empty(q(x̄))∣∣ ¬b′(x̄)

∣∣ b′(x̄) ∨ b′′(x̄)
∣∣ b′(x̄) ∧ b′′(x̄)

e(x̄) ::= (xi
∣∣ .)(step ∣∣ [f]

)∗
step ::= ↓

∣∣ ↓+ ∣∣ ↑ ∣∣ ↑+ ∣∣→ ∣∣→+
∣∣← ∣∣←+

f ::= σ
∣∣ e ∣∣ ¬f ′ ∣∣ f ′ ∨ f ′′ ∣∣ f ′ ∧ f ′′

where q’s are the queries, b’s are the Boolean tests, e’s are the Cor-
eXPath expressions (starting in a node xi or in the root). We adopt
the standard XQuery semantics. The queries return sequences of
trees or atomic values (or nodes, identified with subtrees), and vari-
ables can store all of these as well. The expression σ(xi)

[
q′(x̄)

]

Figure 3: Combining trees horizontally and vertically.

returns the tree obtained by substituting the forest returned by q′ at
the port of the context consisting of the port and the root labelled
with σ ∈ Γ and storing the data value xi; q′(x̄), q′′(x̄) returns the
concatenation of the results of q′(x̄) and q′′(x̄); first(q(x̄)) gives
the first element of the sequence returned by q; ρ(e(x̄)) returns the
sequence of data values stored in the sequence of nodes returned
by e(x̄); let y := q′(x̄) return q′′(x̄, y) returns the sequence re-
turned by q′′(x̄, y) where y is evaluated to the sequence returned
by q′(x̄); for y in q′(x̄) where b(x̄, y) return q′′(x̄, y) returns the
concatenation of the sequences returned by q′′(y, x̄) for all values
of y returned by q′(x̄) that satisfy b(x̄, y). In Sect. 6 and Sect. 7 we
use additional standard features of XQuery; we explain them there.

Consider the mapping M defined in Example 1. In order to
implement it with a query, we need to assume that a function
freshnull() returning a fresh null value at each call is available. An
implementing query can be written as

r
[

let z := freshnull() return c(z) ,

for v in . ↓ [c] return

for x in ρ(v ↓ [a]) return

for y in ρ(v ↓ [b]) return a(x)[b(y)]
]

In queries implementing mappings patterns must be expressed
as queries. For this, it is convenient to assume that queries can
return tuples of data values, e.g., the source side pattern ofM (see
Fig. 2) could be expressed with query qsrc:

for v in . ↓ [c] return

for x in ρ(v ↓ [a]) return

for y in ρ(v ↓ [b]) return (x, y)

and the implementing query qM can be written as

r
[

let z := freshnull() return c(z) ,

for (x, y) in qsrc return a(x)[b(y)]
]

This can be simulated in XQuery by returning flat trees with as
many children as the tuples have entries, and selecting the data val-
ues from the children with path expressions.

Since each DAG pattern can be expressed as a disjunction of
exponentially many tree patterns [16], each DAG pattern can be
expressed as a query returning tuples of data values.

LEMMA 1 ([16]). For each pattern π(x̄) there exists a query
qπ that returns exactly those tuples ā for which π(ā) is satisfied
in the tree. The query can be synthesized in time 2poly(||π||) and
evaluated over T in time 2poly(||π||) · |T |r where r is the number of
variables in the pattern. If π is a tree-shaped pattern, the synthesis
time is poly(||π||) and the evaluation time is poly(||π||) · |T |r .

Finally, in order to construct trees conforming to arbitrary re-
cursive DTDs, we need a way to produce and concatenate contexts,

not just forests. For instance, if the target DTD inM is changed
to r → a; a → ab | db then the only way to obtain a solution is to
go deeper and deeper in the tree, as shown in the right hand tree in
Fig. 3. To enable this, we extend the transformation language with
context expressions

c(x̄) ::= ◦
∣∣ σ(xi)[◦]

∣∣ c′(x̄)
[
c′′(x̄)

] ∣∣ q(x̄), c′(x̄), q′(x̄)∣∣ let y := q′(x̄) returnC c′(x̄, y)∣∣ for y in q′(x̄) where b(x̄, y) returnC c′(x̄, y)

and replace σ(xi)[q
′(x̄)] in the productions for q as follows:

q(x̄) ::= . . .
∣∣ c(x̄)[q′(x̄)]

∣∣ . . .
The semantics of for y in q′(x̄) where b(x̄, y) returnC c′(x̄, y) is
a context obtained by combining all results of c′(x̄, y) vertically,
plugging one in another. Using this construct, the modified map-
ping can be implemented with the query

r
[(

for (x1, x2) in qsrc returnC a(x1)[◦, b(x2)]
)
[qd]
]
,

where qd is let y := freshnull() return d(y).

4. SIMPLE SOLUTION
In this section we show how the general solution building al-

gorithm from [8] can be used to synthesize a query implementing
a given mapping M = 〈Ds,Dt,Σ〉, i.e., a query qM such that
qM(T) ∈ M(T) for each source tree T that admits a solution.
Building a solution for T amounts to producing a tree T ′ |= Dt
that satisfies each pattern from

∆ =
{
ψ(ā, ȳ)

∣∣ ϕ(x̄) −→ ψ(x̄, ȳ) ∈ Σ, T |= ϕ(ā)
}
,

which is an instance of the satisfiability problem for patterns. Sat-
isfiability is well-known to be NP-complete, so this gives an algo-
rithm exponential in ‖∆‖, which can be as large as |T |r , where r
is the maximal arity of patterns inM. We are aiming at an algo-
rithm polynomial in |T |r . We shall exploit the fact that patterns in
∆ have size independent of T .

The algorithm from [8] essentially works as follows:

1. for each δ ∈ ∆ build Tδ ∈ L(Dt) such that Tδ |= δ,

2. combine the Tδ’s into T ′ ∈ L(Dt) such that T ′ |= ∆.

Step (1) can be done in time independent from T for each δ, but (2)
is not obvious: how do we combine the Tδ’s into a solution? While
some parts of Dt may be flexible enough to accommodate corre-
sponding fragments from all Tδ’s, some other parts require that all
the Tδ’s agree. For instance, according to the modified target DTD
r → (c|d)a; a → b∗ in Example 1, in each solution T ′ the root,
the a-node, and its sibling are unique, and if the Tδ’s are to be com-
bined, they need to agree on the data values stored in these nodes
and on the label of the a-node’s sibling. On the other hand, T ′ can
contain multiple b-nodes with different data values.

The idea of the algorithm is to split the target schema Dt
into so-called kinds, in which the fixed and the flexible parts are
clearly identified, and try to find Tδ’s consistent with a single kind.
The only requirement for the flexible parts is that they allow easy
combination of smaller fragments. A natural condition would be
closure under concatenation, but for complexity reasons we use
weaker conditions that allow additional padding between the com-
bined fragments.

DEFINITION 1 (KIND). A kind K is a multicontext whose
each port u is equipped with a language Lu of compatible forests
or contexts that can be substituted at u. If u is a leaf, then one of
the following holds:

K(c̄) Lu1 = L(〈b, {b→ (b|◦) c; c→ ε}〉)
Lu2 = L(〈c∗, {c→ ε}〉)

Figure 4: A data kind K(c̄) and three trees in L(K(c̄)).

(1) Lu is a DTD-definable set of forests and for all F ∈Lu,

F + F ′ + Lu ⊆ Lu
for some forest F ′; or

(2) Lu is DTD-definable set of trees and for all T ∈ Lu,

C′(T,Lu) ⊆ Lu
for some multicontext C′ with two ports u1, u2, where
C′(T,Lu) is the set of trees obtained by substituting T at
u1 and some T ′ ∈ Lu in u2.

If u is an internal node, then

(3) Lu is a DTD-definable set of contexts and for all C∈Lu,

C · C′ · Lu ⊆ Lu
for some context C′.

Depending on the type, we distinguish forest (1), tree (2) and con-
text ports (3). We assume that the root of K is not a forest port, i.e.,
a single forest port is not a kind.

We write L(K) for the set of trees T obtained from K by substitut-
ing at each port u a compatible forest, tree, or context Tu according
to the type of u. We call sequence (Tu)u a witnessing substitu-
tion. A witnessing decomposition of T is a sequence of disjoint
sets (Zu)u of nodes of T such that T restricted to Zu is a copy of
Tu and T restricted to the complement of

⋃
u Zu is a copy of K.

We shall identify Tu and K with their copies in T (the components
of the decomposition) and speak of the witnessing decomposition
(Tu)u.

As we have seen, data values in the copy of K have to agree
in all Tδ’s, so they have to be determined in advance. By filling
in the data values we obtain a data kind. We write K(c̄) to denote
the data kind obtained from K by assigning c̄ to the ordinary nodes
of K, assuming some implicit order on them. Each K(c̄) defines
language L(K(c̄)) of data trees. Figure 4 shows a data kind K(c̄)
and some trees in L(K(c̄)).

Definition 1 ensures that sequences of compatible forests or
contexts can be combined into one compatible forest or con-
text: for compatible forests F1, F2, . . . , Fn there are forests
I1, I2, . . . , In−1 such that F1 +I1 +F2 +I2 + . . .+Fn is compat-
ible; for compatible trees S1, S2, . . . , Sn there are multicontexts
I1, I2, . . . , In−1 with two ports such that I1(S1, ◦) · I2(S2, ◦) ·
. . . · In−1(Sn−1, Sn) is compatible, where Ij(Sj , ◦) is a context
obtained by substituting Sj at the first port of Ij ; and for compat-
ible contexts C1, C2, . . . , Cn there are contexts I1, I2, . . . , In−1

Figure 5: A generic mapping.

such that C1 · I1 · C2 · I2 · . . . · Cn is compatible. This gives
a natural way to combine trees from L(K(c̄)): a combination of
T 1, T 2, . . . , Tn ∈ L(K(c̄)) with decompositions (T ju)u is a tree
from L(K(c̄)) obtained by substituting at each port u a compatible
forest or context combining T 1

u , T
2
u , . . . , T

n
u . In general there is no

guarantee that a combination of the Tδ’s satisfies each δ, but we
can ensure it by assuming that δ is matched in Tδ in a special way
defined below.

DEFINITION 2 (NEAT MATCHING). Let T ∈ L(K) and let
(Tu)u be a witnessing decomposition of T . A pattern π is matched
neatly in T (with respect to (Tu)u) if there exists a neat homo-
morphism µ : π(ā) → T , i.e., a homomorphism such that for all
vertices x, y of π

• if En(x, y) then µ(x) and µ(y) are in the same component;

• if Ec(x, y) then either µ(x) and µ(y) are in the same com-
ponent, or µ(x) is in the copy of K in T and µ(y) is a root
of a forest component;

• if Ef (x, y) then either µ(x) and µ(y) are in the same com-
ponent, or each is a root of a forest component or a node in
the copy of K in T .

It is easy to see that neat matchings guarantee that each combi-
nation of all Tδ’s satisfies each δ (see Appendix A).

LEMMA 2. If T ′ is a combination of Tδ ∈ L(K(c̄)) with de-
composition (T δu)u for δ ∈ ∆ and each δ is matched neatly in T ′

with respect to (T δu)u, then T ′ |= ∆.

As we shall see later, it suffices to consider kinds for which
neat matchings always exist. A kind K is a target kind for M if
L(K) ⊆ L(Dt), and for each target-side pattern π inM if π(ā)
can be matched in a tree from L(K(c̄)), then it can also be matched
neatly in some tree from L(K(c̄)). For a target kind K, the two
step algorithm discussed above computes a solution in L(K(c̄)), if
there is one. The following lemma shows that one can synthesize a
query that implements this algorithm. We write |K| for the number
of nodes of K and ‖K‖ for the maximal size of DTDs in K.

LEMMA 3. For each mapping M and target kind K there
is a query solK(z̄) such that for each tree T that ad-
mits a solution in L(K(c̄)), solK(c̄)(T) is a solution for T .
The synthesis time for solK is 2poly(‖K‖,‖M‖) · |K|O(p+r) and the
evaluation time is 2poly(‖M‖,‖K‖) · |K|r+1 · |T |r where r and p are
the maximal arity and size of patterns inM.

The proof can be found in Appendix B. Here we give an exam-
ple for a relatively generic mapping.

EXAMPLE 2. LetM be a mapping with source DTD Ds : r→
a∗; a → b c; b → c, target DTD Dt : r → a; a → b c∗; b →

(b | d)c, and dependencies π1(x̄) −→ π′1(x̄), π2(x̄) −→ π′2(x̄, y)
shown in Fig. 5. The kind K(c̄) with c̄ = c1, c2, c3, c4, shown in
Fig. 4, is a target kind forM.

First we need Tπ′1(ā) ∈ L(K(c̄)) for all ā = a1, a2, a3 such
that π1(ā) holds in in the source tree, and similarly for π′2. When
we synthesize the query we have no access to the source tree; we
provide generic trees that depend only on the equality type of the
entries of ā. There are two essentially different ways to match
neatly π′1(ā) in a tree from K(c̄): match the vertex without label to
one of the b-nodes outside K and both c-vertices to its only c-child
(left tree in Fig. 4), or match the vertex without label to the unique
a-node and the c-vertices to some of its c-children (middle tree in
Fig. 4; nodes storing nulls ⊥1,⊥2 are required by Lu1). The first
matching allows arbitrary a1, but a2 and a3 have to be equal, the
second one allows arbitrary a2 and a3, but a1 has to be equal to c2.
For π′2(ā) the only choice is where to match the b-nodes: inside or
outside of K. In a neat matching both have to be mapped outside
of K (right tree in Fig. 4; null value ⊥ realises the variable y).

The query solK(z̄) computes tuples for which π1 and π2 hold in
the input tree and returns a combination of the appropriate instances
of the generic trees. It generates fresh nulls ȳ = y1, y2, y3 and
returns K(c̄) with c̄ replaced by z̄ and ports u1, u2 replaced by a
context expression qu1(ȳ) and a subquery qu2 :

let y1 := freshnull() return

let y2 := freshnull() return

let y3 := freshnull() return

r(z1)
[
a(z2)

[
b(z3)

[
qu1(ȳ)[d(z5)], c(z4)

]
, qu2

]]
.

In qu1(ȳ) = q1
u1

[q2
u1

(y1, y2)[q3
u1

(y3)]], expression q1
u1

combines
substitutions at port u1 coming from the first way of matching π′1,

for x̄ in qπ1 where x2 = x3 returnC b(x1)
[
◦ , c(x2)

]
,

q2
u1

(y1, y2) combines those coming from the second way,

for x̄ in qπ1 where x1 = z2 returnC b(y1)
[
◦ , c(y2)

]
,

and q3
u1

(y3) combines those coming from matching π′2,

for x̄ in qπ2 returnC b(x1)
[
b(x2)

[
◦ , c(y3)

]
, c(y)

]
.

Note that q2
u1

(y1, y2) can be optimized to b(y1)
[
◦ , c(y2)

]
. In

qu2 =
(
q1
u2
, q2
u2

)
, subquery q1

u2
combines substitutions at port u2

coming from the second way of matching π′1,

for x̄ in qπ1 where x1 = z2 return c(x2), c(x3) ,

and q1
u2

combines substitutions coming from matching π′2,

for x̄ in qπ2 return c(x3) .

Clearly, solK(c̄)(T) is a solution for T , unless T |= π1(ā) for
some ā such that neither a1 = c2 nor a2 = a3. But then T admits
no solution in L(K(c̄)) at all.

It remains to compute the data values c̄ to be put in the ordinary
nodes of K. Tuple c̄ depends on the input tree T : in Example 2,
c̄ is good if T |= π1(ā) implies that either a1 = c2 or a2 = a3.
A similar characterisation is always a by-product of solK(z̄) (see
Appendix B).

LEMMA 4. LetM be a mapping with dependencies πi(x̄i)→
π′i(x̄i, ȳi) for i = 1, 2, . . . , n and let K be a target kind. There
exist formulae αi(x̄i, z̄) such that

• αi(x̄i, z̄) is a disjunction of at most |K|rrr conjunctions of
O(|π′i|) equalities and inequalities among x̄i and z̄, where r
is the maximal arity of patterns inM;

• for each c̄, each source tree T admits a solution in L(K(c̄))
iff T |= πi(ā) implies αi(ā, c̄) for all i.

The αi’s can be computed from solK in polynomial time.

We shall call the αi’s the potential expressions for K. Note that z̄
are common for all αi; we refer to them as the constants of K. In
the symbols of Lemma 4 we can write the following simple query
constK, computing a suitable valuation of the constants of K, if it
exists:

first
(

for z̄ in values |z̄| where

empty
(

for x̄1 in qπ1 where ¬α1(x̄1, z̄) return x̄1

)
...

∧ empty
(

for x̄n in qπn where ¬αn(x̄n, z̄) return x̄n
)

return z̄
)

where values|z̄| is a query that returns all possible tuples of length
|z̄|with entries from the set of data values used in the input tree or a
fixed set of nulls of size |z̄|. The nulls are needed, since inequalities
may enforce some constants to be different from any data value
used in the source document.

The evaluation time of constK on T is proportional to |T ||K|,
which is highly impractical; in the following sections we shall op-
timize it so that the evaluation time does not drastically exceed that
of solK. For now, let us finish the construction of the implementing
query qM.

We say that K1,K2, . . . ,Kk cover a language L if L ⊆⋃k
i=1 L(Ki). The following lemma shows that the target domain

of any mapping can be covered with small target kinds (see Ap-
pendix C for the proof). For a DTD D, the branching is the max-
imal size of regular expressions used in D, and the height is the
maximal number of different labels on a branch in any tree from
L(D).

LEMMA 5. For each mapping M there exist target kinds
K1,K2, . . . ,Kk covering L(Dt) such that |Ki| ≤ K, ‖Ki‖ ≤
‖Dt‖, and the whole sequence of kinds can be computed in time
2K·poly(||M||); here K = (2pb + b)2ph+h, where b and h are the
branching and height ofDt, and p is the maximal size of target side
patterns inM.

IfK1,K2, . . . ,Kk are the target kinds guaranteed by Lemma 5,
the query qM can be defined as:

if ¬empty(constK1) then let z̄ := constK1 return solK1(z̄) else

...
if ¬empty(constKk) then let z̄ := constKk return solKk (z̄) .

Using the bounds of Lemmas 3–5, we have that the synthesis
time for qM is 2K·poly(‖M‖) and the evaluation time over T is
2K·poly(‖M‖) · |T |K+r .

5. OPTIMIZING VIA BRANCHING
In this section we show an optimization of the solution given in

the previous section. The query qM presented there runs through
all valuations of the constants of target kind K with data values
from the input document and nulls. This can be highly inefficient if
K is large: the resulting number of valuations can be much larger
than the space of tuples considered in the dependencies. We present
a simple branching strategy that avoids enumeration of all valua-
tions.

Our algorithm executes some queries, whose number depends
only on M, such that each query has linear data complexity and
runs over the set of tuples selected by a single source-side pattern,
instead of all valuations of the constants of K. This gives running
time f(|K|) · |T |r , rather than O(|T |O(|K|)), for some function f ,
where T is the source tree and r is the maximal arity of patterns in
M. Thus, the presented solution is fixed-parameter tractable in the
sense of Downey and Fellows [13], when r is treated as a constant
and ‖M‖ is treated as a parameter (the solution in Sect. 4 is not
fixed-parameter tractable). Rigorous bounds on function f will be
still quite intractable (double exponential in ‖M‖); in Sect. 8 we
improve them under additional assumptions.

By Lemma 4, finding the constants of kind K amounts to solv-
ing the following more general tuple covering problem: given
potential expressions αi(x̄i, z̄) and sets Di ⊆ D|x̄i| for i =
1, 2, . . . , n, find a tuple c̄ such that αi(ā, c̄) holds for all i and
ā ∈ Di, or assert that such c̄ does not exist (Di plays the role
of the set of tuples selected by pattern πi(x̄i)).

LEMMA 6. The tuple covering problem for potential expres-
sions α1(x̄1, z̄), . . . , αn(x̄n, z̄) and sets D1, . . . , Dn can be
solved by an algorithm executing at most

n · (1 + max
i=1,...,n

ki)
O(|z̄|2)

linear queries over single sets Di, where ki is the number of
clauses in expression αi. Moreover, if expressions αi use no in-
equalities over z̄, the number of queries is bounded by

n · (1 + max
i=1,...,n

ki)
2|z̄|.

PROOF. Let αi(x̄i, z̄) =
∨ki
j=1 P

i
j (x̄i, z̄), where each clause

P ij is a conjunction of equalities and inequalities. We implement a
simple branching strategy. The algorithm maintains the following
information: (i) a tuple c̄ ∈ (D ∪ {⊥})|z̄| valuating z̄, where ci =
⊥ means that zi has not been assigned a value yet; (ii) a consistent
set E of constraints enforced on variables zi that have not been
valuated so far: these constraints may be of the from zi = zj , zi 6=
zj , or zi 6= d for d ∈ D. We assume that information propagates,
e.g., if c1 6= ⊥ and z1 = z2 is present in E , we have c2 = c1.

A tuple ā ∈ Di is covered by clause P ij under (c̄, E), if the
conjuncts of P ij (ā, c̄) satisfy the following conditions:

1. conjuncts of the form x` = x`′ and x` 6= x`′ hold;

2. conjuncts of the form x` = z`′ hold, i.e., c`′ = a` ∈ D;

3. conjuncts of the form x` 6= z`′ hold, i.e., z`′ is valuated to
something different from a`, or is not valuated yet;

4. conjuncts of form z` = z`′ and z` 6= z`′ hold if z`, z`′ are
valuated, and if not, they are implied by E .

Note that conjuncts x` 6= z`′ do not impose any conditions on the
future values of not yet valuated z`′ . Hence, some tuples may cease
to be covered when z`′ finally gets its value.

The algorithm begins with empty partial valuation c̄ =
(⊥, . . . ,⊥) and E = ∅, and refines them iteratively so that some
uncovered tuple gets covered at each step. While there are uncov-
ered tuples, pick one of them, say ā ∈ Di, and branch into ki
subcases, choosing a clause P ij to cover ā. Try fixing P ij at ā by
extending (c̄, E) so that ā is covered by P ij : fix the values of all
z`′ considered in condition 2, add to E all the equalities and in-
equalities considered in condition 4, propagate information from E
and remove all the constraints referring to valuated variables only.
Note that fixing P ij at ā may be impossible due to inconsistency

with (c̄, E). In that case, we discard the sub-branch. If no P ij can
be fixed at ā, we discard the whole branch. When all tuples are
covered, it remains to valuate the missing z`′ so that each tuple
actually satisfies the covering clause. In particular, we need to sat-
isfy all the constraints of the form x` 6= z`′ that were ignored so
far. This is achieved by valuating all not yet valuated variables z`′
to fresh nulls (respecting the equalities in E). The obtained c̄ is a
correct answer to the tuple covering problem.

To see that the algorithm is complete, assume that αi(ā, c̄)
holds for all ā ∈ Di and all i. Then, the branch where for each
picked tuple ā ∈ Di we fix a clause P ij such that P ij (ā, c̄) holds,
is never discarded. Hence, it outputs a correct valuation (possibly
different from c̄).

Finally, let us analyze the complexity. Observe that fixing
clause P ij at a picked ā that is not covered so far results in one
of the following: either (i) one of the constants of z̄ is assigned a
value, or (ii) an equality is added to the set E , or (iii) an inequality
is added to the set E . If expressions αi contain no inequalities over
z̄, then (iii) actually never happens. On a single branch of the algo-
rithm, (i) happens at most |z̄| times, (ii) happens at most |z̄| times
since equalities are propagated in a transitive manner, and (iii) hap-
pens at most

(|z̄|
2

)
times. Hence, the depth of the branching tree is

bounded by |z̄| + |z̄| +
(|z̄|

2

)
= O(|z̄|2), and by 2|z̄| in case there

are no inequalities over z̄ in expressions αi.
Since at each step the algorithm branches to at most maxni=1 ki

subcases, the total size of the branching tree is at most
(1 + maxni=1 ki)

O(|z̄|)2 , or (1 + maxni=1 ki)
2|z̄| if there are no in-

equalities over z̄. In each node we execute n linear queries identi-
fying uncovered tuples, one for each αi. The bounds on the total
number of queries follow.

This algorithm can be easily encoded in XQuery (see Ap-
pendix G). The resulting query can be plugged in instead of constK
in the the query qM from Section 4, withDi replaced by the results
of queries qπi . Moreover, if we assume that there are no inequal-
ities involving variables introduced on the target side of M, then
the potential expressions given by Lemma 4 do not contain any in-
equalities between constants, and thus the algorithm of Lemma 6
uses less queries. Hence, by applying the bounds of Lemma 4 we
obtain the following (note here that logK = poly(‖M‖)).

THEOREM 1. For each mapping M one can compute in time
2K·poly(‖M‖) an implementing query qM whose evaluation time
over T is

2K
2·poly(‖M‖) · |T |r ,

where K = (2pb + b)2ph+h, b and h are the branching and
height of Dt, while p and r are the maximal size and arity of
patterns inM. Moreover, the evaluation time may be reduced to
2K·poly(‖M‖) ·|T |r in case when there are no inequalities involving
variables introduced on the target side.

6. OPTIMIZING VIA KERNELIZATION
In this section we present yet another approach of optimizing

the brute-force approach of Sect. 4, which can turn out to be more
efficient than the one presented in Sect. 5. Unfortunately, our solu-
tion does not cope with the full generality of mappings considered
in the previous sections, as we have to exclude some inequality
constraints.

Our idea is to shrink the set of interesting data values from the
input document. We prove that one can find a small, that is of
cardinality independent of the size of the input document, subset
of data values, about which we can safely assume that constants

in the kind can be valuated only to elements of this subset. The
original motivation of our approach is the concept of kernelization,
a notion widely used in the parameterized complexity. Although
our framework is not exactly compatible with the notion of kernel
used there, the technique is very similar in principles. Again, we
refer to the textbooks by Downey and Fellows [13] and by Flum
and Grohe [15] for a more extensive introduction to kernelization;
a direct inspiration is the work of Langerman and Morin [19]. The
crucial concept is the notion of a kernel.

DEFINITION 3. Let α(x̄, z̄) be a potential expression and let
D ⊆ D|x̄|. We say that D′ ⊆ D is a kernel for D with respect to α
if for every c̄, ∀ā∈D α(ā, c̄) ⇐⇒ ∀ā∈D′ α(ā, c̄) .

Intuitively, a kernel is therefore a small subset of tuples that can
replace the whole database for the purpose of solving the tuple cov-
ering problem. The following simple claim follows directly from
the definition.

LEMMA 7. If D′ is a kernel for D w.r.t. α and D′′ is a kernel
for D′ wr.t. α, then D′′ is a kernel for D w.r.t. α.

We now prove that if the potential expressions use no inequality,
we can obtain a surprisingly small kernel. As we will later see,
applying the brute-force method of Sect. 4 on this kernel gives an
algorithm with comparable performance as the branching algorithm
of Theorem 1.

THEOREM 2. Let α(x̄, z̄) be a potential expression with k
clauses, using only equality, and let D ⊆ Dr , r = |x̄|. Then
there exists a kernel D′ for D with respect to α of size at most
2 · (2k)r . Moreover, D′ can be found by an algorithm making
O(kr(2k)r · log |D|) quadratic calls to D, deleting some tuples
from D until D′ is obtained.

PROOF. We begin by reformulating the tuple covering problem
in terms of linear algebra. By identifying data values with natural
numbers we may treatD as a subset of the r-dimensional real space
Rr . Recall that an affine subset of Rr is a subset of the form Π ={
ā ∈ Rr

∣∣ Aā = b̄
}

where A is an d × r real matrix and b̄ ∈ Rd;
the dimension of Π is r − d for the minimal d such that Π can be
presented this way. Assume α(x̄, z̄) =

∨k
i=1 Pi(x̄, z̄). Observe

that the set

P c̄i =
{
ā ∈ Rr

∣∣ Pi(ā, c̄)}
is affine for each c̄ and i; indeed, it is defined by a conjunction of
linear equations. We say that a set S ⊆ Rr covers a set S′ ∈ Rr if
S ⊇ S′. Thus we can restate the tuple covering problem as follows:

given D ⊆ Rr , find c̄ such that
⋃
i≤k P

c̄
i covers D.

We are now ready to present the algorithm. Owing to Lemma
7, we can refine the kernel iteratively, starting from D: as long as
the current kernel is not small enough, we identify a subset that can
be removed to obtain a smaller kernel. The final size of the kernel
is the minimal size for which we can still find points to remove.

In each iteration, the algorithm identifies a large subsetX of the
current kernel, such that a constant fraction of X can be removed.
We claim that if

for all i, for all c̄, X ⊆ P c̄i or |X ∩ P c̄i | <
|X|
2k

(1)

then any subset Y ofX with at most |X|
2

elements can be removed.
Indeed, assume that D \ Y is covered for some c̄. If X ⊆ P c̄i for
some i, then Y is covered, and we are done. Assume this is not the

case. Then, by (1), each P c̄i covers strictly less then |X|
2k

elements
ofX . Hence,

⋃
i≤k P

c̄
i covers strictly less then |X|

2
elements ofX .

This contradicts the fact that
⋃
i≤k P

c̄
i covers X \ Y (and D \ Y).

We identify an appropriate set X by means of the following
iterative procedure, which refines a candidate for X . We begin
with X0 = D. In iteration j, we input candidate Xj and test if
satisfies property (1). If so, we return X = Xj . If not, we find a
new (smaller) candidateXj+1: since (1) does not hold, some affine
subset P c̄i covers at least |Xj |

2k
elements of Xj , but not all of them;

let Xj+1 = Xj ∩ P c̄i .
We claim that after at most r iterations the procedure outputs

some X of size at least |D|
(2k)r

. Note that |Xj+1| ≥ |Xj |
2k

for all j.
The claim follows immediately from the fact that Xj is contained
in an affine subset of dimension r − j. To prove this fact, we pro-
ceed by induction. The base case j = 0 is trivial. Assume Xj
is contained in an affine subset Πj of dimension r − j. Note that
Xj+1 is the intersection of Xj and some affine subset P c̄i that does
not contain Xj . Consequently, Πj is not contained in P c̄i . Hence,
the intersection Πj ∩ P c̄i is an affine subset of dimension smaller
than the dimension of Πj , i.e., at most r − (j + 1).

To make sure that we can actually delete a nonempty set of
points Y , we need to assume that |X| > 2. This is guaranteed
as long as |D| > 2(2k)r . How many times do we need to ap-
ply the kernelization procedure to obtain a kernel of size at most
2(2k)r? After each O((2k)r) iterations the cardinality of the set
D is halved, which means that we need only O((2k)r · log |D|)
iterations.

It remains to computeX withO(rk) quadratic queries overD.
For a clause Pi and a tuple ā ∈ Dr , define P̂ āi as

P̂ āi =
{
b̄ ∈ Rr

∣∣ ∃z̄ Pi(b̄, z̄) ∧ Pi(ā, z̄)} =
⋃

c̄ : ā∈P c̄i

P c̄i .

It follows from the definition that affine subsets P c̄i , P
d̄
i are either

disjoint or equal for all c̄, d̄. Consequently, P̂ āi = P c̄i whenever
ā ∈ P c̄i . Hence, condition (1) is equivalent to:

for all i, for all ā ∈ D, X ⊆ P̂ āi or |X ∩ P̂ āi | <
|X|
2k

(2)

and we can use P̂ āi instead of P c̄i in the search of X . Crucially, P̂ āi
can be defined by a quantifier free formula: ∃z̄ Pi(x̄, z̄) ∧ Pi(ā, z̄)
is equivalent to the conjunction C āi (x̄) of all equalities over x̄ and
ā entailed by Pi(x̄, z̄) ∧ Pi(ā, z̄). Consequently, set Xj = D ∩⋂j
`=0 P̂

ā`
i`

can be represented by the conjunction
∧j
`=0 C

ā`
i`

(x̄).
Hence, using at most k quadratic queries over D, we can test
whether condition (2) holds for Xj , and if not, compute the rep-
resentation of Xj+1. Since this is repeated at most r times, the
total number of queries is O(rk).

Theorem 2 can be used to show that also some inequality con-
straints can be incorporated into the framework, at a cost of in-
flating the kernel size and the number of queries (see Appendix
F). Unfortunately, we are only able to handle inequalities between
variables.

THEOREM 3. Let α(x̄, z̄) be a potential expression with k
clauses, using inequality only over x̄, and let D ⊆ Dr , r = |x̄|.
Then there exists a kernel D′ for D w.r.t. α of size 2 · (2kr)r .
Moreover, D′ can be found by an algorithm making O(kr(2kr)r ·
log |D|) quadratic calls to D.

To complete the computation we can apply the brute force
method to the obtained kernels. Let α1, α2, . . . , αk be poten-
tial expressions given by Lemma 4 for the kind K. Let kernel i

be the query implementing the algorithm above for the poten-
tial expression αi (the query uses recursion and simple arith-
metic; see Appendix H). The query qM is obtained like in
Sect. 4, with the subquery constK modified by replacing qπi
with kernel i, and values |z̄| defined as a query returning the set
of all tuples of data values of length |z̄| with entries taken from
kernel1, kernel2, . . . , kernelk. Observe that since there are no in-
equalities involving variables introduced on the target side, there is
no need for the use of nulls in the valuations. The combined com-
plexity of the resulting qM is comparable to that of the query in
Sect. 5.

THEOREM 4. LetM be a mapping that contains no inequali-
ties involving variables introduced on the target side. Then we can
compute in time 2K·poly(‖M‖) an implementing query qM whose
evaluation time over T is

2K·poly(‖M‖) · |T |2r · log |T | ,

where K = (2pb+ b)2ph+h, b and h are the branching and height
of Dt, while p and r are the maximal size and arity of patterns in
M.

7. OPTIMIZING VIA SOURCE KINDS
In this section we propose a very different idea for optimization,

based on splitting the source domain into kinds. This method works
under the assumption that the mapping is absolutely consistent, i.e.,
each source tree has a solution.

By a source kind for a mappingM we mean a kindK such that
L(K) ⊆ L(Ds) and for each source-side pattern π, if π(ā) can be
matched in a tree from L(K) then it can be matched neatly in a tree
from L(K). Lemma 5 obviously holds also for source kinds, so we
can compute source kinds Ks1, . . . ,Ksk covering L(Ds). Our idea
is based on the following theorem.

THEOREM 5 ([8]). For absolutely consistent mapping M,
target kinds Kt1, . . . ,Ktk covering L(Dt), and source kind Ks(c̄),
there are i and d̄ such that each tree in L(Ks(c̄)) has a solution
in L(Kti(d̄)). Moreover, for each i, such d̄ can be found in time
KK·poly(‖M‖), where K = max(|Ks|, |Kti |), assuming ‖Ks‖ +

‖Kt‖ = 2poly(‖M‖).

Thus if we want to determine the right data kind for T ∈
L(Ksi), the only interesting data values in T are those in the nodes
corresponding to the ordinary nodes of Ksi . If we could compute
these values, we would be done. In general, it may be difficult, but
it becomes easy under the following additional assumption on the
source kinds.

We write T.v for the subtree of tree T rooted at node v.
Thus, if K is a kind, so is K.v. For siblings v1, vn in K, lan-
guage L(K, v1, vn) contains all forests that appear between sib-
lings v1, vn (including v1, vn) in trees from L(K). For a context
port u, by Pu we denote the set of labels that can occur on the
shortest root-to-port path in a context from Lu.

DEFINITION 4. A kind K is explicit if:
(1) no two forest ports are consecutive siblings and for each

forest port u that has a next sibling, and each maximal sequence of
nodes u→ v1 → v2 → . . .→ vn such that vi are not forest ports,
for each G ∈ Lu and each F ∈ L(K, v1, vn), no proper prefix of
the word of root labels of G + F contains the word of root labels
of F ;

(2) for each context port u there is a sequence of ordinary nodes
v1 ↓ v2 ↓ . . . ↓ vn with n > 1, u ↓ v1, lab(vi) ∈ Pu, such that

for each node v /∈ {u, v1, v2, . . . , vn} in K.u, lab(v) /∈ Pu and if
v is a port then no element of Lv uses a label from Pu.

The following lemma shows that we can extract the interesting
data values with path expressions.

LEMMA 8. Let K be an explicit kind. For each tree T ∈ L(K)
there is a unique witnessing decomposition (Tu)u. Moreover, for
each ordinary node v in K there exists a path expression select-
ing in each tree from L(K) the unique node corresponding to v in
the witnessing decomposition. The size of the path expression is
O(bh|Γ|), where h is the depth of the node v, and b is the maxi-
mal number of children of any node in K. The expression can be
computed in polynomial time.

PROOF. We prove both claims simultaneously by induction on
the height ofK. A kind of height 0 is an ordinary node or a tree port,
and consequently it admits exactly one witnessing decomposition.
The second part of the claim is trivial. Let us assume that the height
of K is non-zero. We consider two cases depending on whether the
root of K is an ordinary node or a context port (it cannot be a tree
port or a forest port, because it is not a leaf).

Suppose the root ofK is an ordinary node and let v1, v2, . . . , vn
be all its children, the forest ports among them being exactly
vi1 , vi2 , . . . , vik for some i1 < i2 < · · · < ik. Suppose that
T ∈ L(K) and let F be the forest obtained by cutting of the root
of T . Clearly F ∈ L(K, v1, vn), so there is a decomposition of F
into

F1 +G1 + F2 +G2 + · · ·+ Fk +Gk + Fk+1

such that Gj ∈ Lvij and Fj ∈ L(K, vij−1+1, vij−1) with i0 = 0,
ik+1 = n+ 1. An inductive argument using Definition 4 (1) shows
that this decomposition is unique. Using the inductive hypothesis
for K.vj with j /∈ {i1, i2, . . . , ik} we obtain uniqueness of the
witnessing decomposition for T .

Let us now move to the second part of the induction thesis. If
v is the root of K, the claim is trivial. Otherwise, v is contained in
K.v` for some ` satisfying im−1 < ` < im. It suffices to write a
query that identifies the node ṽ` in T corresponding to v`, and then
use the inductive hypothesis to locate the node corresponding to v
in the tree T.ṽ` ∈ L(K.v`). Let αj be the word of root labels of
the forest Fj in the decomposition above. Note that this word is
common for all forests in L(K, vij−1+1, vij−1). Indeed, the labels
of ordinary nodes among vij−1+1, vij−1+2, . . . , vij−1 are given,
and for each tree port and context port u, all trees/contexts in Lu
have the same label, fixed by the DTD representing Lu. By Defini-
tion 4, no proper prefix of the word of root symbols of a forest from
Lvij + L(K, vij−1+1, vij−1) contains αj+1 as an infix. Based on
this we can locate in T the node corresponding to v` as follows:
find the first occurrence of α2 after α1, and then the first occur-
rence of α3 after that, etc., until αm is found. This is done with a
path expression

. ↓ [¬ ←] α̂1 →+ α̂2 →+ . . .→+ α̂m[¬f]←p

for f =← α̂−1
m ←+ . . .←+ α̂−1

2 ←+ α̂−1
1

where p is such that vim−1 ←p v` and for α = σ1σ2 . . . σq , α̂
is the expression [σ1] → [σ2] → . . . → [σq] and α̂−1 is [σq] ←
[σq−1]← . . .← [σ1].

Suppose now that the root of K is a context port u. By Defini-
tion 4, there is a sequence of ordinary nodes v1 ↓ v2 ↓ . . . ↓ vn
with u ↓ v1, lab(vi) ∈ Pu, such that for each other node v in K.u,
lab(v) /∈ Pu and if v is a port then no element of Lv uses a label
from Pu. Observe that no label from Pu can occur in any context

from Lu outside of the shortest root-to-port path. Indeed, if this
was the case, one could easily construct a multicontext with two
ports conforming to the DTD defining Lu, which is forbidden by
the definition of a context DTD. Hence, the set of Pu labelled nodes
in each tree T ∈ L(K) is a ↓-path. The last element of this path
corresponds to vn in each witnessing decomposition. From this it
follows immediately that T is uniquely decomposed into C · T ′
such that C ∈ Lu and T ′ ∈ L(K.v1) (by the definition of multi-
contexts, v1 is the unique child of u), and the unique decomposition
for T follows by induction hypothesis for T.v1. Moreover, in each
T ∈ L(K) we can identify the node ṽ1 corresponding to v1 using
the expression

. ↓+ [(σ1 ∨ σ2 ∨ · · · ∨ σq) ∧ ¬ ↓ [σ1 ∨ σ2 ∨ · · · ∨ σq]] ↑n−1

where Pu = {σ1, σ2, . . . , σq}.

Now, assuming that the source tree is in L(Ks) for some ex-
plicit source kind Ks, we build a solution with query qKs obtained
according to the general recipe for qM (Sect. 4), using the follow-
ing query constKs ,Kt instead of values|z̄|

let c̄ := const ′Ks return

if E1(c̄) then d̄1 else . . . if Ek(c̄) then d̄k .

The subquery const ′Ks selects the tuple of data values c̄ stored in the
copy of Ks in the input tree; it is obtained via Lemma 8. The tuple
d̄j is such that Kt(d̄j) is a suitable target data kind for the source
data kindKs(c̄) whenever Ej(c̄) holds; its entries come from c̄ or a
set of fresh nulls. Expressions Ej range over all equality types over
c̄ for which such a tuple d̄j exists. The equality types Ej and the
tuples d̄j can be computed from Ks and Kt by Theorem 5.

Assuming ‖Ks‖ + ‖Kt‖ = 2poly(‖M‖), the synthesis time for
query constKs ,Kt is KK·poly(‖M‖) and the evaluation time over T
is KK·poly(‖M‖) · |T |, where K = max(|Ks|, |Kt|). For qKs the
respective bounds given by the general recipe are KK·poly(‖M‖)

andKK·poly(‖M‖) · |T |r , whereK = max(|Ks|, (2pb+b)2ph+h).
It remains to show that we can compute explicit source kinds

covering L(Ds). To do this, we need to relax the conditions im-
posed on Lu for forest ports u. This modification does not influ-
ence Definition 4 or Lemma 8 at all, and Theorem 5 generalizes
easily (see Appendix E).

DEFINITION 5 (m-KINDS). The definition of m-kind is ob-
tained by replacing the condition (1) in Definition 1 with

(1’) Lu is a DTD-definable set of forests and whenever F +G+
H ∈ Lu and G consists of at most m trees,

F ′ +G+H ′ + Lu ⊆ Lu
for some forests F ′, H ′.

LEMMA 9. For each mapping M there exist explicit source
p-kinds Ks1,Ks2, . . . ,Ksn covering L(Ds), such that |Ksi | ≤ K,
‖Ksi ‖ = O(‖Ds‖ · |Γ|p), and they can be computed in time
2K·poly(‖M‖); here K = (3pb+ b)2ph+h, b and h are the branch-
ing and height of Ds, and p is the maximal size of source side pat-
terns inM.

The proof can be found in Appendix D. In the notation of
Lemma 9, qM can be defined as

ifL(Ks1) then qKs1 else ifL(Ks2) then qKs2 else . . .

where L(Ksi) stands for the Boolean test checking if the source tree
is in L(Ksi). As Ksi can be easily converted to an equivalent tree
automaton [22], this check can be done in XQuery. We obtain the
following bounds.

THEOREM 6. For each absolutely consistent mappingM one
can compute in time 2K·poly(‖M‖) an implementing query qM
whose evaluation time is 2K·poly(‖M‖) · |T |r; here K = (3pb +
b)2ph+h, b is the maximum of the branchings of Ds and Dt, h is
the maximum of the heights ofDs andDt, and p, r are the maximal
size and arity of patterns inM.

8. TRACTABLE CASE
In this short section we present a combination of restrictions

under which the transformation synthesis problem is tractable. In
order to temper the expectations, let us recall that solutions are not
polynomial in general. Typically, the solution will need to satisfy
O(|T |r) valuations of each target pattern. Moreover, the target
DTDDt enforces adding additional nodes, not specified by the pat-
terns. For instance, each added node with a label σ, must come with
a subtree conforming to the DTD 〈σ, Pt〉 whereDt = 〈r, Pt〉. This
is reflected in the complexity bounds we obtain.

In simple threshold DTDs productions are of the form σ →
τ̂1τ̂2 . . . τ̂n, where τ1, τ2, . . . , τn are distinct labels from Γ and τ̂ is
τ , τ? = (τ +ε), τ+, or τ∗.2 A fully-specified pattern is connected,
uses only child relation, all its nodes have labels (i.e., wildcard is
not allowed), and some node is labelled with r, the root symbol of
the target DTD.

THEOREM 7. For mappings M using tree-shaped patterns
only, with fully specified target-side patterns, and a simple thresh-
old target DTDDt = 〈r, Pt〉, one can compute in time poly(‖M‖)
an implementing query qM whose evaluation time over tree T is
poly(‖M‖) · N · |T |r , where N = maxσ∈Γ minS∈L(〈σ,Pt〉) |S|
and r is the maximal arity of patterns.

The proof can be found in Appendix I. Without changing the
complexity one could allow the use of following-sibling and lim-
ited use of next-sibling on the target side, but for simple threshold
DTDs it has rather limited use. The restriction to tree-shaped pat-
terns can be lifted at the cost of a factor exponential in the size
of the used patterns (cf. Lemma 1). If we allow more expressive
target schemas or non-fully specified target patterns, the solution
existence problem becomes NEXPTIME-complete [8]. Hence,
Theorem 7 cannot be extended to these cases without showing
NEXPTIME = EXPTIME.

9. CONCLUSIONS
We have shown that an implementing query can be constructed

in the general case and we give two methods to build more efficient
queries. Precise bounds on the constants are quite intractable in
the general setting, but we believe they can be improved by heuris-
tics tailored to the parameters of mappings arising in practise. For
instance, it is reasonable to believe that the size of kinds will not
be really large for the simple schemas prevailing in practical appli-
cations. It would be interesting to have a closer look at practical
settings.

We work with DTDs, but the results of Sections 4–6 carry over
to more expressive schema languages relying on tree automata. It
would be interesting to see if the approach from Sect. 7 can be
applied to such schemas as well.

One natural feature missing in our setting is key constraints. It
seems plausible that our approach can be extended to handle unary
keys in target schemas.

Another issue is the quality of the proposed transformation. A
natural criterion is the evaluation time of the query over source tree,
2Simple threshold DTDs resemble nested-relational DTDs, except
that the non-recursiveness restriction is lifted.

but other criteria could refer to the size and redundancy of the pro-
duced solution. Redundancy is closely related to universality of
target instances, which is essential in evaluation of queries under
the semantics of certain answers. For XML data, classical univer-
sal solutions usually do not exist [12], and more refined notions
would be needed.

Finally, we point out a combinatorial challenge: is there a ker-
nel of size O(kO(r)) even if the potential expressions αi can con-
tain inequalities between constants and variables?

10. REFERENCES
[1] S. Amano, L. Libkin, F. Murlak. XML schema mapping.

PODS 2009, 33–42.
[2] S. Amer-Yahia, S. Cho, L. Lakshmanan, D. Srivastava. Tree

pattern query minimization. VLDB J. 11 (2002), 315–331.
[3] M. Arenas, P. Barceló, L. Libkin, F. Murlak Relational and

XML Data Exchange. Morgan&Claypool Publishers, 2010.
[4] M. Arenas, L. Libkin. XML data exchange: consistency and

query answering. J. ACM 55(2): (2008).
[5] P. Barceló. Logical Foundations of Relational Data

Exchange. SIGMOD Record 38, 1 (2009): 49–58.
[6] Ph. A. Bernstein, S. Melnik, Model management 2.0:

manipulating richer mappings. ACM SIGMOD 2007, 1–12.
[7] G. J. Bex, F. Neven, J. Van den Bussche. DTDs versus XML

Schema: a practical study. WebDB’04, 79–84.

[8] M. Bojańczyk, L. A. Kołodziejczyk, F. Murlak. Solutions in
XML data exchange. ICDT 2011, 102–113.

[9] H. Björklund, W. Martens, T. Schwentick. Conjunctive query
containment over trees. DBPL 2007, 66–80.

[10] A. Church. Logic, arithmetic, and automata. Proc. Int. Congr.
Math. 1962. Inst. Mittag-Leffler, Djursholm, Sweden, 1963,
23–35.

[11] C. David. Complexity of data tree patterns over XML
documents. MFCS 2008, 278–289.

[12] C. David, L. Libkin, F. Murlak. Certain answers for XML
queries. PODS 2010, 191–202.

[13] R. G. Downey, M. R. Fellows. Parameterized Complexity.
Springer, 1999.

[14] R. Fagin, L. Haas, M. Hernandez, R. Miller, L. Popa,
Y. Velegrakis Clio: Schema mapping creation and data
exchange. In Conceptual Modeling: Foundations and
Applications, Essays in Honor of John Mylopoulos. LNCS
vol. 5600. Springer-Verlag, 2009, 198–236.

[15] J. Flum, M. Grohe. Parameterized Complexity Theory.
Springer, 2006.

[16] G. Gottlob, C. Koch, K. Schulz. Conjunctive queries over
trees. J. ACM 53 (2006), 238–272.

[17] H. Jiang, H. Ho, L. Popa, W.-S. Han. Mapping-driven XML
transformation. WWW 2007, 1063–1072.

[18] P. G. Kolaitis. Schema Mappings, Data Exchange, and
Metadata Management. PODS 2005, 61–75.

[19] S. Langerman, P. Morin. Covering Things with Things.
Discrete & Computational Geometry, 33(4) (2005),
717–729.

[20] B. Marnette, G. Mecca, P. Papotti, S. Raunich, D. Santoro.
++Spicy: an opensource tool for second-generation schema
mapping and data exchange. PVLDB 4, 12 (2011),
1438–1441.

[21] S. Melnik, A. Adya, Ph. A. Bernstein. Compiling mappings
to bridge applications and databases. ACM Trans. Database
Syst. 33 (4), 2008.

[22] F. Neven. Automata Theory for XML Researchers. SIGMOD
Record 31(3): 39-46 (2002).

[23] L. Popa, Y. Velegrakis, R. Miller, M. Hernández, R. Fagin.
Translating web data. VLDB 2002, 598–609.

APPENDIX
A. NEAT MATCHINGS ARE PRESERVED UNDER COMBINATIONS

Lemma 2 follows immediately from the definition of combinations and the following more general property.

LEMMA 10. If π(ā) is matched neatly in T ∈ L(K) with respect to a decomposition (Tu)u, then π(ā) is matched (neatly) in any tree
T ′ ∈ L(K) with decomposition (T ′u)u such that

• for all forest ports u, T ′u = F + Tu + F ′ for some forests F , F ′,
• for all context ports u, T ′u = C · Tu · C′ for some contexts C, C′,
• for all tree ports u, T ′u = C · Tu for some context C.

PROOF. It is easy to see that a neat homomorphism from π(ā) to T witnessing the decomposition (Tu)u is also a neat homomorphism
from π(ā) to any T ′ with such a decomposition (T ′u)u.

B. CONSTRUCTING SOLUTIONS OF A GIVEN KIND
We first prove an auxiliary lemma showing how to construct witnesses for neat matchings.

LEMMA 11. For any data kind K(c̄), any pure pattern π, and a tuple ā, either π(ā) cannot be matched neatly in any tree from K(c̄)

or can be matched neatly in a tree T ∈ K(c̄) with a witnessing decomposition (Tu)u such that |Tu| ≤ |π| · bO(h), where b and h are the
maximal branching and height of DTDs representing languages Lu in K. Moreover, T , (Tu)u and a neat homomorphism π(ā) → T can
computed in time ‖K‖O(bh|π|2) · |K||π|+1.

PROOF. Consider all possible ways of mapping vertices of π to nodes of K. There is |K||π| choices, and we check them one by one. Fix
one mapping and let Vu denote the set of vertices of π mapped to a port u. First check that the mapping respects the labelling and data values
in the ordinary nodes of K and that it does not violate any edge in π:

• each relation edge have to be preserved, unless both ends are mapped to the same port;

• if x is mapped to a context or tree port, it cannot be connected with→,→+, ↓ with any node mapped elsewhere;

• if x is mapped to a forest port, it cannot be connected with→ to any node mapped elsewhere.

This check can be done in time |π|2 · |K|. If it succeeds, we can move on to filling in the ports of K. This can be done independently for
each port. For most ports u, Vu is empty and we can fill u with any compatible forest/context Tu. This can be done in time O(|K| · bh).
Then there are at most |π| ports left to fill, and for each of them we need to make sure that π �Vu (π restricted to Vu) can be satisfied in a
compatible Tu in a way that gives a matching of π in the constructed tree T .

Assume that u is a tree port and let D be a DTD representing Lu, let Tu be a tree conforming to D, and let µ be a homomorphism
from π �Vu to Tu. The support of µ is the set of nodes of Tu that can be reached from the image of Vu by going up, left and right. A
simple pumping argument shows that we can assume that the support has size 4bh|Vu|. The algorithm can iterate over all trees U of size
at most 4bh|Vu| and all homomorphisms µ from π �Vu to U in time |Γ|O(bh|Vu|2). Testing that µ does not violate edges of π with only
one endpoint in Vu can be done in time polynomial in the size of U and π. Completing U to a tree conforming to D is easy: just replace
each leaf labelled with σ with the smallest tree conforming to Dσ , i.e., the DTD obtained by replacing the root symbol of D with σ. The
size of such tree can be bounded by bh. If this procedure succeeds, we obtain a tree Tu of size O(bh|Vu| · bh) = |π| · bO(h) in time
|Γ|O(bh|Vu|2) · poly(|π|, ‖D‖, bh) = ‖K‖O(bh|π|2). The data values in Tu that were not determined by the mapped vertices of π can be set
to fresh nulls.

For forest ports and context ports the argument is analogous and the bounds are the same. Altogether the procedure takes time(
‖K‖O(bh|π|2) + |π|2 · |K|

)
· |K||π| = ‖K‖O(bh|π|2) · |K||π|+1.

We are now ready to prove Lemma 3.

LEMMA 3. For each mappingM and target kindK there is a query solK(z̄) such that for each tree T that admits a solution in L(K(c̄)),
solK(c̄)(T) is a solution for T .
The synthesis time for solK is 2poly(‖K‖,‖M‖) · |K|O(p+r) and the evaluation time is 2poly(‖M‖,‖K‖) · |K|r+1 · |T |r where r and p are the
maximal arity and size of patterns inM.

PROOF. Notice the kind K we consider is a target kind. Thus, if a target pattern can be matched in a tree from L(K), it can be matched
neatly in a tree from L(K). The main idea of the query is to build a solution by filling ports of K with combined pieces of trees each of them
satisfying (neatly) a different target constraint. Lemma 10 ensures that the final tree satisfies all the constraints.

Let π(x̄), η(x̄) → π′(x̄, ȳ), η′(x̄, ȳ) be a dependency from M. For a tree T ∈ L(K(c̄)), a witnessing decomposition (Tu)u, and a
homomorphism µ : π′ → T , we define the trace of µ as the conjunction of equalities and inequalities between x̄ and c̄ induced by µ, defined
as follows. Consider first the conjunction α(x̄, ȳ) that contains the equality z = ci if z is mapped to the node of K storing ci, and equality
z = z′ if z and z′ are mapped to the same node outside of K. The trace of µ is the projection of α(x̄, ȳ) ∧ η′(x̄, ȳ) to x̄ and c̄, i.e., a
conjunction of equalities and inequalities E(x̄) such that for all c̄ and ā, E(ā) ⇐⇒ ∃ b̄ α(ā, b̄) ∧ η′(ā, b̄).

Consider all possible traces E(x̄) of neat matchings of π′(x̄, ȳ) in trees from L(K(c̄)). The number of traces is at most |K|r · rr . For
each trace E compute a tree TE , decomposition (TE)u, and a neat homomorphism µE : π′ → TE yielding E . This can be done in time

2poly(‖K‖,|π′|) · |K||π
′|+1 by Lemma 11. Choose TE such that outside of K the data values of TE are distinct nulls, except when η′ enforces

equality between two nulls, or a null and some ci.
For a tuple ā satisfying E we write TE(ā) for the tree obtained from TE by substituting each occurrence of the data value µE(xi) with

ai. Note that if µE(xi) is one of the constants ci, the operation will have no effect at all, as E enforces that in this case ai = cj . Clearly,
TE(ā) |= π′(ā, b̄), η′(ā, b̄) for some b̄.

The query solK(z̄) combines the trees TE(ā) for all tuples ā returned by π(x̄), η(x̄) evaluated on the source tree, and E such that ā
satisfies E . The query guarantees that the condition in Lemma 10 is satisfied and thus satisfiability of the target constraints is preserved. Let
us first describe the subqueries qu for each port of K.

Let us assume that u is a forest port, and let D be the forest DTD representing Lu. We first construct a query qu,E(x̄) such that qu,E(ā)
returns (TE(ā))u + F , for some forest F such that (TE(ā))u + F + Lu ⊆ Lu. The existence of such F is guaranteed by the condition
imposed on Lu in the definition of kinds. A standard pumping argument shows that the size of F can be bounded by 2poly(‖K‖), so the
evaluation time of qu,E(x̄) is p · 2poly(‖K‖).
The query qu is obtained by concatenating the queries

for x̄ in qπ,η∧E return qu,E(x̄)

for π(x̄), η(x̄) → π′(x̄, ȳ), η′(x̄, ȳ) ranging over dependencies of M and E ranging over all possible traces of neat matchings of π′, η′,
followed by a query returning a small forest from Lu. Since the evaluation time of qπ,η∧E is |η ∧ E| · 2poly(|π|) · |T |r , the evaluation time of
qu is then 2poly(‖M‖,‖K‖) · |T |r · |K|r .

For tree ports and context ports the construction is similar and the bounds are the same. The query qu,E(x̄) returns contexts
C(◦ , (TE(ā))u) or C · (TE(ā))u · C′, accordingly, and qu is obtained by concatenating vertically the queries

for x̄ in qπ,η∧E returnC qu,E(x̄)

for all π(x̄), η(x̄) → π′(x̄, ȳ), η′(x̄, ȳ) and E , followed by a query outputting a small element of Lu, a tree or a context, depending on the
type of the port u.

To get solK, plug in at each port u of K the query qu. To verify that solK(c̄) returns a solution, if there is one, observe that for each ā
returned by π(x̄), η(x̄), the target constraint π′(ā, b̄), η′(ā, b̄) must be satisfiable in a tree from L(K(c̄)) for some b̄. By the definition of
target kinds, it must also be matched neatly in some tree from L(K(c̄)). By construction of the query and Lemma 10 the output of the query
satisfies every target constraints. The complexity bounds follow easily.

LEMMA 4. LetM be a mapping with dependencies πi(x̄i)→ π′i(x̄i, ȳi) for i = 1, 2, . . . , n and let K be a target kind with m ordinary
nodes. There exist αi(x̄i, z̄) such that

• αi(x̄i, z̄) is a disjunction of at most |K|rrr conjunctions ofO(|π′i|) equalities and inequalities among x̄i and z̄, where r is the maximal
arity of patterns inM;
• for each c̄, each source tree T admits a solution in L(K(c̄)) iff T |= πi(ā) implies αi(ā, c̄) for all i.

The αi’s can be computed from solK in polynomial time.

PROOF. The claim follows immediately from the proof of Lemma 3: αi is the disjunction of all possible traces of neat matchings of π′i in
trees from L(K).

C. COVERING TARGET DOMAIN
Lemma 5 essentially follows from [8], where a similar result is proved for mappings between schemas given with tree automata. Here

we give a sketch, for the convenience of the reader. The proof is based on the notion of margins, given in Definition 6 below, which are areas
of ordinary nodes around the ports, that enable rearranging the matchings of patterns.

For the purpose of Definition 6, it is convenient to extend the notion of kind in such a way that it can define forests and contexts. A forest
kind is simply a sequence of kinds; it naturally defines a language of forests. A context kind is a kind whose exactly one leaf port is annotated
with ⊥ instead of some language Lu; it defines the set of contexts obtained by legal substitutions at all ports except the one annotated with
⊥.

We also introduce the following notation. For two siblings v →∗ w in K, L(K, v, w) stands for the language defined by the forest kind
obtained by concatenating the subtrees of K rooted as the subsequent siblings between v and w. Similarly for v ↓+ w, L(K, v, w) denotes
the set of contexts defined by the context kind obtained by taking the subtree of K rooted at v and replacing the subtree rooted at v with a
port marked with ⊥.

DEFINITION 6. A kind K has margins of size m if for each port u

(1) if u is a forest port, then there exist v, w such that v →m u, u →m w, the only port among the segment of siblings from v to w is u,
and

F + L(K, v, w) + F ′ ⊆ Lu
for some forests F , F ′;

(2) if u is a tree port, then there exists v such that v ↓m u, the only port on the shortest path from v to u is u, and

C · L(K.v) ⊆ Lu
for some context C;

(3) if u is a context port, then there are nodes v, w such that v ↓m u and u ↓m+1 w, the only port on the shortest path from v to w is u,
and

C · L(K, v, w) · C′ ⊆ Lu
for some contexts C,C′.

LEMMA 12. Let π be a pattern of size p and let K be a kind with margins of size p. If π(ā) is satisfiable in a tree from L(K), then there
exists T ∈ L(K) and a witnessing decomposition (Tu)u such that π(ā) can be matched neatly in T .

PROOF. Let S be any tree in which π(ā) is matched. Define T by substituting at port u the forest/context Tu defined as

F + S.(vu, wu) + F ′ , C · (S.vu) , or C · (S.vu \ S.wu) · C′ ,

depending on the character of the port u, where vu, wu are the nodes in S corresponding to the nodes in K guaranteed by Definition 6, and
F, F ′, C, and C,C′ are the appropriate forests or context, again guaranteed by Definition 6.

In the formulas above by S.(vu, wu) we mean the forest obtained by taking the sequence of trees rooted at the sequence of consecutive
siblings beginning with vu and ending in wu; by S.vu \ S.wu we denote the context obtained from S.vu (the subtree of S rooted at vu) by
replacing the subtree rooted at wv with a port.

Assume that u is a tree port. By pigeon-hole principle, if π is matched in such a way that it touches Su, one can find a node u′ on the
shortest path between u and vu, such that no node of π is matched to u′. It is easy to see that one can find a set of vertices of π, containing
all those mapped to Su, that is connected to other vertices of π only in such a way, that one can “move” the image of this whole set in to
the copy of Su contained in Tu, without violating the relations in π. Identical argument applies to context and forest ports. The matching
(homomorphism) obtained this way is neat.

Lemma 5 now follows from the following fact.

LEMMA 13. For each mappingM there exist kinds K1,K2, . . . ,Kk with margins of size p, covering L(Dt), such that L(Ki) ⊆ L(Dt),
|Ki| ≤ K = (2pb + b)2ph+h, where b and h are the branching and height of Dt, and p is the maximal size of target side patterns inM.
Moreover, DTDs representing languages Lu in all Ki have branching and height bounded by the branching and height of Dt, n ≤ ‖Dt‖2K ,
and K1,K2, . . . ,Kk can be computed in time ‖Dt‖O(K).

This fact was proved in [8], for the setting in which tree automata are used instead of DTDs. The claim carries over to DTDs immediately.
The only delicate issue is the size of the root expressions in the forest DTDs representing Lu for forest ports u. The proof involves computing
left and right quotients of these languages, by words of length m. This operation is costly for regular expressions, but very cheap for NFAs.
For this purpose, in the kinds we represent all regular languages with NFAs. This does not cause any loss of generality, since a standard
representation with regular expressions can be turned into one with NFAs (of linear size) in polynomial time. Moreover, kinds are only used
inside our computations, so the NFAs never need to be converted back to regular expressions. In this representation, the branching of a DTD
is the maximal number of states of the automata representing the productions and the root language.

D. COVERING THE SOURCE DOMAIN WITH EXPLICIT KINDS
The proof goes again via the notion of margins, but we have to redefine them for the extended kinds.

DEFINITION 7 (MARGINS FOR m-KINDS). The definition of m-kind with margins (of sizem) is obtained by replacing condition (1) in
Definition 6 with

(1’) if u is a forest port, then there exist v, w such that v →m u, u →m w, u is the only port among the segment of siblings from v to w,
and whenever F +G+H ∈ L(K, v, w) and G consists of at most m trees,

F ′ +G+H ′ ∈ Lu

for some forests F ′, H ′.

The following lemma is a variant of Lemma 12 for m-kinds.

LEMMA 14. Let π be a pattern of size p and let K be a p-kind with margins of size p. If π(ā) is satisfiable in a tree from L(K), then
there exists T ∈ L(K) and a witnessing decomposition (Tu)u such that π(ā) can be matched neatly in T .

PROOF. Let S be any tree in which π(ā) is matched, and let µ : π(ā) → S be the witnessing homomorphism. The construction of T
given in Lemma 12 has to be modified only for forest ports.

Let u be a forest port in K, and let vu, wu be the nodes of S corresponding to the nodes of K guaranteed by Definition 7. In order to
define Tu we first look at the image of π under µ within the forest S.(vu, wu). By the pigeon-hole principle, between any p+ 1 subsequent
roots in S.(vu, wu) we can find a root that is not in the image of π. It follows, that we can decompose S.(vu, wu) into nonempty forests
F1 + F2 + · · ·+ Fk, each consisting of at most p roots, such that for all vertices x, y of π, if µ(x) ∈ Fi and µ(y) ∈ Fj for i < j, then the
only kind of edge between x and y that π can contain is Ef (x, y). (If such an edge exists, x and y must be mapped to some roots of Fi and
Fj , respectively.)

By Definition 7, we can easily construct a forest

Tu = G1 + F2 +G2 + F3 +G4 + · · ·+Gk−1 + Fk−1 +Gk ∈ Lu .

Now we move the matching of π from F2 + F3 + · · · + Fk−1 to Tu: for each i = 2, 3, . . . , k − 1, we move the image of vertices mapped
to Fi to the copy of Fi contained in Tu. This gives a (partial) neat matching: since the forests F1 and Fk are not moved, no edge of π is
violated and the conditions for neat matching are satisfied.

The same procedure is carried out for all forest ports. For context and tree ports, we apply the simpler procedure described in the proof
of Lemma 12. It is easy to see that the partial homomorphisms are compatible and together give a neat homomorphism.

Given the lemma above, we obtain Lemma 9 immediately from the following fact.

LEMMA 15. For each mappingM there exist explicit p-kinds with marginsKs1,Ks2, . . . ,Ksn coveringL(Ds), such thatL(Ksi) ⊆ L(Ds),
|Ksi | ≤ K = (3pb+ b)2ph+h, where b is the maximal size of regular expressions used in Ds, h is the maximal number of different labels on
a tree from L(Ds), and p is the maximal size of source side patterns inM. Moreover, DTDs representing languages Lu in all Ksi have size
O(‖Ds‖+ b · |Γ|p) , n ≤ ‖Ds‖O(pK), and Ks1,Ks2, . . . ,Ksn can be computed in time ‖Dt‖O(pK).

The key point of the proof of Lemma 15 is performing the split for kinds that are essentially words: trees of height one, whose root is an
ordinary node. The technical argument needed is expressed in terms of words in Lemma 19, to which the following definitions and lemmas
lead. The proof of Lemma 15 is given afterwards.

DEFINITION 8. For L ⊆ Γ∗ and a natural number m, we define [L]m as the set of infixes of length at most m of words from L, i.e,

[L]m =
{
v ∈ Γ≤m

∣∣ ∃u ∃w uvw ∈ L
}
.

We write [w]m instead of
[
{w}

]
m

.

DEFINITION 9. A language L is m-repeatable if for all k and all v1, v2, . . . , vk ∈ [L]m there exist u0, u1, . . . , uk such that
u0v1u1v2u2 . . . vkuk ∈ L.

DEFINITION 10. An m-frame F is an expression of the form

w0L0w1L1 . . . wnLnwn+1 ,

where |wi| ≥ m for all i and each Lj is regular, m-repeatable, and satisfies

[sufm(wj)Ljprefm(wj+1)]m ⊆ [Lj]m ,

where by sufm(u) and prefm(u) we denote the sufix and prefix of u of length m. The length of F is n+ 1. For the sake of convenience, an
m-frame of length 0 is a word w0.

DEFINITION 11. A frame F = w0L0w1L1 . . . wnLnwn+1 is explicit if [wi+1]m 6⊆ [Li]m for all i < n.

LEMMA 16. Let M ⊆ Γ∗ be an m-repeatable regular language and let v ∈ Γ≥m be a word such that [Mprefm(v)]m ⊆ [M]m but
[v]m 6⊆ [M]m. Then for every u ∈M no proper prefix of uv contains v as an infix, i.e., there is exactly one occurrence of v in uv.

PROOF. Since [v]m 6⊆ [M]m, we can present v as v = xyz such that y /∈ [M]m, and no proper prefix of xy contains a word in
Γ≤m − [M]m. Since [Mprefm(v)]m ⊆ [M]m, we have |xy| > m.

Towards a contradiction, assume that there exists u′u′′ ∈ M , with u′′ 6= ε such that u′v is a prefix of u′u′′v. It follows that xy is a
prefix of u′′xy. If |u′′| + m ≥ |xy|, u′′prefm(xy) contains y /∈ [M]m, which contradicts the fact that [Mprefm(v)]m ⊆ [M]m. Hence,
|u′′|+m < |xy|, and since |y| ≤ m we have |u′′| < |x|. Now, since u′′ 6= ε, a proper prefix of xy contains y, which is a contradiction.

LEMMA 17. For each explicitm-frame F = v0M0v1M1 . . . vnMnvn+1 and each wordw in F there exist unique words u0 ∈M0, u1 ∈
M1, . . . , un ∈Mn such that

w = v0u0v1u1 . . . vnunvn+1 .

Moreover, no proper prefix of uivi+1 contains vi+1.

PROOF. By induction on n. If n = 0, the claim is straightforward. Suppose n > 0 and assume that w = v0u0v1u1 . . . vnunvn+1 and
w = v0u

′
0v1u

′
1 . . . vnu

′
nvn+1 for some ui, u′i ∈ Mi. Suppose that |u0| ≤ |u′0|. By Lemma 16, u0 = u′0. We obtain the main claim of

the lemma by invoking the induction hypothesis for w′ and v1M1 . . . vnMnvn+1 where w = v0u0w
′. The additional claim follows directly

from Lemma 16.

LEMMA 18. Let F = v0M0v1M1 . . . vnMnvn+1 be an m-frame such that for each i > 0 the language Mi is recognized by an NFA
with a single strongly connected component (SCC) and let the maximal size of these NFAs be k.

Then F can be presented as a union of at most ((nk + 3) · |Γ|m+1)n explicit m-frames of length at most n+ 1, each beginning with v0

and represented with NFAs of size at most k · |Γ|m.
Moreover, the explicit frames can be computed in time polynomial in ((nk + 3) · |Γ|m+1)n.

PROOF. We proceed by induction on n. If n = 0, we are done. Suppose that n > 0.
Assume that [v1]m 6⊆ [M0]m. By the inductive hypothesis we present v1M1 . . . vnMnvn+1 as the union of explicit m-frames G1 ∪

G2 ∪ · · · ∪Gp. Replacing Gi with v0M0Gi we obtain a presentation of F as a union of explicit m-frames.
The remaining case is [v1]m ⊆ [M0]m. We shall now organize the words w ∈ M1 into four sets according to the first occurrence of a

word from [M1]m − [M0]m in sufm(v1)w prefm(v2):

• none at all,

• within v1prefm(w),

• within w,

• within sufm(w)v2.

Let A be the automaton with a single SCC recognizing M1. Then M1 can be written as the union of the following sets:

•
{
w ∈M1

∣∣ [sufm(v1)w prefm(v2)
]
m
⊆ [M0]m

}
;

• u
(
u−1M1

)
for u ∈ Γm such that [v1u]m 6⊆ [M0]m;

•
{
w ∈ L(A{q})

∣∣ [sufm(v1)w prefm(u)
]
m
⊆ [M0]m

}
u
(
u−1L(A{q})

)
for q ∈ QA, u ∈ Γm+1 such that [u]m 6⊆ [M0]m;

•
{
w ∈M1u

−1
∣∣ [sufm(v1)w prefm(u)

]
m
⊆ [M0]m

}
u for u ∈ Γm such that [uv2]m 6⊆ [M0]m.

In consequence, we can present F as a union of expressions obtained by replacing M1 with one of the sets above. We shall deal with each
such expression separately.

The first set, M ′1 =
{
w ∈M1

∣∣ [sufm(v1)w prefm(v2)
]
m
⊆ [M0]m

}
, gives an expression that can be written as

v0M̃0v2M2 . . . vnMnvn+1 (3)

where M̃0 = M0v1M
′
1. Combining the facts that [v1]m ⊆ [M0]m, and that F has margins, we obtain [M̃0]m = [M0]m, which implies that

M̃0 is m-repeatable. As |v1| ≥ m,[
sufm(v0) M̃0 prefm(v2)

]
m

=
[
sufm(v0)M0 prefm(v1)

]
m
∪ [v1]m ∪

∪
[
sufm(v1)M ′1 prefm(v1)

]
m
⊆

⊆ [M0]m = [M̃0]m .

Hence, the expression (3) is an m-frame (shorter then F) and we conclude by the induction hypothesis.
The second kind of set, u

(
u−1M1

)
with u ∈ Γm such that [v1u]m 6⊆ [M0]m, gives rise to the expression

v0M0(v1u)
(
u−1M1

)
v2M2 . . . vnMnvn+1 . (4)

Recall that M1 is recognized by an NFA with a single SCC. It follows immediately that u−1M1 is m-repeatable and [u−1M1]m = [M1]m.
Consequently, [

sufm(u)
(
u−1M1

)
prefm(v2)

]
m

=
[
M1 prefm(v2)

]
m
⊆

⊆
[
M1

]
m

= [u−1M1]m

and the expression (4) is an m-frame. Since [v1u]m 6⊆ [M0]m, we can conclude by the induction hypothesis applied to
(v1u)

(
u−1M1

)
v2M2 . . . vnMnvn+1.

The third kind of set results in the expression

v0M̃0u
(
u−1L(A{q})

)
v2M2 . . . vnMnvn+1 (5)

where M̃0 = M0v1

{
w ∈ L(A{q})

∣∣ [sufm(v1)w prefm(u)
]
m
⊆ [M0]m

}
, |u| = m + 1, [u]m 6⊆ [M0]m. Like in the first case we

show that M̃0 is m-repeatable, [M̃0]m = [M0]m, and
[
sufm(v0) M̃0 prefm(u)

]
m

= [M̃0]m, and like in the second case u−1L(A{q}) is
m-repeatable and

[
sufm(u)

(
u−1L(A{q})

)
prefm(v2)

]
m

= [u−1L(A{q})]m. Since [u]m 6⊆ [M0]m = [M̃0]m, we can conclude by the
induction hypothesis applied to u

(
u−1L(A{q})

)
v2M2 . . . vnMnvn+1.

The last kind of set yields

v0M̃0(uv2)M2 . . . vnMnvn+1 (6)

where M̃0 = M0v1

{
w ∈M1u

−1
∣∣ [sufm(v1)w prefm(u)

]
m
⊆ [M0]m

}
, |u| = m, [uv2]m 6⊆ [M0]m and the reasoning is similar to the

one for (5).
The bound on the number of explicit m-frames follows immediately from the inductive proof.
The bound on the size of the automata representing each explicit m-frame follows from the fact that for each X ⊆ Γ≤m, the language

Γ∗XΓ∗ can be recognized with a deterministic automaton of |Γ|m states: the state space of the automaton is Γ<m ∪ {>}, the automaton
remembers last m− 1 letters of the input word.

LEMMA 19. A regular language recognized by an NFA with k states can be written as a union of (k+3)2k · |Γ|(3m+3)k explicitm-frames
of length at most k, each of which can be represented with NFAs of total size k · |Γ|m.

Moreover, the explicit frames can be computed in time polynomial in (k + 3)2k · |Γ|(3m+3)k.

PROOF. Let A be an NFA with k states. L(A) is a union of languages of the form

L(q1)a1L(q2)a2 . . . an−1L(qn) ,

where q1 is an initial state of A, for i < n the states qi and qi+1 are in different SCCs of A and the language L(qi) consists of words
admitting a run of A starting in qi and finishing in some state pi from the same SCC as qi satisfying (pi, ai, qi+1) ∈ δA. L(qn) is the set of
words admitting a run starting in qn and finishing in some final state in the same SCC of A.

Note that if the SCC containing qi is nontrivial (i.e., contains at least one transition),L(qi) ism-repeatable for anym. If the corresponding
SCC is trivial, L(qi) = {ε}. It follows that each such language is an m-frame for any m. Note also that n ≤ k and the number of such
languages is at most kk|Γ|k.

To obtain the claim, in each expression above replace each L(qi) 6= {ε} with

(L(qi) ∩ Γ<2m) ∪
⋃

x,y∈Γm

y
(
y−1L(qi)x

−1)x .
This turns each expression into a union of at most

(
|Γ|2m+1

)k
m-frames, and altogether gives at most |Γ|(2m+2)k · kk m-frames. The

claim follows by Lemma 18.

We are now ready to prove Lemma 15. The proof follows the reasoning from [8] used to obtain Lemma 13, but replaces a simple pumping
argument of [8] with Lemma 19.

PROOF OF LEMMA 15. With the DTD Ds = 〈r, PDs〉 over the labelling alphabet Γ we associate a graph G over Γ in which there is an
edge from σ to τ , if τ occurs in the production for σ (i.e., σ-labelled node can have a τ -labelled child).

We shall work with strongly connected components (SCCs) of G. An SCC X of G is called branching if for some label σ ∈ X there
exists a word in the language assigned to σ by the production of Ds, such that at two different positions of this word there are letters from
X . If a non-trivial SCC is not branching, it is called non-branching.

The general idea is that branching SCCs are replaced with tree ports, non-branching SCCs by context ports, and the SCCs of the NFAs
representing the productions of Ds are replaced with forest ports. We will show how to obtain a kind K (satisfying the conditions given in
the statement of the lemma) such that T ∈ L(K). The bounds on the time of computing kinds covering the whole set L(Ds) will follow
immediately from the described construction.

Let T ∈ L(Ds). Prune T introducing ports as stubs according to the following rules.
First look at sequences of children, processing the tree from the root towards the leafs. Let w be a sequence of all children of some node

(that has not been removed so far). By Lemma 19 there exists an explicit p-frame F = v0M0v1M1 . . . vnMnvn+1 such that w ∈ F . For
each i replace

• the forest in T that corresponds to the (unique) subword of w that matches Mi

with

• a forest port ui with Lui defined by the forest DTD (Mi, PDs).

Next, deal with the SCCs of G, again moving top down. Each maximal path of the tree T that is labelled exclusively with labels from a
branching SCC X is cut off at depth p + 1; under the freshly obtained leaf we put a tree port u with Lu given by (σ, PDs), where σ is the
label of the root of the removed subtree.

For non-branching X only consider paths of length at least 2p + 1. Replace the subtree rooted at the (p + 1)st node of the path, say v,
with a context port u and under it put the subtree originally rooted at the pth node of the path counting from the bottom, say w. The language
Lu is defined by the context DTD (lab(v), P) over the alphabet Γ ∪ {◦} with P defined as follows. For σ /∈ X , let P (σ) = PDs(σ). For
σ ∈ X , let P (σ) =

(
PDs(σ)∩Γ∗XΓ∗

)
∪Nσ , whereNσ is obtained form PDs(σ)∩Γ∗XΓ∗ by replacing in each word the only occurrence

of lab(w) with ◦. Note that P (σ) can be recognized by an automaton twice the size of the automaton recognizing PDs(σ): it suffices to add
transitions over ◦ between each two states for which there was a transition over lab(w), and keep record of whether a label from X has been
seen. Since X is a non-branching SCC,

nodes labelled with symbols from X form a set of disjoint (simple) paths, such a node from one path is never a descendant of a
node from another path. (?)

It follows immediately that in each tree conforming to (lab(v), P) above, there may be at most one node labelled with ◦.
Let K be the result of the procedure above. Note that if a path in T stays in some component of G for at most 2p steps (p for branching

SCCs), then no port is introduced. In particular, for some small trees T , the resulting object may be T itself (no ports).
By construction, K is a p-kind and T ∈ L(K). The bounds on the size and representation of K are straightforward to check. To see that

K is an explicit p-kind note that condition (1) of Definition 4 is guaranteed by Lemma 19 and condition (2) follows from (?).

E. KIND THEOREM
The proof of the p-kind theorem is very similar to the proof of the original Theorem 5 from [8]. The only change involves the forest ports

which now have a generalized form. We begin with two lemmas showing how to combine trees in the languages defined by p-kinds. Next,
we show how to limit the set of data values in the target kinds. The proof of the p-kind theorem comes last.

LEMMA 20. Let K(c̄) be a p-kind. Then, for all T1, T2, . . . , Tn ∈ L(K(c̄)) there exists T ∈ L(K(c̄)) such that for each π(x̄) of size at
most p, if π(ā) is matched neatly in some Ti, then T |= π(ā).

PROOF. In a context or tree port u, use the corresponding condition in Definition 5 to provide a compatible forest/context Tu containing
all the forests/contexts (Ti)u. For forest ports, we cannot combine (Ti)u’s directly, because the condition (1’) of Definition 5 is to weak.
Instead, we reuse the trick from Lemma 14. For each i, let F i1 , F i2 , . . . , F iki be all the forests that can be obtained by taking p consecutive

trees in the forest (Ti)u, enumerated according to their original positions in (Ti)u. Let H1, H2, . . . , Hm be the sequence of forests obtained
by concatenating the sequences F i1 , F i2 , . . . , F iki for i = 1, 2, . . . , n. By (1’) in Definition 5, we can easily construct a forest

Tu = G0 +H1 +G2 +H3 +G4 + · · ·+Gm +Hm +Gm+1 ∈ Lu . (7)

Suppose that some pattern π(ā) of size at most p is matched neatly in Ti, and let us observe the image of π(ā) in (Ti)u. If u is a tree or
context port, we can move the image of π(ā) from (Ti)u to its copy in Tu without violating any edges in π. Suppose that u is a forest port
with Tu defined by (7). By the pigeon-hole principle, between any m + 1 consecutive roots (Ti)u we can find a root to which no vertex of
π(ā) is matched. It follows, that we can decompose (Ti)u into nonempty forests F1 + F2 + · · · + Fk, each consisting of at most m roots,
such that for all vertices x, y of π, if x is matched in Fj and y is matched in Fj′ for j < j′, then the only edge between x and y in π can be
Ef (x, y). (If such an edge exists, x and y must be mapped to some roots of Fj and Fj′ , respectively.) By the definition of H1, H2, . . . , Hm,
there exist `1 < `2 < · · · < `k such that H`j = F ′j + Fj + F ′′j for all j. Hence, by moving the image of π(ā) from Fj to the copy of Fj
contained in H`j , we obtain a partial matching. Since the original matching of π(ā) in Ti was neat, all the partial matchings are compatible
and give a matching of π(ā) in T .

LEMMA 21. Let K(c̄) be a source p-kind forM, where p is the maximal size of source-side patterns inM. For all T1, T2, . . . , Tn ∈
L(K(c̄)) there exists T ∈ L(K(c̄)) such that for each source-side pattern π, if Ti |= π(ā) for some i, then T |= π(ā).

PROOF. Since K(c̄) is a source kind, for each source-side pattern π(x̄) such that Ti |= π(ā), there exists Tπ(ā) ∈ L(K(c̄)) such that
Tπ(ā) |= π(ā). It follows immediately that the tree T guaranteed by Lemma 20 for the set of trees{

Tπ(ā)

∣∣ π is a source-side pattern ofM and Ti |= π(ā) for some i
}

satisfies the conditions of the lemma.

LEMMA 22. Let M = (Ds,Dt,Σ) be an absolutely consistent mapping and let p be the maximal size of source-side patterns in Σ.
Let Ks(c̄) be a source p-kind, and let Kt1,Kt2, . . . ,Ktk be target kinds covering L(Dt). Then, each tree from L(Ks(c̄)) has a solution in
L(Kti(d̄)) for some i and some tuple d̄ with entries taken from c̄ or from a fixed set of nulls of size K = maxi |Kti |.

PROOF. Let us take a tree T ∈ L(Ks(c̄)). Consider copies T0, T1, . . . , TK of T obtained by renaming the data values not occurring in c̄
(i.e., used only outside of Ks); in Ti the new names are chosen from set Ai such that c̄, A0, A1, . . . AK are pairwise disjoint. By Lemma 21
we obtain a tree T ′ which yields all the valuations of source side patterns yielded by any of the Ti’s. In particular, whenever T |= π(ā), for
each i we have a copy π(āi) of π(ā) satisfied in T ′, whose data values come from Ai ∪ c̄. AsM is absolutely consistent, the combined tree
has a solution, say S′ in some L(Ktj). It follows that for some i0 the corresponding copy of the target pattern, π′(āi0 , b̄i0), is matched in
such a way that none of the nodes carrying a value from Ai is mapped to the copy of Ktj in S′. Indeed, should each π′(āi, b̄i) contain a node
carrying a value from Ai, that is mapped to the copy of Ktj , for each i = 0, 1, . . . ,K there would be a node in Ktj carrying a value from Ai;
this contradicts the fact that there are at most K nodes in Ktj . Consider a copy T ′′ of the tree T ′ that is obtained as follows.

1. Rename all values in Ktj that are not from c̄ as nulls: a value a becomes a null ⊥a. This gives a valuation d̄ of data values in Ktj . Note
that d̄ does not depend on π′, nor ā, nor i0.

2. Look at the data values that were renamed into nulls, and were touched by the matching of π′(āi0 , b̄i0) in Ktj . From the way i0 was
chosen it follows that these values were originally not from Ai0 . Thus, if we replace each occurrence of a with ⊥a also outside Ktj ,
π′(āi0 , b̄

′
i0) is satisfied for tuple b′i0 obtained from b̄i0 by the same renaming.

3. Finally, we change the data values from Ai0 back to the original data values used in T .

The obtained tree T ′′ satisfies π′(ā, b̄) for tuple b̄ obtained from b′i0 by the same renaming. Also, T ′′ is a tree of kind Ktj(d̄) such that d̄ only
uses data values from c̄ and elements of a fixed set of nulls of size K. Hence, for each source side pattern π(ā) satisfied in T we have a tree
in Ktj(d̄) that satisfies π′(ā, b̄). Combining the trees as usual we obtain a solution for T in L(Ktj(d̄)).

The proof of the p-kind theorem is an easy consequence of the last two lemmas. Suppose that for each Kti(d̄) with the entries of d̄ taken
from among the entries of c̄ or a fixed set of nulls of size |Kti |, there is a tree Ti,d̄ in L(Ks(c̄)) that does not admit a solution in Kti(d̄). By
Lemma 21, we combine all these trees to produce a tree T that satisfies π(ā) whenever some Ti,d̄ satisfies π(ā) for all source-side patterns
ofM. By Lemma 22, T has a solution T ′ in some Kti0(d̄). By the definition of T , T ′ is also a solution for Ti0,d̄, which is a contradiction.
This shows that there exist i and d̄ with entries taken from c̄ or a fixed set of nulls of size |Kti |, such that each tree from L(Ks(c̄)) has a
solution in L(Kti(d̄)).

For a given i, we can compute appropriate d̄ by testing all possible
(
|c̄|+ |Kti |

)|Kti| ≤ (2K)K candidate tuples, where K =

max(|Ks|, |Kti |). Arguing like in the previous paragraph, we show that all trees in L(Ks(c̄)) have solutions in L(Kti(d̄)) iff for each
dependency π(x̄)→ π′(x̄, ȳ) inM and each tuple ā with entries taken from c̄ and a set of nulls of size |x̄|, if π(ā) is satisfiable with respect
to L(Ks(c̄)), then π′(ā, b̄) is satisfiable with respect to L(Kti(d̄)) for some tuple b̄ with entries taken from c̄, d̄, or a set of nulls of size ȳ.
SinceKs is a source kind, andKti is a target kind, it is enough to consider neat matchings of these patterns. Consequently, by Lemma 11, the
latter test can be performed in time

n · (|c̄|+ r)r ·
(
‖Ks‖poly(‖M‖) · |Ks|p+1 + (|c̄|+ |d̄|+ r)r · ‖Kti‖poly(‖M‖) · |Kti |p+1

)
≤

≤ Kpoly(‖M‖) ·Npoly(‖M‖)

where n is the number of dependencies, p and r are the maximal size and arity of patterns, and N = max(‖Ks‖, ‖Kti‖). Altogehter, the
complexity is bounded by KK·poly(‖M‖) ·Npoly(‖M‖). Assuming that N = 2poly(‖M‖) (and K > 2), we obtain complexity KK·poly(‖M‖).

F. KERNELIZATION WITH INEQUALITIES
We prove that a kernel can be found by taking union of at most rr kernels given by applications of Theorem 2 to carefully prepared sets

of tuples and potential expressions.
Let≡ be an equivalence relation on x̄. ByD≡ we denote the set of tuples ofD that have the following property: two entries in a tuple are

equal if and only if the corresponding variables in x̄ are ≡-equivalent; note that sets D≡ can be constructed using single queries. Moreover,
let α≡ be a potential expression created from α as follows: we delete all the clauses that contain a constraint xi 6= xj for xi ≡ xj , while
from all the other clauses we delete all the remaining inequality constraints. Note that α≡ has at most k clauses and uses no inequality
constraints.

Using Theorem 2, for every equivalence relation ≡ we compute a kernel D′≡ for D≡ with respect to α≡. Note there are at most rr

equivalence relations over r variables, so we obtain at most rr kernels of size at most 2 · (2k)r each; the bound on the total number of queries
follows in the same manner. Let D′ =

⋃
≡D

′
≡. We have that |D′| ≤ 2 · (2kr)r , so it remains to show that D′ is a kernel for D with respect

to α.
Let us fix c̄ such that α(ā, c̄) for all ā ∈ D′. Take a tuple ā ∈ D \D′. Let ≡ be an equivalence relation over x̄ such that xi ≡ xj if and

only if ai = aj . As ā /∈ D′, it follows that a ∈ D≡ \D′≡. We know that every tuple of D′≡ ⊆ D′ satisfies α(x̄, c̄). We claim that the same
holds for α≡(x̄, c̄). Indeed, no clause deleted while constructing α≡ could be satisfied by a tuple from D′≡ as the inequality constraints that
triggered deletion are automatically not satisfied, while all the deleted inequality constraints in other clauses are automatically satisfied. As
D′≡ is a kernel for D≡, we infer that ā satisfies α≡. We claim that ā also satisfies α. Indeed, ā must satisfy some clause of α≡, and all the
inequality constraints that were removed from its original in α are satisfied automatically. This concludes the proof that D′ is a kernel for D
with respect to α.

We remark that the bound on the kernel size in Theorem 3 is far from being tight, when the constant depending on r is taken into
consideration. To see this, note that the setsD≡ for≡ not consisting of singletons only are contained in subspaces of dimension smaller than
r, and hence usage of Theorem 2 can give a kernel with exponent smaller than r. As we treat r as a constant, we omit such a sharper analysis
for the sake of simplicity.

G. BRANCHING ALGORITHM IMPLEMENTATION
In this part we explain how to construct a query ConstBK which solves tuple covering problem using the branching algorithm described

in Section 5 Lemma 6. This query can be used to compute possible valuations of the constants of a kind.

As explained in the proof of Lemma 6, the branching algorithm refines iteratively a partial valuation c̄ of the variables z̄ together with a
set of (in)equality E so that all tuples from the sets Di gets covered at the end. At each iteration, it chooses an uncovered tuple ā from a set
Di (i.e. witnessing the pattern πi in the source) and tries to fix some clause P ij from αi at ā by extending the partial valuation c̄ and the set
E so that ā is now covered by P ij under (c̄, E).

Also recall that the recursion depth of the algorithm is bounded. A variable zi from the tuple z̄ can be valuated only once and each
equality or inequality can be added to E only once. At each iteration we valuate at least one element of z̄ or we add at least one equation to
E . Altogether the algorithm refines the partial valuation at most W = 2|z̄|+

(|z̄|
2

)
times.

In the query, for ` ∈ {1, 2, . . . ,W} the data structure C` stores the partial valuation of z̄ at the `th refining step. The current chosen tuple
ā ∈ Di will be stored in the variables (i, x̄) and the chosen clause to cover a is stored in h`. The list of clauses is encoded in the subquery
Clause. Notice that we do not store E explicitly but we can easily reconstruct it from the variables hi for i < `. For technical reason C` is
a list of variables which are valuated to elements of D, in particular variables that are not in the list C` have not been valuated yet (i.e., they
are assigned value ⊥).

The query ConstBK can be defined as

let C0 := emptyval return Refine0

For each ` ∈ {1, 2, . . . ,W}, the subqueries Refine` intuitively corresponds to the `th refining step. It is formally defined inductively as
defined below for ` ≤W and we define RefineW+1 as the empty query.

Refine` =

1 if empty(Find`) then Next`

2 else let (i, x̄) := first(Find`) return (

3 for h` in Clause where αh`(h`, i, x̄) return (

4 let C`+1 := UpdateC`(h`, x̄) return Refine`+1

5))

The subqueries Find`.
For any `, the corresponding subquery selects tuples of pairs (i, x̄) where x̄ ∈ Di (that is, x̄ satisfies πi) such that the x̄ cannot be covered

by any clause P ij under the partial valuation C`. It can be easily construct using qπi queries from Lemma 1 together with some (in)equality
tests on the structure C`. Note that these tests may depend also on variables hi for i ≤ `.

The subqueries Next`.
The Next` in line 1 intuitively corresponds to the case when every tuple from every Di is covered by one of clauses under the current

partial valuation of z̄.

Next` = let C := C` return Clean

The subquery Clean outputs a full valuation of the variables z̄ according to the current partial valuation stored in C and the (in)equality
constraints (corresponding to E) stored in the variables hi (for 0 ≤ i < W). The values assigned to variables of z̄ that were not assigned
values in C are obtained using query freshnull(), where variables that are constrained to be equal in E are assigned the same fresh null.

The subqueries UpdateC`(h`, x̄).
For any `, the subquery UpdateC`(h`, x̄) outputs the refined partial valuation obtained from C` and x̄ knowing that the clause P ij

(encoded by the constant h`) has been chosen to cover x̄.

The subexpression αh`(h`, i, x̄) .
For each ` this subexpression tests whether x̄ is covered by the clause P ij encoded by h` under the partial valuation C` and the constraints

E encoded by the variables hi for 0 ≤ i < `.

Theorem 1 now follows easily from the construction of the query ConstBK.

H. KERNELIZATION ALGORITHM IMPLEMENTATION SKETCH
In the query we are constructing, we use recursion and build-in arithmetics. In particular, the construct count(q) outputs the length of

the sequence returned by the query q. The construct firstHalf(q) returns first b count(q)
2
c elements of the sequence returned by q and can be

implemented using the for construction and the built-in arithmetics.

As explained in Section 6, the idea of kernelization is to recursively shrink the set of tuples called kernel until we obtain a kernel of small
size. In our case, we start with the kernel being the set D of tuples which satisfy some π in the source instance (this set can be computed
using the query qπ from Lemma 1). In each recursion call we look for a subset Y of D that can be removed safely until we get small kernel.
As the removed sets are of the size proportional to D the recursion depth of the algorithm depends on the size of D (and as a consequence
on the size of the input tree). Finding the subset Y can be done inductively using clauses of a potential expression.

Fix a dependency π → π′. Let r be the arity of the pattern π and α =
∨k
i=1 Pi the corresponding potential expression from Lemma 4.

We explain how to construct a query Kernelz which computes from a set Dker a kernel of size smaller than 2 · (2k)r .

The query Kernelz.
In the query, the structure Fα represents an encoding of the clauses of the potential expression α and is fixed. Constants k and r are fixed

as well. The structure Dker refers to the kernel at the current level of recursion. The query Kernelz is defined recursively as

Kernelz =

1 if count(Dker) < 2(2k)r return Dker

2 else let X0 := Dker return

3 let G0
α := Fα return

4 let Y := FindSet0 return

5 let Dker := Dker \ Y return Kernelz

The set difference expressed in line 3 can be easily encoded with a simple query using Dker and Y .
Notice that line 5 is the only place where we use recursion in the whole construction. This is unavoidable as the recursion depth of the
kernelization algorithm depends on the size of the input tree.

The subquery FindSet0.
At each level of the kernelization, we compute a set of tuples that can be safely removed from the current kernel to obtain a smaller

one. This is done using the subquery FindSet0. The idea is to refine iteratively a set of tuples X0 using some clauses from the potential
expression α. The number of iterations is bounded by r, the dimension of space that containsX0. The query FindSet` is defined inductively
below for ` < r and we define FindSetr as ∅.

FindSet` =

1 if empty(FindBigSet`) then firstHalf(X`)

2 else let (ā`, i`) := first(FindBigSet`) return

3 let X`+1 := EvalP `ā`,i` return

4 let G`+1
α := Update(G`α, i`) return FindSet`+1

The variablesG`α refers to the sequences of clauses from the potential expression α which haven’t been used yet to refine the setX`. The
variables X` refers to the current set of tuples we want to refine.

The subqueries EvalP `ȳ,j and FindBigSet`.
For each `, the corresponding subquery FindBigSet` outputs a sequence of pairs (ȳ, j) where ȳ is an r-tuple from Dker and j encodes

a clause from G`α witnessing the fact that (2) does not hold, that is:

X` 6⊆ P̂ ȳj and |X` ∩ P̂ ȳj | ≥
|X`|
2k

.

Recall that P̂ ȳj can be defined using a conjunction C ȳj . Using this conjunction, it is easy to design a series of subqueries EvalP `ȳ,j which
output the tuples from X` ∩ P̂ ȳj , where ȳ can be instantiated to various variables used in the implementation.

The subquery FindBigSet` can now be defined as

FindBigSet` =

1 for j ∈ G`α return

2 for x̄ ∈ X`

3 where count(X`) > count(EvalP `x̄,j) ∧ count(EvalP `x̄,j) >
count(Dker)

(2k)r−count(G`α)
return (x̄, j)

Notice that in line 2 we consider x̄ ∈ X` instead of x̄ ∈ Dker because we are interested in clauses Pj such that EvalP `x̄,j > 0. Also notice
that in line 3, the test count(X`) > count(EvalP `x̄,j) is equivalent to X` 6⊆ P̂ x̄j .

I. TRACTABLE CASE
Without loss of generality, we can assume that for each σ ∈ Γ there is a finite tree conforming to the DTD 〈σ, Pt〉. This can be

guaranteed by a simple polynomial preprocessing, which first computes the set of labels Γ0 that have this property, and then restricts Dt to
Γ0 by eliminating all remaining labels from the productions. (If Γ0 does not contain the root symbol of Dt, the implementing query qM is
trivial.)

The second step is to adjust each target side patterns to the target DTD by merging vertices that will have to be mapped to the same nodes
in any tree conforming to Dt. Recall that target side patterns are fully specified and tree-shaped. If the root node of a target-side pattern π′

is not labelled with r, then π′ is not satisfiable and we can replace it with a single inequality y 6= y. Otherwise, we process the nodes of π′

top down, i.e., starting from the root. Pick the next unprocessed node v. Let σ be the label of v and let σ → τ̂1τ̂2 . . . τ̂k in Dt. If among the
children of v there is a node with a label not allowed by the production for σ, then π′ is not satisfiable; we abort the procedure and replace
π′ with a single inequality y 6= y. Otherwise, for each j such that τ̂j is τj or τj?, merge all the children of v labelled by τj into one τj-child
and add the induced equalities between variables stored in these children. When this procedure terminates, the resulting pattern is consistent
with the target DTD, except that some nodes are missing. They will be added later, when the final query is constructed.

We can now move on to the main argument. Since the target-side patterns are fully specified, they can only access nodes of the target tree
up to depth p. Moreover, for each vertex of a target pattern there is a fixed sequence of labels from root to the accessed node. Since Dt is a
simple threshold DTD, this means that the accessed node is either unique in each tree conforming to T or for some two consecutive labels
σ, τ in this sequence, τ occurs as τ∗ or τ+ in the production for σ in Dt.

It follows that there exists a single target kind K such that each source tree that has a solution, has also a solution in L(K). The kind is
obtained by unravelling Dt. Begin with a single node labelled with r and then for each ordinary node v (not a port) labelled with σ, where
σ → τ̂1τ̂2 . . . τ̂k in Dt add children according to the following rules. For each i, if some target pattern can access a τi-labelled child of node
v in the constructed tree, then

• if τ̂i is τi or τi?, add a τi-labelled node;

• if τ̂i is τ+
i or τ∗i , add a forest port with the corresponding forest DTD 〈τ̂i, Pt〉.

otherwise,

• if τ̂i is τi or τ+
i , add a τi-labelled node;

• if τ̂i is τ+ or τ∗, add nothing.

By the initial assumption, this process will terminate at depth at most p + h, where p is the maximal size of target-side pattern and h is the
height of Dt. The size of the resulting kind K can be bounded by M · N , where M ≤ ‖Σ‖ is the total size of target-side patterns, and
N = maxσ∈Γ minS∈L(〈σ,Pt〉) |S| is the bound on the size of minimal subtrees consistent with the target DTD, as defined in the theorem
statement. The factor N comes from the fact that we also add nodes inaccessible by target patterns, but enforced by the target DTD. The
ordinary nodes of K can be split into two categories: those accessible by target-side patterns, and those not accessible. The accessible nodes
form a strict subtree (an ancestor closed subset) of K, and their number is bounded by M . The data values in the non-accessible nodes are
irrelevant and can be set to nulls. The data values in the accessible nodes have to be computed based on the source tree.

Let v1, v2, . . . , vm be the accessible nodes in K and let z̄ = z1, z2, . . . , zm. We preprocess the mappingM so that its dependencies are
of the form πi(x̄i) −→ π′i(x̄i, ȳi, z̄), i = 1, 2, . . . , n, where in π′i the vertices that access node vj carry variable zj (vertices that access
nodes outside of K carry arbitrary variables) and no equalities involve variables from ȳi. First, we replace the variables in vertices accessing
node vj with zj and add an appropriate equality. Next, we eliminate equalitites between variables from z̄ and ȳi: for each equality zj = y
where y is a variable in ȳi, we replace each occurrence of y with zj . Similarly, we remove equalities between x̄i and ȳi, and equalities over
ȳ.

The way we want to think about it is variables z̄ are dedicated to constants of K, x̄i bring a tuple from the source side, and ȳi are fresh
nulls, implicitly assumed to be pairwise different and also different from any data value used on the source side, as well as values stored in
the constants of K. Since the target side patterns are merged, we can assume that they are always matched injectively, i.e., no two vertices
of a target pattern need to be mapped to the same node of the tree. Thus, by substituting each variable in ȳi with a fresh null, we satisfy all
inequalities involving ȳi.

For each accessible node vi, if πj(ā) is matched in the source tree T , and π′j(x̄j , ȳj , z̄) contains equality zi = x`, then vi must store a`.
In particular, if

Ai =

n⋃
j=1

{
a`

∣∣∣∣ T |= πj(ā) and π′j(x̄j , ȳj , z̄) contains equality zi = x`

}
has more then one element, there is no solution at all. The value stored in vi can be also enforced by equalities over z̄ contained in target side
patterns, which is reflected in the query constructed below.

The candidates for the constants of K are computed by the query constK, shown on the left, based on subquery equalitiesi(z̄), shown
on the right:

let t̄0 := (A1, A2, . . . , Am) return

let t̄1 := equalities1(t̄0) return

let t̄2 := equalities2(t̄1) return

...
let t̄n := equalitiesn(t̄n−1) return

let (z1, . . . , zm) := t̄n return

(firstOrNull(z1), . . . ,firstOrNull(zm))

if empty(qπi) then z̄ else

let x1 :=
⋃

π′i|=z1=zj

zj return

let x2 :=
⋃

π′i|=z2=zj

zj return

...

let xm :=
⋃

π′i|=zm=zj

zj return

(x1, x2, . . . , xm)

The expression firstOrNull(x) is defined as if empty(x) then freshnull() else first(x). The union symbols in equalitiesi are used in lieu
of concatenation. The condition πi |= z1 = zj means that zj ranges over all variables such that equality z1 = zj is entailed by the equalities
over z̄ contained in π′i. Note that this always includes j = 1. The sets A1, . . . , Am can be easily computed with a polynomial size query.

If the tree T has a solution at all, then the constants returned by constK are correct. But it is also possible that there is no solution,
because the equality and inequality constraints imposed by target-side patterns are not satisfiable. This is checked by the additional condition
in the final implementing query qM:

let z̄ := constK return

if
n∧
i=1

empty

(
let ȳi := (freshnull(), . . . , freshnull()) return

for x̄i in qπi where ¬η′i(x̄i, ȳi, z̄) return x̄i

)
then solK(z̄)

In the query above, η′i(x̄i, ȳi, z̄) is the conjunction of equalities and inequalities contained in pattern π′i.
The query solK(z̄) is defined like in the general construction in the proof of Lemma 3, but some additional effort is needed to make the

construction polynomial. The kind K and the trees that need to be substituted at its ports can be exponential in the size of Dt. Instead of
building them into query solK(z̄) explicitly, we construct large parts of them with special queries qσ , that return the smallest tree conforming
to 〈σ, Pt〉. These trees may be exponential, but the query is polynomial: if the production in Dt is σ → τ̂1τ̂2 . . . τ̂k, the query qσ is

let y := freshnull() return σ(y)[qτi1 , qτi2 , . . . , qτi`] ,

where i1 < i2 < · · · < i` are all the indices i such that τ̂i = τi or τ̂i = τ+
i .

For each pattern π′i and each port u in K, the query subst i,u(x̄i, ȳi, z̄) outputs a forest to be substituted at u in order to obtain a tree in
L(K(z̄)) satisfying π′i(x̄i, ȳi, z̄). Let (π′i)u be the sequence of subpatterns of π′i rooted at vertices of π′i that must be matched to the roots
of the forest substituted at u (they are determined by the path leading to port u in K). Query subst i,u(x̄i, ȳi, z̄) is obtained from (π′i)u by
adding the nodes that are missing with respect to Dt: for each node v with label σ, where σ → τ̂1τ̂2 . . . τ̂k is the production in Dt, include
among children of v subqueries qτi for each i such that τ̂i = τi or τ̂i = τ+

i and no child of v is labelled with τi (make sure that the ordering
required by the production σ → τ̂1τ̂2 . . . τ̂k inDt is respected). Additionally, if u is a forest port with root expression of the form τ+, include
qτ in subst i,u(x̄i, ȳi, z̄) to make sure that the returned forest is not empty. By the second preprocessing, the forests returned by the obtained
query are compatible with the ports.

The query solK(z̄) is essentially obtained by plugging in at each port u the query substu(ȳ, z̄), where ȳ = ȳ1, ȳ2, . . . , ȳk, obtained as
the concatenation of queries

for x̄i in qπi return subst i,u(x̄i, ȳi, z̄)

for i = 1, 2, . . . , k. We would like to define solK(z̄) as

let ȳ := (freshnull(), . . . , freshnull()) return

K(substu1(ȳ, z̄), substu2(ȳ, z̄), . . . , substum(ȳ, z̄))

where u1, u2, . . . , um′ are all ports of K. By the definition of K, all ports are accessible, so there is at most M of them, which is fine. The
problem is that K may be exponential, so again we need to use queries qσ: when K is built, whenever an inaccessible τ -node is reached, we
immediately substitute query qτ . Note that this does not interfere with the previous steps of the construction, as we always work only with
the accessible nodes of K.

