
Stackless Processing of Streamed Trees
Corentin Barloy

ENS de Paris
France

Filip Murlak
University of Warsaw

Poland

Charles Paperman
University of Lille

INRIA LINKS, CRIStAL CNRS
France

ABSTRACT
Processing tree-structured data in the streaming model is a chal-
lenge: capturing regular properties of streamed trees by means of a
stack is costly in memory, but falling back to finite-state automata
drastically limits the computational power. We propose an interme-
diate stackless model based on register automata equipped with a
single counter, used to maintain the current depth in the tree. We
explore the power of this model to validate and query streamed
trees. Our main result is an effective characterization of regular
path queries (RPQs) that can be evaluated stacklessly—with and
without registers. In particular, we confirm the conjectured charac-
terization of tree languages defined by DTDs that are recognizable
without registers, by Segoufin and Vianu (2002), in the special case
of tree languages defined by means of an RPQ.
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1 INTRODUCTION
While graph is the new black, tree-structured data has not vanished.
It is used both as a serialization format (Wikipedia, Wikidata, DBLP)
and as an exchange format (WSDL and SOAP rely on XML, the
more recent GraphQL prefers JSON). Querying and validation of
tree-structured data continue to be both vital and challenging tasks
in data management. Particularly so, when documents grow too
large to fit in memory, and it is time to switch to streaming; that is,
to read the document sequentially, maintaining a concise internal
representation sufficient for the realized task.

According to Palkar et al. [18], exploratory big-data applica-
tions running over data in a semi-structured format, like JSON,
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can spend 80-90% of their execution time simply parsing the data.
Performance improvements often rely on clever ways to reduce the
cost of parsing. In systems research, two main strategies have been
proposed. The first one relies on SAX (Simple API for XML) parsers:
it outsources parsing to the API and deals only with the resulting
events [11, 26]. This allows to factor out the cost of parsing, and
may lead to significant performance gains when multiple queries
are executed over the same document [26]. The second approach is
to perform parsing and query execution simultaneously, applying
push-down automata as the computation model [17], in the hope
that the acquired semantic information would help reduce the cost
of parsing. When a single query is executed over a huge document,
this may also be highly beneficial [6].

The theoretical take on alleviating the cost of parsing is more rad-
ical: since it is so costly, let us assume that it has been already done
for us and the input stream is guaranteed to be a well-formed docu-
ment. This may be the case, for instance, if we trust the source of the
document or if we have already processed the document for other
purposes. Can this assumption help process the document more
efficiently? This setting was introduced as weak validation in the
seminal work of Segoufin and Vianu [25] on validating a streamed
XML document against a DTD by means of a finite automaton.
Despite the significant progress made in the initial paper and in the
follow-up work [1, 5, 24], the general problem of deciding whether
weak validation against a given regular tree language is feasible, re-
mains open. Incidentally, this question is a special—but disturbingly
generic—case of an undecidable separation problem [13].

A recent trend in data processing is to use hardware acceleration
to exploit local parallelism. Most modern CPU architectures offer
SIMD (single instruction multiple data) instructions, allowing to
perform the same operation on multiple data points in one CPU
cycle, leading to what is known as the vectorization of computation.
Vectorization in used routinely in data-intensive applications like
multimedia processing [23] or deep learning [8, 27], and is find-
ing its way to data management, particularly in the sub-field of
in-memory databases [22, 32]. Relevant examples from a related
field are the performant regular expression engine Hyperscan [29]
and the competitive engine of the RUST language [10], both relying
crucially on vectorization. In the context of streaming processing
of tree-structured data, an early work on parabix by Cameron et
al. studies the use of SIMD instructions to accelerate XML pars-
ing [4]. More recently, Langdale and Lemire illustrate how the
performance of JSON parsers could be vastly improved by using
vectorization [14]. Their experiments confirm that the cost of pars-
ing is a large fraction of the total cost of query execution, matching
the performance loss with respect to regular expression matching.
To get a better feeling of the room for improvement, let us look at
some numbers: the experiments had different setups, but the orders
of magnitude are still of interest. The standard C function memchr
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scans memory to find the first occurrence of a given byte; it has
been hand-optimized for various architectures and can be assumed
to display the best performance one could hope for in a stream-
ing task. On a standard laptop computer, it easily reaches 20Gb/s.
The Hyperscan regular expression engine reaches performance of
10Gb/s [29]. Langdale et al. get up to 3Gb/s when parsing JSON files
and selecting some nodes, but selecting alone reaches 10Gb/s [14].
Palkar et al. explicitly put the blame on the incompatibility of push-
down automata and vectorization [18].

To some extent this is explained by theory. An abstract model
of exploiting local parallelism in streaming algorithms was pro-
posed in [15]: the stream is read in blocks, each block is processed
by a fixed boolean circuit, and the result is fed back to the circuit
together with the next block of the stream. The degree of local
parallelism of a language is measured by the complexity of the
circuit needed to recognize the language in the above model: the
higher the complexity, the less local parallelism. As shown in the
paper, the degree of local parallelism of regular languages matches
their classical circuit complexity, and it is plausible that the situa-
tion is similar for larger classes of languages. Assuming this is the
case, successful vectorization of XML or JSON parsers might be
more tricky than for regular expression engines: Dyck languages
(well-formed multi-bracket expressions) are TC0-complete [2], but
while regular languages may have even higher complexity, the ones
appearing in benchmarks are typically much simpler (for instance,
all examples in [10] and [31] are in AC0).

All this evidences that stack-based computation is troublesome.
At the same time falling back to finite automata severely limits
expressivity, as revealed by the necessary conditions discovered by
Segoufin and Vianu [25]. As a middle ground, we propose to relax
the computational model just so. We allow one counter for main-
taining the current depth in the document, and registers for storing
the current depth to be compared with the depths of later tags. In
the resulting model, dubbed depth-register automaton, transitions
are performed at a very low CPU cost with almost no external
memory access. The latter depends on the number of registers; if
the number is low enough, it is even possible to keep all the val-
ues within the CPU’s registers and not use external memory at
all. Unlike pushdown automata, the model appears amenable to
vectorization and may be hoped to achieve high throughputs, but a
systematic study of this aspect is a matter of future work.

We apply the proposed setting (predominantly) to querying,
which—to the best of our knowledge—has not been studied from
this angle yet. After a preliminary expressivity study, we embark
on characterizing node-selecting queries that can be realized in
our model. Our first main result is an effective characterization
of regular path queries (RPQs) that can be realized with depth-
register automata. As a by-product, we reveal a connection with
the languages of trees in which some (resp. each) leaf is selected by
the RPQ. Our second main result is an analogous characterization
for finite automata. There, the conditions for the unary query and
the two associated tree languages do not coincide any more, but
are elegantly related: the RPQ can be realized iff both languages
can be (weakly) recognized. Using the second result we make some
progress towards solving Segoufin and Vianu’s weak validation
problem. We develop our results for the XML encoding of trees, but
they adapt smoothly to the less verbose JSON-style encoding.

Organization of the paper. Section 2 introduces the computa-
tion model and gives a preliminary expressivity study. Section 3
establishes the characterization theorems. Section 4 explores the
connection with the weak validation problem, explains the adapta-
tion to JSON-style encoding, and points out key open problems.

2 COMPUTATIONAL MODEL
We model tree-structured data as ordered unranked finite trees
whose nodes are labelled with symbols from a finite alphabet Γ. We
refer to them simply as trees over Γ. An immediate subtree of tree T
is a subtree rooted at a child of the root ofT . A tree language over Γ
is a set of trees over Γ. If L is a language of trees (or words) over Γ,
we write Lc for the complement of this language.

The markup encoding represents trees over Γ as words over the
alphabet Γ∪Γ̄, where Γ̄ =

{
ā
�� a ∈ Γ

}
. In the context of the encoding,

the elements of Γ and Γ̄ are referred to as opening and closing tags,
respectively. If T is a tree whose root is labelled with a and whose
immediate subtrees are T1,T2, . . . ,Tn , then

⟨T ⟩ = a · ⟨T1⟩ · ⟨T2⟩ · · · · · ⟨Tn⟩ · ā .

For example, aaācc̄ā encodes the tree with a-labelled root whose
first child has label a and second child has label c . If L is a tree
language over Γ, we let

⟨L⟩ =
{
⟨T ⟩

�� T ∈ L
}
⊆ (Γ ∪ Γ̄)∗ .

2.1 Depth-register automata
Under the markup encoding, finite automata are unable to check
even the simplest properties of the input document: for instance,
determining if one marked node is a child, descendant, or sibling
of another marked node requires a stack—or at least a counter,
used to compare depths of nodes. Realizing multiple such tasks
simultaneously seems to lead to multi-counter automata, which are
notoriously hard to analyze. We take a different path: we allow only
one counter, used exclusively to maintain the current depth in the
tree, but additionally equip the automaton with a bounded number
of registers, which can be used to store depths of critical nodes, and
compare them later with the current depth. To keep our automata
executable efficiently, we assume that they are deterministic. Thus
we arrive at deterministic input-driven 1-counter automata with
registers. ‘Input-driven’ is the standard terminology for counters or
stacks that evolve independently of the state [7, 28]. Here it means
that the counter increases by one with each opening tag read, and
decreases by onewith each closing tag read; such automata (without
registers) are also called visibly counter automata [1]. Importantly,
the only tests allowed on the values stored in registers are order
comparisons with the current depth. We shall refer to such devices
as depth-register automata. A formal definition follows.

Definition 2.1. A depth-register automaton A is a tuple

(Γ,Q,qinit , F ,Ξ,δ ) ,

where Γ is a finite alphabet, Q is a finite set of states, qinit ∈ Q is
the initial state, F ⊆ Q is the set of accepting (final) states, Ξ is a
finite set of registers, and

δ : Q × (Γ ∪ Γ̄) × 2Ξ × 2Ξ → 2Ξ ×Q

is the transition function.



A configuration of A is a tuple (q,d,η) ∈ Q × Z × ZΞ, whose
components specify the state, the current depth, and the values
stored in the registers, respectively. We call a configuration (q,d,η)
accepting if q ∈ F . The initial configuration is cinit = (qinit , 0,ηinit )
where ηinit (ξ ) = 0 for all ξ ∈ Ξ.

The run of A over a word a1a2 . . . an ∈ (Γ ∪ Γ̄)∗ from a configu-
ration (q0,d0,η0) is the unique sequence of configurations

(q0,d0,η0)(q1,d1,η1) . . . (qn ,dn ,ηn ) ∈
(
Q × Z × ZΞ

)∗
such that for each i ∈ {1, 2, . . . ,n}, there exists Yi ⊆ Ξ such that

• di =

{
di−1 + 1 if ai ∈ Γ ,

di−1 − 1 if ai ∈ Γ̄ ;
• δ (qi−1,ai ,X

≤
i ,X

≥
i ) =

(
Yi ,qi

)
where

X ≤
i = {ξ ∈ Ξ

�� ηi−1(ξ ) ≤ di } ,

X ≥
i = {ξ ∈ Ξ

�� ηi−1(ξ ) ≥ di } ;

• for each ξ ∈ Ξ,

ηi (ξ ) =

{
di if ξ ∈ Yi ,

ηi−1(ξ ) if ξ < Yi .

We write c · w for the last configuration of the run on w from c .
If c · w = c ′, we also write c

w
−−→ c ′. By the run of A on w we

understand the run on w from cinit. We say that w is accepted by
A if cinit ·w is accepting. The language recognized by A is the set
of words accepted by A.

Depth-register automata without registers (that is, with Ξ = ∅)
are a notational variant of deterministic finite automata over the
alphabet Γ ∪ Γ̄. For such automata we streamline the notation
introduced in Definition 2.1 by dropping the ingredients associated
with Ξ. In particular, we use states instead of configurations, and
write q ·w = q′ and q

w
−−→ q′. The same notation will be applied to

finite automata over Γ, not only over Γ ∪ Γ̄.
We shall give examples of depth-register automata in Section 2.2

(Examples 2.2, 2.5 and 2.6), once we have made precise how they
are used to recognize tree languages.

To conclude the discussion of the automata model, let us point
out that the kind of tests allowed on registers is a natural parameter
of the definition. For instance, one could allow testing if the current
depth differs from the content of a given register by a specified
constant; this kind of test can be simulated in our model at the
cost of using additional registers. An interesting proper extension
is to allow semilinear conditions, like testing equality modulo a
specified constant. Finally, forsaking any hope of decidability of
emptiness (which might be tolerable), one could go up to full arith-
metics. Owing to their determinizm, depth-register automata in
all these variants would be efficiently executable in practice, using
only a constant number of variables (possibly just CPU registers).
Nevertheless, in this first study we stick to the minimalist approach.

2.2 Recognizing streamed tree languages
A tree language L over Γ is recognized (under the markup encoding)
by an automatonA over the alphabet Γ ∪ Γ̄ if for each tree t over Γ
it holds thatA accepts ⟨t⟩ iff t ∈ L. Equivalently, L is recognized by
A if the language of words accepted by A separates ⟨L⟩ from ⟨Lc⟩.

A tree language is stackless if it is recognized by a depth-register
automaton, and registerless if it is recognized by a finite automaton.

Note that the automaton is allowed to accept or reject invalid
encodings; that is, elements of

(
Γ∪ Γ̄

)∗
\
(
⟨L⟩ ∪ ⟨Lc⟩

)
. Requiring that

all invalid encodings be rejected would lead to ⟨L⟩ ⊆ (Γ ∪ Γ̄)∗ being
recognized by a finite (resp. depth-register) automaton, which is a
much stronger property. In particular, the assumption that ⟨L⟩ is
recognized by a finite automaton is prohibitively strong, as it implies
that the depth of trees in L is bounded [25]. In contrast, a registerless
tree language may easily contain trees of unbounded depth: a very
simple example is the set of trees with at least one a-labelled node,
which can be recognized (under the markup encoding) by a finite
automaton that moves to an all-accepting sink state upon reading
the opening tag a for the first time.

Registerless tree languages are regular, because a tree automaton
can simulate the run of a finite automaton over the encoding of the
tree. Stackless tree languages, in contrast, need not be regular.

Example 2.2. The set of trees over the alphabet {a,b} in which
all a-labelled nodes are at the same depth, can be recognized by a
depth-register automaton. The first time the automaton sees a, it
stores the current depth in its only register. Then, every time it sees
a it checks if the current depth is equal to the stored value, and if it
is not, it moves to a rejecting sink state.

Regularity can be enforced by applying a stack-like policy of
using registers. We call a depth-register automaton restricted if
each transition overwrites all stored values strictly greater than the
current depth; that is, if δ (p,a,X ≤,X ≥) = (Y ,q), thenX ≥ \X ≤ ⊆ Y .

Proposition 2.3. Restricted depth-register automata recognize
regular tree languages.

Proof. Consider a restricted depth-register automaton

A = (Γ,Q,qinit , F ,Ξ,δ ) .

The run ofA on a treeT can be represented bymeans of an auxiliary
labelling of the nodes of T with elements of(

2Ξ ×Q
)
× 2Ξ ×

(
2Ξ ×Q

)
where for each node v in T , if v gets auxiliary label(

(X ,p),Y , (Z ,q)
)

then
• upon reading the opening tag ofv ,A loads the current depth
to registers in X and moves to state p;

• when processing the infix of ⟨T ⟩ delimited (exclusively) by
the opening and closing tags of v , A loads some current
depth to exactly those registers that belong to Y ;

• upon reading the closing tag of v ,A loads the current depth
to registers in Z and moves to state q.

In what follows, we shall refer to q as the exit state of v .
The correctness of the auxiliary labelling can be equivalently

expressed in a more local way, relying on the transition function
of A. Suppose that a node v has label a in T and auxiliary la-
bel

(
(X ,p),Y , (Z ,q)

)
, and its children v1,v2, . . . ,vn have labels



a1,a2, . . . ,an in T and auxiliary labels
(
(Xi ,pi ),Yi , (Zi ,qi )

)
for

i ∈ {1, 2, . . . ,n}. Then,

Y =
n⋃
i=1

Xi ∪ Yi ∪ Zi

and for all i ∈ {1, 2, . . . ,n},

(Xi ,pi ) = δ (p′i ,ai ,Ξ, ∅) ,

(Zi ,qi ) = δ (q′i ,ai ,Ξ \ (Xi ∪ Yi ),X ∪ Z1 ∪ . . .Zi−1 ∪ Xi ∪ Yi ) ,

where
• p′1 = p and p′i = qi−1 for i ∈ {2, . . . ,n};
• q′i = pi if vi is a leaf and otherwise q′i is the exit state of the
last child of vi .

If v is the root of T , it must also hold that

(X ,p) = δ (qinit ,a,Ξ, ∅) and (Z ,q) = δ (q′,a,Ξ \ Y ,Ξ) ,

where q′ = p if v is a leaf and otherwise q′ is the exist state of
the last child of v (that is, q′ = qn ). The rephrased condition is
equivalent to the original one precisely because in a restricted
depth-register automaton we have the guarantee that Xi ∪Yi ⊆ Zi .

To show that the tree language recognized by A is regular it
suffices to observe that it can be recognized by a nondeterministic
tree automaton that guesses an auxiliary labelling of the input tree,
checks its correctness by verifying the rephrased condition, and
accepts if the second state in the auxiliary label of the root belongs
to the set F . □

We conjecture that restricted depth-register automata recognize
all regular stackless tree languages, but it is conceivable that they
do not. This is why we work with the unrestricted model and prove
(potentially) stronger inexpressibility results. We stress, however,
that all depth-register automata we construct are restricted. In
particular, the characterization in Theorem 3.1 is identical for the
restricted model, backing up the conjecture.

Regardless of the restriction, stackless tree languages retein the
usual closure properties or regular languages.

Lemma 2.4. The classes of registerless and stackless tree languages
are both closed under intersection, union, and complementation.

How far do stackless tree languages go beyond registerless? As
first examples, let us see how depth-register automata can deal with
sequences of siblings and the descendent relation.

Example 2.5. Consider a regular language L ⊆ Γ∗ and the set
HL of trees over Γ such that the sequence of labels read from the
children of the root forms a word in L. Depending on L, the tree
languageHLmay be registerless or not. For instance, for L = Γ∗aΓ∗,
HL is not registerless, because a finite automaton cannot determine
whether the current tag with label a belongs to a child of the root.
This can be shown easily by pumping, but it also follows from our
general characterization result, Theorem 3.2 (1), applied to the set
of trees that contain a branch labelled by a word from ΓaΓ∗. In
contrast, HL is stackless for all regular L. Indeed, after reading the
first tag (which must be an opening tag in a valid encoding), the
automaton stores the current depth (which is 1) in its only register,
and then simulates the finite automaton recognizing L over all
closing tags for which the current depth is equal to the value stored

in the register. This is correct, because in each valid encoding all
closing tags with current depth 1 belong to the children of the root.

Example 2.6. Consider the set of trees over the alphabet {a,b, c}
where the first a-labelled node (in the document order) has a b-
labelled descendent. To recognize this language, the automaton
should read the input word until it sees a, load the current depth to
its only register, and accept iff it sees the letter b before the current
depth drops strictly below the stored value (this will indicate, that
the corresponding closing tag has been read). Now, consider the set
of trees over {a,b, c} where some a-labelled node has a b-labelled
descendant. It suffices to test this property for minimal a-labelled
nodes (that is, those without a-labelled ancestors): if a node has a
b-labelled descendent, so do all its ancestors. Hence, to recognize
the described language it suffices to run the automaton described
above in a loop, returning to the initial state whenever the current
depth drops strictly below the stored value, until it accepts.

The main weakness of depth-register automata when applied to
processing trees is their limited ability to handle the child relation,
as revealed by the following example.

Example 2.7. Consider the language of trees over the alphabet
{a,b, c} where some a-labelled node has a b-labelled child. It might
appear that this language is stackless because it is easy to identify
an a-labelled node and a single register is sufficient to identify
the tags of its children in the encoding. Indeed, this idea can be
used to recognize the language of trees where some minimal a-
labelled node has a b-labelled child, just like we did for b-labelled
descendents in Example 2.6. Without the minimality assumption,
however, the subautomaton searching for b-labelled children needs
to be relaunched whenever the opening tag a is read, which may
well happen before the previous instance of the subautomaton
terminates. Each launch requires a new register to store the return
point. Because the input tree may contain arbitrarily long chains of
a-labelled nodes, this does not seem feasible with any fixed number
of registers. That it is indeed infeasible follows from the general
characterization result (Theorem 3.1) we establish in Section 3.

The method from Example 2.6 can be extended to test the exis-
tence of multiple nodes with specified labels and descendent rela-
tionships between them. By a descendent pattern we shall under-
stand a finite tree over Γ. A tree T contains a descendent pattern π
if there exists a matching function h that maps nodes of π to nodes
of T such that for all nodes u,v of π :

• the label of u coincides with the label of h(u);
• if v is a child of u, then h(v) is a descendent of h(u).

Proposition 2.8. For each descendent pattern π , the set of trees
containing π is stackless.

Proof. By a slight abuse of the definition of depth-register au-
tomata, we shall allow automata that can stop; that is, in some
configurations there may be no transition to take. We prove by
induction on the height of π that there is an automaton Aπ that
recognizes trees that contain π and stops upon reading the closing
tag corresponding to the first opening tag of its input.

If π consists of a single node, the automaton loads into its only
register the current depth before reading any tags, scans the input



b

b

a
b

c

c

(a) Pattern π .

b

b

b

...

b

b

a?

a?

a?

c?

c?

c?

c?

c?

(b) A ‘schema’.

...

b

a?
b

a? c
b

a
b

a? c
b

a? ...

(c) Match.

...

b

a?
b

a? c
b

b

a? c
b

a? ...

(d) No match.

Figure 1: Strict descendent patterns are not stackless.
.

until the current depth again becomes equal to the stored value.
Then it moves to a state without outgoing transitions that is accept-
ing or not, depending on whether the automaton has detected a tag
with the label from the root of π or not.

Suppose that the root of π has some children. By the induc-
tive hypothesis, there is an automaton Aπ ′ for each descendent
pattern π ′ corresponding to an immediate subtree of π . Let A be
the synchronous product of all these automata, recognizing the
intersection of the languages recognized by its components. Like
in Example 2.6, we can assume that the root of π is matched to a
minimal element with the desired label. The automaton Aπ loads
the current depth before reading any tags into its first register, and
then processes the input looking for the first opening tag with the
same label as the root of π . If Aπ does not see one before the cur-
rent depth is again equal to the stored value, it rejects. If it does find
one, it calls the automaton A using a set of registers excluding the
first one and waits until A stops. If A accepts, Aπ waits until the
current depth becomes equal to the value stored in the first register,
and accepts. If A rejects, Aπ moves on to the next opening tag
with the same label as the root of π . □

While the class of stackless tree languages is closed under comple-
ment by Lemma 2.4, it does not follow that we can handle negative
information just as well as positive. We say that a tree T strictly
contains a descendent pattern π if T contains π and the matching
function h additionally satisfies the condition

• if h(v) is a descendent of h(u), then v is a descendent of u.
The following example shows that Proposition 2.8 does not extend
to this stronger notion.

Example 2.9. Consider the pattern π shown in Fig. 1a. As is cus-
tomary, we use double edges to indicate descendent relationships
between nodes. Suppose that the languages of trees strictly contain-
ing π is recognized by a depth-register automaton B withm states
and ℓ registers. We shall analyze the behaviour of the automaton B

over trees conforming to the ‘schema’ shown in Fig. 1b, which for
each n > 2 defines the set Kn of trees that have the main branch
labelled by the word bn , and additionally each b-labelled node may
have a c-labelled child to the right of the main branch, and each

internal b-labelled node may have an a-labelled child to the left of
the main branch. For a tree T like this, letwT be the prefix of ⟨T ⟩
ending at the opening tag of the deepest b-labelled node. Let cinit
be the initial configuration of B.

For T ∈ Kn , we have that cinit ·wT = (q,n,η) for some state q
and some η : Ξ → {0, 1, . . . ,n}. That is,m · (n + 1)ℓ configurations
are possible. But there are 2n−2 ways to choose which b-labelled
non-leaf nodes have an a-labelled child, so

��{wT
�� T ∈ Kn

}�� = 2n−2.
Consequently, for sufficiently large n, there exist two different
words u and v in {wT

�� T ∈ Kn
}
, such that cinit · u = cinit · v .

Because u , v , there exists i ∈ {2, 3, . . . ,n − 1} such that for all
S,T ∈ Kn , if u = wS and v = wT , then the ith b-labelled node has
an a-labelled child in S iff it does not have one in T . Let us choose
S and T such that in both of them, the (i − 1)st and the (i + 1)st b-
labelled node has a c-labelled child and there are no other c-labelled
nodes, as shown in Figs. 1c and 1d. Clearly, the tree in Fig. 1c strictly
contains π . It is not difficult to verify that the one in Fig. 1c does not.
However, from the definition of S and T it follows that ⟨S⟩ = uw ′

and ⟨T ⟩ = vw ′ for some w ′, and because cinit · uw ′ = cinit · vw
′,

we conclude that S and T are indistinguishable to B.

Finally, let us point out that the ability to deal with sequences of
siblings, demonstrated in Example 2.5, is limited to nodes that are
close to the root. The following example shows why.

Example 2.10. Even a finite automaton can check if the streamed
tree contains two consecutive siblings with labels a and b: it suffices
to check if the read encoding contains the closing tag ā followed im-
mediately by the opening tag b. Consider, however, the set of trees
that contain three consecutive siblings with labels a, b, c . Arguing
like in Example 2.9 one can show that this language is not stackless.
Dropping the assumption that the siblings are consecutive, or even
that they are ordered as written, does not affect the argument.

Thus, depth-register automata are able to express involved global
properties of trees (Proposition 2.8), far out of reach of finite au-
tomata, yet they cannot handle many properties that appear local
but lose their locality when seen as properties of the encodings
(Examples 2.7 and 2.10). Characterizing stackless tree languages
seems to be challenging, but in Section 3 we solve the special case
of tree languages defined in terms of properties of branches.

2.3 Querying streamed trees
So far we used automata as acceptors, defining languages of trees.
However, we can also use them as node selectors, defining queries
over trees. By a query Q of arity k we mean a function mapping
each treeT to a setQ(T ) of k-tuples of nodes ofT . In the streaming
setting, higher-arity queries are problematic because a streaming
algorithm using memory of size f (n) over inputs of length n cannot
return asymptotically more than f (n) · n answers. This means that
handling even very simple queries of arity larger than one in sub-
linear memory is impossible without compromising the semantics
by applying restrictive selection strategies [9, 30] or heuristics like
load shedding [12]. Moreover, popular query languages for tree-
structured data, like XPath or JSONPath, focus on unary queries.
We shall do the same.

Implementations of unary queries over streamed trees come in
two distinct flavours, corresponding to the two natural moments



when one may wish the selected nodes to be returned: at the open-
ing tag or at the closing tag. Accordingly, we say that an automaton
A pre-selects (resp. post-selects) a node v of a tree T if A is in an
accepting state directly after reading the opening (resp. closing) tag
of v . Both approaches have their merits. Post-selection gives more
expressive power, allowing to explore the subtree rooted at the
given node. Pre-selection gives more flexibility in the subsequent
stages of processing, allowing to return the whole subtree rooted at
the selected node without additional memory cost. Here we focus
on pre-selection, and leave post-selection for the future. Accord-
ingly, we say that an automaton A realizes a unary query Q if for
every tree T , A pre-selects exactly those nodes of T that belong to
Q(T ). We call a unary query stackless (resp. registerless) if it can be
realized by a depth-register automaton (resp. finite automaton).

Practical declarative query formalisms for tree-structured data,
like XPath or JSONPath, treat the context of a node in a symmet-
ric fashion, even if siblings are considered ordered. The streaming
setup, on the other hand, is inherently asymmetric: siblings to the
left of the node to be selected can be accessed freely, but there is
no way to access those on the right. While there exist meaningful
queries that could exploit access to the siblings on the left, in this
work we abstract away from this aspect and focus on queries in-
variant under sibling order. A query Q is invariant under sibling
order if for each bijection f between the nodes of a tree T and the
nodes of a tree T ′ that preserves node labels and the child relation,
it holds that

Q(T ′) =
{
f (u)

�� u ∈ Q(T )
}
.

Unary queries invariant under sibling order form a rich class and
capture an important segment of user queries, including all vertical
XPath queries, built up from vertical axes (child, descendent, parent,
ancestor), label tests, and filters. We aim at understanding which
of them can be implemented over streamed trees using finite or
depth-register automata.

The scope of this task can be narrowed down quickly, as all
stackless queries invariant under sibling order fall within a well-
known class of queries. With each language L ⊆ Γ∗, we associate a
unary queryQL that selects all nodes v such that the path from the
root to v is labelled by a word from L. We call queries of this form
path queries. A regular path query (RPQ) is a path query QL such
that the underlying language L is regular. RPQs include all XPath
queries built up from downward axes (child, descendent) and label
tests, but not those using upward axes (parent, ancestor) or filters.

Proposition 2.11. The class of stackless queries invariant under
sibling order is contained in the class of RPQs.

Proof. Consider a query Q invariant under sibling order, real-
ized by a depth-register automaton A. It follows immediately that
Q is fully described by the answers it gives on the leftmost branch
of every tree. Because Q can be realized by pre-selecting nodes, it
must be also fully described by the answers it gives on every single-
branch tree. Consider the run of A on the prefix of the encoding of
a single-branch tree, consisting of all opening tags. In such a run,
the current depth is always strictly greater than all values stored in
the registers, so the registers can be eliminated from the automaton.
Over single-branch trees, the resulting finite automaton over Γ ∪ Γ̄
pre-selects the same nodes as A. By restricting the alphabet to Γ,

we obtain a finite automaton recognizing a language L such that
Q = QL. Hence, Q is an RPQ. □

By contraposition, if a unary query invariant under sibling order
is not an RPQ, then it is not stackless either. In particular, vertical
XPath queries cannot be realized by (pre-selecting) depth-register
automata if they nontrivially use upward axes or filters. In general,
understanding which unary queries invariant under sibling order
are stackless or registerless amounts to characterizing stackless and
registerless queries among RPQs, which will be the focus of the
remainder of this paper.

Example 2.12. Consider the following simple RPQs, expressed in
XPath, JSONPath, and as regular expressions:

XPath /a//b /a/b //a//b //a/b

JSONPath $.a..b $.a.b $..a..b $..a.b

RegEx a Γ∗b a b Γ∗a Γ∗b Γ∗a b

Registerless? ✓ ✗ ✗ ✗

Stackless? ✓ ✓ ✓ ✗

The first one is registerless: the realizing finite automaton should
check that the first opening tag has label a and then it should accept
at each opening tag with label b. On the other hand, the last RPQ
cannot be realized even by a depth-register automaton, because
letting this automaton loop in each accepting state we would obtain
an automaton recognizing the language from Example 2.7. What
about the remaining two RPQs? It will follow from our general char-
acterization results (Theorems 3.1 and 3.2) that they are stackless,
but not registerless.

From the perspective taken in this paper, RPQs and depth-register
automata play asymmetric roles: RPQs represent user queries, and
depth-register automata represent their implementations in the
streaming setting. Accordingly, the fundamental question is which
user queries can be implemented; that is, which RPQs are stackless.
Nevertheless, one can also ask which stackless queries are RPQs.
This appears challenging in general, but if the query is given as a
restricted depth-register automaton, it is a pleasant exercise in au-
tomata theory, reminiscent of the characterization of tree languages
recognizable by deterministic top-down automata [16].

Proposition 2.13. It is decidable if the query realized by a given
restricted depth-register automaton is an RPQ.

Proof. Because path queries are invariant under sibling order,
by Proposition 2.11, a stackless query is an RPQ iff it is a path query.
We phrase the argument for the latter property.

A marked tree over Γ is a tree over Γ × {0, 1}; marked nodes in
such a tree are those with labels from Γ × {1}. Let us fix a unary
query Q . For a tree T over Γ we let TQ be the marked tree over Γ
obtained fromT by marking nodes fromQ(T ). LetMQ be the set of
all such TQ ’s with T ranging over all trees over Γ. The query Q is a
path query if and only if there exists a language L over Γ × {0, 1}
such that MQ = ML , where ML is the set of marked trees over Γ
where each direct path from the root to a marked node is labelled
with a word from L. Moreover, if Q is a path query, then we can
take for L the language LQ obtained by restrictingMQ to trees that
consist of a single branch with marked leaf. Hence, Q is a path
query if and only ifMQ = MLQ .



It is easy to turn this characterization into an algorithm. Suppose
that we are given a restricted depth-register automaton A and let
Q be the query it realizes. Based on (the proof of) Proposition 2.3,
it is easy to construct a tree automaton B recognizing MQ . Next,
we intersect B with a tree automaton recognizing single-branch
trees with marked leaf, interpret the result as a word automaton,
and thus obtain an automaton C that recognizes the language LQ .
Finally, we easily turn C into a tree automatonD recognizingMLQ .
Thus, testing if the query realized by A is a path query reduces to
testing if the tree automata B and D are equivalent, which is well
known to be decidable. □

Unlike in graph databases, where RPQs are viewed as binary
queries selecting suitably connected pairs of nodes [3], in our set-
ting RPQs are treated primarily as unary queries selecting nodes
suitably connected to the root. But we can also treat them as boolean
queries, defining sets of trees that contain a node—or a leaf—suitably
connected to the root. The leaf variant will be instrumental in the
characterization results of Section 3. We write EL for the set of trees
that contain a branch labelled by a word from L, and AL for the
set of trees with all branches labelled by words from L. Note that
(AL)c = E(Lc). Languages of the form AL can express useful and
nontrivial schema restrictions, as they are able to specify which
labels are allowed in the children of a node, depending on regular
properties of the path from the root. This will allow us to shed more
light on the framework of Segoufin and Vianu [25] in Section 4.1.

3 CHARACTERIZATION THEOREMS
The characterization theorems rely on four syntactic classes of reg-
ular languages: almost-reversible, hierarchically almost-reversible,
E-flat, and A-flat (Definitions 3.4, 3.6 and 3.9). For now they can
be treated as blackboxes, but let us highlight that their definitions
are based on simple PTIME-testable properties of the minimal au-
tomaton, which makes the characterizations effective. Indeed, also
the suitable automata for QL, AL, and EL can be computed in time
polynomial in the size of the minimal automaton of L.

For each theorem we provide a proof outline explaining how
to infer the theorem from the expressibility and inexpressibility
results we establish in the remainder of this section.

Theorem 3.1. For each regular language L, the following condi-
tions are equivalent:

(1) QL is a stackless unary query;
(2) EL is a stackless tree language;
(3) AL is a stackless tree language;
(4) L is hierarchically almost-reversible.

Proof outline. (1) implies (2) because an automaton A realiz-
ing QL can be easily turned into an automaton A ′ recognizing EL.
A ′ behaves like A, but it additionally remembers the previously
read symbol; if the previous symbol was an opening tag, the state
is accepting in A, and the current letter is a closing tag, then A ′

moves to an all-accepting sink state. (2) implies (4) by Lemma 3.16,
and (4) implies (1) by Lemma 3.8. This shows that (1), (2), and (4)
are equivalent. It follows that (2) and (3) are equivalent, because
(AL)c = E(Lc), the class of stackless tree languages is closed under
complementation, and, by Lemma 3.7, so is the class of hierarchi-
cally almost-reversible languages. □

0 1b
a

a
b

Figure 2: A reversible finite automaton.

In the registerless case the picture is more complicated, reflecting
the inherent duality of tree languages of the form AL and EL.

Theorem 3.2. Let L be a regular language.
(1) EL is a registerless tree language iff L is E-flat.
(2) AL is a registerless tree language iff L is A-flat.
(3) The following conditions are equivalent:
(a) QL is a registerless unary query;
(b) EL and AL are registerless tree languages;
(c) L is E-flat and A-flat;
(d) L is almost-reversible.

Proof outline. (1) follows from Lemmas 3.11 and 3.12. (2) fol-
lows from (1) because: (AL)c = E(Lc), the class of registerless tree
languages is closed under complementation, and by Lemma 3.10, L
is A-flat iff Lc is E-flat. For (3), we argue like in Theorem 3.1 that if
QL is registerless, so is EL. Similarly, if QL is registerless, so is AL;
the automatonA ′ is constructed dually: whenever it reads a closing
tag immediately after an opening tag while being in a rejecting state
of A, it moves to the all-rejecting sink state ⊥. Hence, (3a) implies
(3b). (3b) is equivalent to (3c) by (1) and (2). (3c) is equivalent to
(3d) by Lemma 3.10. (3d) implies (3a) by Lemma 3.5. □

We remark that Theorem 3.2 is fully compatible with the frame-
work introduced by Segoufin and Vianu [25]; we discuss the con-
nection in detail in Section 4.1.

3.1 Almost-reversibility
How does one go about evaluating an RPQ with a finite automaton
reading the markup encoding of a tree? Over the leftmost branch
this is easy: as long as only opening tags are read, we simulate the
automaton underlying the RPQ over the labels in the tags and accept
whenever the simulated automaton accepts. When the first closing
tag appears, the simulated automaton should revert to the state
before reading the corresponding opening tag. Our simulation could
store a bounded suffix of the run of the simulated automaton, and
use it when closing tags occur, but what shall we do when it is used
up? This is clearly not a sustainable strategy. The task does become
feasible if we assume that the previous state can be determined
based on the current state and the last read letter. Automata that
have this property are called reversible.

Recall that in a deterministic automaton letters induce functions
mapping states to states. A deterministic automaton is reversible
if every letter induces an injective function (Fig. 2). Equivalently,
one may assume that letters induce permutations of states, which
implies that the monoid generated by these functions—with compo-
sition as the inner product—is a group. Reversibility can be studied
as a separate notion upon extension to incomplete automata, where
letters induce partial functions over states [20].

The simulation above captures RPQs given by reversible au-
tomata, but we can do a bit more. Consider the automata depicted
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Figure 3: Languages of increasing hardness over Γ = {a,b, c}.

in Fig. 3. None of them is reversible because the function induced by
the letter a is not injective. However, as explained in Example 2.12,
the automaton in Fig. 3a defines a registerless RPQ, while those in
Figs. 3b to 3d do not. In order to capture registerless RPQs precisely,
we carefully relax the notion of reversibility.

Unlike reversibility itself, its relaxed variant is dependent on
which states are accepting. Let us fix a deterministic automaton
A. We say that states p and q are equivalent if for every word w ,
p ·w ∈ F iff q ·w ∈ F . In a minimal automaton, equivalent states are
equal. We say that states p and q are almost equivalent if for every
non-empty wordw , p ·w ∈ F iff q ·w ∈ F . That is, non-empty words
do not distinguish almost equivalent states; it follows immediately
that after reading any letter the states become indistinguishable.

Lemma 3.3. If states p and q are almost equivalent, then for each
letter a, the states p · a and q · a are equivalent.

We shall call a state p of automaton A internal if it is reachable
from the initial state via a nonempty word. Note that if all states are
reachable, only the initial state can be non-internal, and it happens
only iff it has no incoming transitions.

Definition 3.4 (Almost-reversibility). We say that states p and q
meet in state r if there exists a word u such that p · u = q · u = r ;
we say p and q meet if they meet in some state r . A deterministic
automaton is almost-reversible if every two internal states that meet
are almost equivalent. We call a regular language almost-reversible
if its minimal automaton is almost-reversible.

As intended, the automaton in Fig. 3a is almost-reversible, while
those in Figs. 3b to 3d are not.

Lemma 3.5. If L is an almost-reversible language, then QL is a
registerless query.

Proof. Let A be the minimal automaton of L. The simulating
automaton B will use the same states as A together with an addi-
tional rejecting sink state⊥; the initial state and the set of accepting
states are also like inA. When reading opening tags, B follows the
transition relation of A. Upon reading a closing tag ā in a state p,
B moves to some internal p′ in A such that p′ · a is almost equiv-
alent to p. To keep B deterministic, we take the minimal such p′

according to an arbitrarily chosen order on the states of A. If such
a state p′ does not exists, B moves to ⊥.

Consider an input tree T . For each prefix w of ⟨T ⟩, let ŵ be
the word obtained from w by successively erasing all two-letter
subwords of the form aā for a ∈ Γ. Ifw ends with the opening tag
of a node x in T , then ŵ is the sequence of labels on the shortest
path from the root of T to x . If w ends with the closing tag of a
node x in T , then ŵ is the sequence of labels on the shortest path
from the root of T to the parent of x (if x is the root of T , then the
path is empty). We claim that for every proper nonempty prefixw
of ⟨T ⟩, the state pw of B after readingw is a an internal state of A
that is almost equivalent to the state qŵ of A after reading ŵ , and
if the last letter of w is an opening tag, then pw = qŵ . The claim
immediately implies that B realizes QL, because the first and the
last state of B in the run on ⟨T ⟩ does not matter.

We prove the claim by induction on |w |. The automatonB begins
the computation in the initial state of A. The first letter of ⟨T ⟩ is
some opening tag a. Because â = a, we have pa = qâ and pa is
clearly internal. Suppose now that the claim holds for w . If the
next letter afterw is an opening tag c , applying Lemma 3.3 to the
almost equivalent states pw and qŵ of A, we get pwc = pw · c =
qŵ · c = qŵc , and we are done because qŵ · c is clearly internal.
Suppose that the next letter read by B is a closing tag c̄ . We need
to prove that there exists an internal state p′ in A such that p′ · c is
almost equivalent to pw , and that every such p′ is almost equivalent
to qŵc̄ . Consider p

′ = qŵc̄ . Because wc̄ is a proper prefix of ⟨T ⟩,
the word ŵc̄ is nonempty; hence, qŵc̄ is a internal state of A. We
also have qŵc̄ · c = qŵ , and we have assumed that pw and qŵ
are almost equivalent; hence, qŵc̄ · c is almost equivalent to pw .
So, indeed, qŵc̄ is a correct choice for p′. Let us now take any
internal p′ with p′ · c almost equivalent to pw , and prove that p′
is almost equivalent to qŵc̄ . As pw and qŵ are almost equivalent
by the induction hypothesis, it follows that so are p′ · c and qŵ . By
Lemma 3.3, p′ · c · b = qŵ · b = qŵc̄ · c · b for each b ∈ Γ. Hence,
p′ and qŵc̄ meet. We have already argued that qŵc̄ is internal, and
p′ is internal by assumption. Because A is almost-reversible, we
conclude that p′ is almost equivalent to qŵc̄ . □

3.2 Hierarchical almost-reversibility
We have already developed intuitions on evaluating RPQs over
markup encodings using finite automata. Can we do more using
the depth information and the (limited) ability to process it offered
by the registers? Using one register and an additional component in
the state, we can store the configuration of the simulated automaton
in one node on the path from the root to the current node: we
store the depth of this node in the register and the state of the
simulated automaton in the additional component of the state of
the simulating automaton. When the simulation climbs up to this
depth again, we know to which state the simulated automaton
should be reverted, regardless of the reversibility assumptions.

Using this feature we can simulate automata whose strongly
connected components (SCCs) are singletons (Fig. 3b). Recall that an
SCC is a maximal subsetX of the state-space such that every state in
X is reachable from every other state inX . If each SCC is a singleton,
then a run may loop in some states it visits, but it never revisits a
state it has left. Hence, in each run there is a bounded number of



state changes. The simulating automaton can then represent the
whole run of the simulated automaton over the path from the root
to the current node by means of the list of state changes and depths
at which these changes occurred. Automata with only singleton
SCCs capture exactly the class of R-trivial languages, named after
one of Green’s relations from algebraic formal language theory
[21]; the intensively studied piecewise testable languages [19] form
a prominent subclass of R-trivial languages.

As we shall see, the potential of register automata is exhausted
by the combination of the above simulation method with the full
power of finite automata to simulate a run inside a single SCC. The
class of automata that can be simulated this way is captured by the
following definition.

Definition 3.6 (Hierarchical almost-reversibility). A deterministic
automaton is hierarchically almost-reversible, abbreviated as HAR,
if every two states from the same SCC that meet inside this SCC
are almost equivalent. A regular language is HAR if its minimal
automaton is HAR.

By design, HAR languages include all almost-reversible lan-
guages (Fig. 3a), and all R-trivial languages (Fig. 3b), but also the
language in Fig. 3c which is neither almost-reversible nor R-trivial.
The language in Fig. 3d, is not HAR.

As Definition 3.6 is invariant under the complementation of the
automaton, we obtain the following.

Lemma 3.7. The complement of a HAR language is HAR.

Let us see that HAR languages can indeed be handled by depth-
register automata.

Lemma 3.8. If L is a HAR language, then QL is a stackless query.

Proof. Let L be a HAR language and A its minimal automaton.
Like before, we construct a depth-register automaton B that evalu-
atesQL by maintaining a simulation of the run ofA on the word ŵ
labelling the path π from the root to the current node. It applies the
method used for R-trivial languages to keep track of the changes
of SCCs of A during the simulated run, and an adaptation of the
method for almost-reversible languages to deal with the segments
of the simulated run within a single SCC. After processing a prefix
w of the encoding of the input tree, for each SCC X of A visited
during the run on ŵ , except the current one, the automatonB stores

• the depth of the deepest node on the path π whose label was
read in a state from X during the run on ŵ ; and

• some state from X that meets in X with the last state from
X visited by A in the run on ŵ .

Additionally, if q is the current state of A after processing ŵ and Y
is the SCC ofA that contains q, the automaton B stores some state
p ∈ Y that meets with q in Y , and p = q after reading each opening
tag. Initially, p is the initial state i of A, and nothing else is stored.

Suppose that B reads an opening tag a and the current depth
is d . Because A is HAR, the states p and q mentioned above are
almost equivalent. AsA is minimal, it follows from Lemma 3.3 that
p ·a = q ·a. Consequently, p ·a is the next state ofA. If p ·a ∈ Y , we
just replace p with p · a and proceed to the next tag. If p · a belongs
to some SCC Z , Y , we also add Y to the list of remembered SCCs,
with depth d (loaded to some unused register) and state p, and
continue with Z as the current SCC.

Suppose now that B reads a closing tag ā and the current depth
d is greater than or equal to the maximal recorded depth d ′. This
indicates that the previous state of A also belongs to Y . We should
now revert A to some state q′ ∈ Y such that q′ · a = q, but we do
not know which one. Even worse, we do not have access to q, but
only to some state p ∈ Y that meets with q in Y . Nevertheless, we
can maintain the invariant by picking any state p′ ∈ Y such that
p′ ·a ∈ Y is almost equivalent top. Note first that such statesp′ exist
because q′ is one of them: q′ · a = q and from the previous case we
know that q and p are almost equivalent. To keep B deterministic
we pick the minimal such p′ according to some arbitrarily fixed
order on the states ofA. To prove that every p′ is suitable it suffices
to show that p′ meets with q′ in Y . We know that p · u = q · u ∈ Y
for some word u. Because p′ · a is almost equivalent to p and A is
minimal, we get p′ · a ·u = p ·u = q ·u = q′ · a ·u, and we are done.
Hence, B can replace p with p′ and proceed to the next tag.

Finally, suppose B reads a closing tag ā and the current depth is
strictly smaller than the greatest recorded depth d ′. This indicates
that the previous state of A belongs to the SCC X , Y , associated
with depth d ′. The automaton A should be reverted to the last
state q′ from X visited during the run. The simulation does not
have access to q′, but it has the state p′ recorded for X , and we
know that p′ meets with q′ in X . This is sufficient to maintain the
invariant: the automaton B simply replaces p with p′, removes X
from the list of remembered SCCs marking the register storing the
associated depth d ′ as unused, and proceeds to the next tag with X
as the current SCC. □

3.3 Flatness
Not all finite languages are almost-reversible, as witnessed by the
one in Fig. 3b. Nevertheless, if L is finite, then AL is registerless.
Indeed, a finite automaton can simply simulate the stack up to the
depth bounded by the length of the longest word in L. If an opening
tag is read when the stack is at its maximum depth, the automaton
moves to an all-rejecting sink state. Symmetrically, if L is co-finite
(that is, Lc is finite), then EL is registerless. This motivates the
following dual notions.

Definition 3.9 (E-flatness and A-flatness). We call a state q accep-
tive (resp. rejective) if q ·w is accepting (resp. rejecting) for some
w ∈ Γ∗. A deterministic automaton is E-flat (resp. A-flat) if for
every internal state p and every rejective (resp. acceptive) state q, if
p meets with q in q, then p is almost equivalent to q. A E-flat (resp.
A-flat) language is a regular language whose minimal automaton
is E-flat (resp. A-flat).

Checking that all finite languages (including the one in Fig. 3b)
are A-flat, and all co-finite ones are E-flat is an easy exercise. The
following lemma, connecting flatness to almost-reversibility is not
hard either.

Lemma 3.10. Let L ⊆ Γ∗ be a regular language.
(1) L is A-flat iff Lc is E-flat.
(2) L almost-reversible iff it is both A-flat and E-flat.

Proof. LetA be theminimal automaton ofL. ThenAc, obtained
from A by swapping accepting and rejecting states, is the minimal
automaton of Lc. A state q is acceptive in A iff it is rejective in Ac.
It follows that A is A-flat iff Ac is E-flat.



For the second part, observe that states p and q in Definition 3.9
are internal, so every almost-reversible automaton is A-flat and
E-flat. For the converse, consider a minimal automaton A that is
A-flat and E-flat. We begin with an auxiliary claim.

We call an SCC X a sink if for each q ∈ X and each u ∈ Γ∗,
q · u ∈ X . We claim that if a sink SCC X is reachable from an
internal state p, then X contains a state q that is almost equivalent
to p. Indeed, suppose that p ·w ∈ X . Because X is a sink, p ·wn ∈ X
for all n > 0. Consequently, there exist n,k > 0 such that p ·wn =

p ·wn ·wk . Moving n positions backwards in the cyclic list of states
p ·wn ,p ·wn+1, . . . ,p ·wn+k−1, starting from p ·wn , we find a state
q = p ·wn+k−n mod k ∈ X that meets with p. Because X is a sink,
p and q can only meet in some r ∈ X . But then p and q also meet
in q. Because q is either rejective or acceptive, and A is both E-flat
and A-flat, it follows that p and q are almost equivalent.

To see that A is almost-reversible, take two internal states p1
and p2 that meet. Then, p1 and p2 meet in some sink SCC X . Conse-
quently, there exists a non-empty wordw and state r ∈ X such that
p1 ·w = p2 ·w = r . By the auxiliary claim,X contains statesq1 andq2
that are almost equivalent to p1 and p2, respectively. By Lemma 3.3
and the minimality ofA, we get q1 ·w = p1 ·w = r = p2 ·w = q2 ·w ;
that is, the states q1,q2 ∈ X meet in X . Consequently, q1 meets
with q2 in q2, and because q1 is obviously internal, it follows by
E-flatness or A-flatness that q1 and q2 are almost equivalent. It
follows that p1 and p2 are almost equivalent, too. □

More effort is needed to show that E-flatness of L is sufficient
to simulate its minimal automaton faithfully enough to support
recognizing EL.

Lemma 3.11. If L is an E-flat language, then EL is a registerless
tree language.

Proof. LetA be the minimal automaton of L. We first construct
an automaton B simulating A in a certain precise sense, and then
we turn B into an automaton recognizing EL.

Like in the simulation of almost-reversible automata, the high-
level idea is to maintain the state of A after processing ŵ up to
almost equivalence, except that if at any point the maintained state
becomes non-rejective, the simulating automaton moves to an all-
accepting sink state ⊤. But because the internal structure of E-flat
automata is much richer then that of almost-reversible ones, the
simulating automaton B needs more information.

After reading a prefix w of the encoding of the input tree, the
simulating automaton B will store a synopsis of the run of A on
ŵ . The goal of the synopsis is to list the transitions that moved
the run from one SCC of A to the next one. However, because the
automaton A is not reversible, taking the transitions backwards
when processing closing tags will introduce certain ambiguity into
the stored transitions. Namely, the origins of the transitions will
be split states, defined as pairs (p,q) such that q is rejective and
either p = q or p is internal and meets with q in q. E-flatness
guarantees that for each split state (p,q), the states p and q are
almost equivalent. By minimality, transitions from split states have
unambiguous targets.

A split transition is a tuple (p,q,a, r ) such that (p,q) is a split
state andp ·a = q ·a = r . A synopsis forA is an alternating sequence

of state triples and letters, written as

(r0,p0,q0)
a1
−−→ (r1,p1,q1)

a2
−−→ · · ·

aℓ
−−→ (rℓ ,pℓ ,qℓ) , (1)

such that r0 is the initial state ofA, each (pi ,qi ,ai+1, ri+1) is a split
transition in A, (pℓ ,qℓ) is a split state in A, and

• for each i < ℓ, the states qi and ri+1 are in different SCCs;
• for each i ≤ ℓ, qi belongs to the SCC of ri and either pi
belongs to the SCC of ri or i > 0 and pi = pi−1 = qi−1.

Observe that the states qi represent a chain of different SCCs, so
ℓ + 1 is bounded by the depth of the DAG of SCCs of A.

The empty word ε is compatible only with synopses (r0,p0,q0)
with r0 ∈ {p0,q0}. For u ∈ Γ∗ and a ∈ Γ, the word ua is compatible
with a synopsis σ of the form (1) if r0 ·ua ∈ {pℓ ,qℓ} and one of the
following holds:
(a) r0 ·u is in the SCC of r0 ·ua, andu is compatible with the synopsis

obtained from σ by replacing (rℓ ,pℓ ,qℓ) with (rℓ , r0 · u, r0 · u);
(b) ℓ > 0, r0 · u ∈ {pℓ−1,qℓ−1}, a = aℓ , and u is compatible

with the synopsis obtained from σ by removing the suffix
aℓ
−−→ (rℓ ,pℓ ,qℓ);

(c) ℓ > 0, r0 · ua = pℓ = pℓ−1 = qℓ−1, and ua is compatible
with the synopsis obtained from σ by removing the suffix

aℓ
−−→

(rℓ ,pℓ ,qℓ).
Note that if some u is compatible with σ and r0 · u = pℓ , then u is
compatible with every synopsis obtained from σ by replacing qℓ
with some other state; similarly with pℓ and qℓ swapped.

The states of B include all synopses for A and two sink states:
all-accepting ⊤ and all-rejecting ⊥. The simulation invariant is that
after processing a proper prefixw of the encoding of the input tree,
either B is in the state ⊤ and r0 · v̂ is non-rejective for some prefix
v ofw , or B is in a synopsis state σ and ŵ is compatible with σ and
if the last symbol ofw is an opening tag then pℓ = qℓ .

Let r0 be the initial state ofA. If r0 is rejective, the initial state of
B is (r0, r0, r0); otherwise, it is ⊤. The invariant clearly holds before
the first tag is processed. Let us see how to define transitions from
a synopsis state σ of the form (1) to propagate the invariant.

Suppose that an opening tag a is read and let s = pℓ · a = qℓ · a.
If s is not rejective, move to ⊤. If s is rejective and belongs to the
SCC of qℓ , continue with (rℓ ,pℓ ,qℓ) replaced with (rℓ , s, s) in σ . If
s is rejective but does not belong to the SCC of qℓ , continue with
a
−→ (s, s, s) appended to σ . The invariant propagates.

Suppose a closing tag ā is read. If pℓ is not internal, then pℓ =
qℓ = r0, which is only possible if σ = (r0, r0, r0). The automaton
B then moves to ⊥. Assume that the invariant holds before ā is
processed. Then, r0 ·w̄ = r0. Because r0 is not internal, it follows that
w is empty. Hence,wā = ā, which is not a prefix of the encoding of
any tree, and the state of B after processingwā does not matter. If
pℓ is internal, we consider four cases depending on whether pℓ and
qℓ are in the same SCC ofA, and whether the shape of the synopsis
allows backtracking via a transition that originates outside of the
SCC of qℓ . The analysis of these cases is provided in Appendix A.

This completes the construction ofB and the proof that every run
of B over the encoding of a tree T satisfies the invariant. Directly
from the invariant it follows that after reading a prefixwa of ⟨T ⟩
for a opening tag a, we have pℓ = qℓ = r0 · ŵa. To recognize EL
it suffices to enrich the synopsis states of B with the information
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Figure 4: Fooling trees in Lemma 3.12.

about the most recently read tag, and move directly to ⊤ whenever
a closing tag ā is read in a state storing the opening tag a and a
synopsis with pℓ = qℓ accepting in A. The resulting automaton
B′ enters ⊤ in the situation described above or if it encounters a
prefix v of the encoding such that r0 · v is not rejective. In the first
case, the automaton B′ has detected a leaf such that the branch
leading to it is labelled by a word from L. In the second case, B′

has detected a node such that each branch containing this node is
labelled by a word from L. Correctness of B′ follows. □

3.4 Inexpressibility
The results established in this section are proved by pumping simul-
taneously at the level of trees and their encodings, which resembles
pumping arguments for context free grammars. To simplify fac-
torizing encodings of trees, for a word w = a1a2 · · ·an ∈ Γ∗ we
let w̄ = ān · · · ā2 ā1 (note the reversed order). Consider the tree S
shown in Fig. 4a, keeping in mind that s, t ,u,x are words rather
than single letters: each node labelled with a wordw represents a
chain of |w | nodes whose labels form the wordw . Then,

⟨S⟩ = sun!xx̄ūn!tt̄un!xx̄ūn!s̄ .

We use S in the proof of the following lemma.

Lemma 3.12. For a regular language L, if EL is a registerless tree
language, then L is E-flat.

Proof. Suppose that the minimal automaton A of L ⊆ Γ∗ is
not E-flat. Let i be the initial state of A. Then, there exist words
s, t ,u ∈ Γ+, x ∈ Γ∗ and states p, q such that i · s = p, p ·u = q ·u = q,
q · x is rejecting, and p · t is accepting iff q · t is rejecting. It follows
that for each k > 0, sukx ∈ Lc, and st ∈ L iff suk t ∈ Lc.

Consider a deterministic finite automaton B over Γ ∪ Γ̄ with n
states. It is well known that r ·wn! = r ·w2·n! for each nonempty
wordw and each state r of B (this is also implied by Lemma 3.15
established later in this section).

Consider the trees S and S ′ shown in Fig. 4. By the discussion
above, exactly one of those trees belongs to EL. Consider the runs
of B on ⟨S⟩ and ⟨S ′⟩. Suppose that on ⟨S⟩ we have

q0
sun!
−−−−→ q1

xx̄ ·ūn! ·t t̄ ·un!xx̄ūn!
−−−−−−−−−−−−−−−−−→ q2

s̄
−→ q3 .

Then, by the choice of n, we have

q0
sun!
−−−−→ q1

un!
−−−→ q1

xx̄ ·ūn! ·t t̄ ·un!xx̄ūn!
−−−−−−−−−−−−−−−−−→ q2

ūn!
−−−→ q2

s̄
−→ q3 .

It follows that B accepts ⟨S⟩ iff it accepts ⟨S ′⟩. Consequently, B
does not recognize EL. □

The missing implication in Theorem 3.1 is also proved by pump-
ing, but requires considerably more effort because this time we
need to fool a depth-register automaton. Before we dive into it, we
prepare some simple tools helping to analyze runs of such automata.

Let c = (q,d,η) and c ′ = (q′,d ′,η′) be configurations of a depth-
register automaton B. We write c ∼ c ′ if q = q′. For i, j ∈ Z∞ =
Z ∪ {−∞,∞} with i ≤ j, we write c ≈i, j c

′ if c ∼ c ′ and for each
register ξ one of the following conditions holds:

• η′(ξ ) − d ′ = η(ξ ) − d ;
• η(ξ ) − d < i and η′(ξ ) − d ′ < i and η(ξ ) = η′(ξ );
• η(ξ ) − d > j and η′(ξ ) − d ′ > j.

We let ∥ε ∥ = 0 and inductively ∥wa∥ = ∥w ∥+1 and ∥wā∥ = ∥w ∥−1
for all a ∈ Γ andw ∈ (Γ ∪ Γ̄)∗. For nonemptyw we also define

⌊w⌋ = min
ε,u⪯w

∥u∥ , ⌈w⌉ = max
ε,u⪯w

∥u∥ ,

where u ⪯ w means that u is a prefix ofw . Note that for allw ,

⌊w⌋ ≤ ∥w ∥ ≤ ⌈w⌉ .

Lemma 3.13. Suppose that c1 ≈i, j c2. For every word w such that
i ≤ ⌊w⌋ ≤ ⌈w⌉ ≤ j, it holds that c1 ·w ≈i−∥w ∥, j−∥w ∥ c2 ·w .

Proof. It suffices to show the lemma for the case whenw is a
single letter; the general claim follows by straightforward induction
on the length ofw . Suppose thatw = a ∈ Γ. Then, ⌊w⌋ = ⌈w⌉ = 1.
Because c1 ≈i, j c2 and i ≤ 1 ≤ j , it follows that the same transition
over a will be taken from c1 and c2. After the transition is taken,
the absolute thresholds separating the three kinds of behaviour of
registers listed in the definition of ≈ do not change, but because
the current depth increases by one, the relative thresholds have to
be adjusted. This gives precisely c1 · a ≈i−1, j−1 c2 · a. Forw = ā the
argument is entirely analogous. □

A word x ∈ (Γ ∪ Γ̄)+ is descending if 1 = ⌊x⌋ ≤ ⌈x⌉ = ∥x ∥ and it
is ascending if −1 = ⌈x⌉ ≥ ⌊x⌋ = ∥x ∥. Descending words generalize
words from Γ+, and ascending words generalize words from Γ̄+.
For i, j ∈ Z∞ = Z ∪ {−∞,∞} we let

[i, j] = {k ∈ Z∞
�� i ≤ k ≤ j} , (i, j] = {k ∈ Z∞

�� i < k ≤ j} ,

and analogously for [i, j) and (i, j).

Lemma 3.14. Let ci = (qi ,di ,ηi ) with i ∈ [1; 4] be configurations
of a depth-register automaton B and let y, z ∈ (Γ∪ Γ̄)+ be descending

words such that c1
y
−→ c2

z
−→ c3

y
−→ c4. If img(η1) ⊆ (−∞;d1] and

c1 ∼ c3, then img(η4) ∩ (d1;d2] = ∅.

Proof. Becausey and z are descending, from img(η1) ⊆ (−∞;d1]
it follows that img(η3) ⊆ (−∞;d3]. Combining this with c1 ∼ c3, we
conclude that from configurations c1 and c3 the same sequence of
transitions will be taken while processing y. But this implies that if
a depth d ∈ (d1;d2] was stored in some register ξ while processing
y from c1, the corresponding depth d ′ ∈ (d3;d4] will be stored in
ξ while processing y from c3. That is, each depth stored when the
first copy of y was processed, is overwritten when the second copy
of y is processed. Because img(η1) ⊆ (−∞;d1], and both y and z
are descending, there is no other way of putting a value from the
segment (d1;d2] into registers. □



Lemma 3.15. Let B be a depth-register automaton with k states
and ℓ registers, and let n ≥ k · (ℓ + 1). For every configuration
c = (q,d,η) of the automaton B and every descending or ascending
word x ∈ (Γ ∪ Γ̄)+, if

img(η) ∩
[
d +

⌊
x3·n!

⌋
;d +

⌈
x3·n!

⌉]
= ∅ ,

then
(1) c · xn! ∼ c · xn! · xn!; and
(2) c · xn! · xn! ≈ ⌊xn! ⌋−∥xn! ∥, ⌈xn! ⌉−∥xn! ∥ c · x

n! · xn! · xn!.

Proof. It is well known that for every deterministic finite au-
tomaton A over Γ ∪ Γ̄ with at most n states, p ·wn! = p ·wn! ·wn!

for every state p and every wordw . To see why this is the case, let
us analyze the evolution of the state after processing successive
copies ofw . Already after processing at most n copies a state will
repeat, and becauseA is deterministic, we will start looping around
a cycle in A. After processing all n! copies we are still on the cycle,
of course. After processing any number of copies that is divisible
by the length of the cycle (measured in the number ofw-steps, not
single letters), we return to the same state. Because the length of
the cycle is at most n, and n! is divisible by every number between
1 and n, the claim follows.

The lemma is proved in a similar fashion. Suppose x is descend-
ing; the argument for ascending x is entirely analogous. Throughout
the run on xn! · xn! · xn! from c , the current depth stays within[

d +
⌊
x3·n!

⌋
;d +

⌈
x3·n!

⌉]
.

Consequently, comparisons with values from img(η) give the same
result at every step of this run. Moreover, because x is descending,
depths stored when processing the ith copy of x are all strictly
smaller than every depth that occurs when processing the jth copy
of x for all j > i . Consequently, the behaviour ofB when processing
the (i + 1)st copy of x is determined by the state and the set of
registers storing values not greater than the current depth—after
processing the ith copy of x . Because the set of registers can only
grow as the successive copies of x are processed, after processing
at most k · (ℓ + 1) copies of x a state-set pair will repeat. Because
the sets only grow, all state-pairs in between share the same set. It
follows that when processing subsequent copies of x , this sequence
of state-pairs will repeat in a cyclic fashion. Because the length of
this sequence is at most k · (ℓ + 1), it follows like before that the
state-set pairs corresponding to c ·xn! and c ·xn! ·xn! coincide. This
implies item (1) of the lemma. In configuration c · xn! · xn! some
registers store the same value from(

−∞;d +
⌈
xn!

⌉]
∪

(
d +

⌈
x3·n!

⌉
;∞

)
that they stored in configuration c · xn!, and into the remaining
registers some values from(

d +
⌈
xn!

⌉
;d +

⌈
x2·n!

⌉]
were loaded when the second copy of xn! was being processed.
Because the state-set pairs corresponding to c · xn! and c · xn! · xn!

coincide, processing the third copy of xn! will load into the same
registers the corresponding (that is, shifted by ∥xn!∥) values, and
no other load operations will be performed. This implies item (2)
of the lemma. □

Lemma 3.16. For each regular language L, if EL is a stackless tree
language, then L is HAR.

Proof. Again, we prove the contrapositive. Suppose L ⊆ Γ∗ is
not HAR. Then, its minimal automaton A admits states p, q, and r
in the same SCC Y such that for some word u and some non-empty
word t , we have r = p · u = q · u and p · t is accepting and q · t is
non-accepting (in particular, p , q). Then, there exist v andw such
that r · v = p and r · w = q. Finally, by minimality, all states are
reachable from the initial state, so there exists a word s such that
i · s = r . Because Y contains two different states, it is a non-trivial
SCC. Consequently, for each state p′ ∈ Y there exists a nonempty
looping word; that is, a word w ′ , ε such that p′ · w ′ = p′. By
appending suitable looping words if necessary, we can assume that
the words s , u, v , w are nonempty as well. Additionally, it will
be convenient to assume that |u | ≥ |t |; this can be ensured by
appending |t | copies of the appropriate looping word to u. The
resulting fragment of the automaton A is shown in the top left
corner of Fig. 5. We have

s(wu +vu)∗vt ⊆ L , s(wu +vu)∗wt ⊆ Lc .

Consider a depth-register automaton B over Γ ∪ Γ with k states
and ℓ registers. Let n = k · (ℓ + 1). We shall construct a fooling pair
of trees by unravelling the fooling gadget. The trees are shown in
Fig. 5. The original tree R, is build from: (i) a tree R0 consisting of a
single branch labelled by the word s , (ii) trees R1, . . . ,R2·n!+1 that
are isomorphic copies of the same tree, and (iii) a tree R2·n!+2 con-
sisting of a single branch labelled by the wordwt . Each branch of R
is labelled by a word from s(wu +vu)∗wt ⊆ Lc, which means that
R < EL. The pumped tree R′ is obtained by inserting an additional
segment labelled by (uv)n! in Rn!+1, just before the branching; we
will write R′

n!+1 for thus modified Rn!+1. The modification intro-
duces a branch labelled by a word from s(wu +vu)∗vt ⊆ L, which
means that R′ ∈ EL. We will show that the automaton B cannot
distinguish ⟨R⟩ from ⟨R′⟩, by analyzing the respective runs in par-
allel. The crucial moments of the analysis will be configurations
ci = (qi ,di ,ηi ), c ′i = (q′i ,d

′
i ,η

′
i ), and c ′′i = (q′′i ,d

′′
i ,η

′′
i ), depicted

(with the exception of c6) in brown in Fig. 5: configurations to the
left of edges are visited when going down and those to the right
when going up.

Let x be the prefix of ⟨R1⟩ ending at the opening tag of the
rightmost leaf of R1. Because |t | ≤ |u |, the rightmost branch of
R1 is at least as long as both other branches, which implies that
x is descending. Clearly, so is y = wu(vu)2·n! ∈ Γ+. Consider the
following initial segments of the runs of B over ⟨R⟩ and ⟨R′⟩:

c0
sxn!
−−−−→ c1

yn!

−−−→ c2
w
−−→ c3

(uv)2·n!

−−−−−−→ c4
u
−→ c5

yn!−1

−−−−→ c6
y
−→ c7 ,

c0
sxn!
−−−−→ c1

yn!

−−−→ c2
w
−−→ c3

(uv)3·n!

−−−−−−→ c ′4
u
−→ c ′5

yn!−1

−−−−→ c6
y
−→ c ′7 .

Let δ = |(uv)n! |. As all words over the arrows are descending, we
have

img(ηi ) ⊆ [−∞;di ] , img(η′j ) ⊆ [−∞;d ′j ] , d ′j = dj + δ (2)

for all i ∈ [0; 7] and j ∈ [4; 7]. Condition (2) allows us to apply
Lemma 3.15 to configuration c3 and the descending word uv , and
conclude that c4 ≈1−δ,0 c ′4. By (2), this can be strengthened to
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Figure 5: Non-HAR gadget and fooling trees in Lemma 3.16.

c4 ≈1−δ,∞ c ′4. By Lemma 3.13, we get

c7 ≈1−∥(uv)n!u ·yn! ∥,∞ c ′7 . (3)

Applying Lemma 3.15 to c2 and y, we get c2 ∼ c6. Hence, we can
apply Lemma 3.14 to configurations c2, c5, c6, c7 and descending
words y and yn!−1. Combining the result with (3), we get

img(η7) ∩
(
d2;d5

]
= ∅ , img(η′7) ∩

(
d2;d ′5

]
= ∅ . (4)

Consequently, from (3) we can also conclude

c7 ≈1−∥yn!+1 ∥,∞ c7 . (5)

Let y′ = wu(vu)3·n! and take x0 such that y2·n!+1 ·x0 = x . Consider

c0
sxn!
−−−−→ c1

yn! ·y ·yn!

−−−−−−−−→ c7
x0
−−→ c8

xn!−1
−−−−→ c9

x
−→ c10 ,

c0
sxn!
−−−−→ c1

yn! ·y′ ·yn!

−−−−−−−−→ c ′7
x0
−−→ c ′8

xn!−1
−−−−→ c ′9

x
−→ c ′10 .

Note that condition (2) holds for all i, j ∈ [8; 10]. From (5) via
Lemma 3.13 we get

c10 ≈1−∥yn!+1wuxn! ∥,∞ c ′10 . (6)

Applying Lemma 3.15 to configuration c0 · s and the descending
word x , we get c1 ∼ c9. Applying Lemma 3.14 to configurations
c1, c8, c9, c10 and the descending words x and xn!, and combining
the result with (6), we get

img(η10) ∩ (d1;d8] = ∅ , img(η′10) ∩ (d1;d ′8] = ∅ . (7)

Hence, we can strengthen (6) to

c10 ≈1−∥xn!+1 ∥,∞ c ′10 . (8)

Let x̄ = ūw̄ȳ2·n!+1; that is, xx̄ = ⟨R1⟩. Consider

c10
wt t̄w̄ ·x̄n! ·ūw̄ȳn! ·ū
−−−−−−−−−−−−−−−−−→ c11

(v̄ū)2·n!

−−−−−−→ c12
w̄ ·ȳn! ·x̄n! ·s̄
−−−−−−−−−−→ c13 ,

c ′10
wt t̄w̄ ·x̄n! ·ūw̄ȳn! ·ū
−−−−−−−−−−−−−−−−−→ c ′11

(v̄ū)2·n!

−−−−−−→ c ′12
(v̄ū)n!

−−−−−→ c ′′12
w̄ ·ȳn! ·x̄n! ·s̄
−−−−−−−−−−→ c ′′13 .

We have d ′i = di + δ for i ∈ [10; 12] and d ′′i = di for i ∈ [12; 13]. By
Lemma 3.13, we have c12 ≈1−∥w ∥,∞ c ′12. As from (7) it follows that
img(η12) ∩ (d1;d12) = img(η′12) ∩ (d1;d ′12) = ∅, we also have

c12 ≈0,∞ c ′12 . (9)

Applying Lemma 3.15 to configuration c ′11 and the ascending word
v̄ū, we get c ′12 ≈0,δ−1 c ′′12. In combination with (9) this implies
c12 ≈0,δ−1 c ′′12. Because d12 = d ′′12, it follows that c12 ≈−∞,δ−1 c ′′12.
By Lemma 3.13, this implies c13 ∼ c ′′13. □

4 DISCUSSION
4.1 Tree languages defined by DTDs
Our characterization results shed some light on the registerlessness
of DTDs, studied in [25] (called recognizability there). A DTD D
over Γ consists of an initial symbol a0 ∈ Γ and, for each a ∈ Γ, a
production of the form a → La where La is a regular language over
Γ (typically represented as a regular expression). It defines the set
of trees T over Γ that have a0 in the root and for each a-labelled
node v in T , the labels of v’s children read from left to right form a
word in La . A specialized DTD over Γ consists of a DTD D ′ over Γ′
and an alphabet projection π : Γ′ → Γ; the language it defines is
the projection of the language defined by D ′ to the alphabet Γ.
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Figure 6: Automata corresponding to the specialized DTD
a → (a + b + ã)∗, b → (a + b + ã)∗, ã → c∗, c → (a + b)∗ with
alphabet projection a 7→ a, ã 7→ a, b 7→ b, c 7→ c.

Languages of the form AL capture (resp. capture precisely) all
tree languages definable by DTDs (resp. specialized DTDs) using
only productions of the forms

a → (b1 + · · · + bn )
∗ , a → (b1 + · · · + bn )

+ .

This is a severely restricted, yet non-trivial and practically rele-
vant, special case of the setting considered in [25]. Let us refer to
such DTDs as path DTDs. A path DTD is almost an automaton
recognizing allowed paths: use (specialized) symbols as states, add
a transition from a to each bi over symbol bi (or its projection
π (bi ) in the case of specialized DTDs), and let a be accepting if the
production uses ∗, and non-accepting if it uses + (see Fig. 6a).

It can be shown that under restriction to path DTDs, the first
necessary condition for registerlessness proposed in [25] reduces to
the assumption that the corresponding automaton is HAR, and the
second one amounts to A-flatness. Segoufin and Vianu show that
the first necessary condition is also sufficient under the restriction
to fully-recursive DTDs, which correspond to automata that have
only two non-trivial SCCs: one contains the initial state, and the
other is an all-rejecting sink. For such automata, HAR is equivalent
to A-flat, which makes their result a special case of Theorem 3.2 (2)
(in the limited special case of path DTDs). Segoufin and Vianu
also conjecture, that the two necessary conditions together are
sufficient for all DTDs. Theorem 3.2 (2) confirms this conjecture
in the special case of path DTDs. Let us remark that A-flatness
works also for languages defined by specialized path DTDs, but
the corresponding automaton must be determinized and minimized
before the criterion is applied, as witnessed by the specialized DTD
in Fig. 6 which gives an A-flat non-deterministic automaton, which
is not A-flat any more after determinizing and minimizing.

4.2 A different encoding of trees
An alternative way to serialize tree-structured data, used for in-
stance in JSON, is the term encoding, in which the information
about the label is included only in opening tags. For instance, in-
stead of abaāaāb̄cc̄ā we would have a{b{a{}a{}}c{}}, where a{ ,
b{ , c{ are opening tags, and } is the universal closing tag. Stream-
ing processing under this encoding is harder, but analyzing it is
easier. An effective characterization of regular tree languages that
are registerless under the term encoding is given in [1].

Our treatment can be easily adapted to the term encoding by
adjusting the definition of when two statesmeet: we say that statesp
andq blindlymeet in state r if there exist wordsu1,u2 ∈ Γ∗ such that
|u1 | = |u2 | and p · u1 = q · u2 = r . By replacing ‘meet’ with ‘blindly
meet’ in Definitions 3.4, 3.6 and 3.9, we get the definitions of the
syntactic classes of blindly almost-reversible, blindly HAR, blindly
A-flat, and blindly E-flat word languages. Theorems 3.1 and 3.2
then hold for the term encoding with all syntactic classes of word
languages replaced by their blind analogues (see Appendix B). Based
on this, it can be checked by direct examination of the automata
in Fig. 3 that also under the term encoding, the first RPQ from
Example 2.12 is registerless, the following two are stackless but not
registerless, and the last one is not stackless. Nevertheless, ‘blind’
classes are much more restricted than their originals: all R-trivial
languages are blindly HAR, but the possibilities of backtracking
inside an SCC are very limited. For example, the minimal automaton
shown in Fig. 2 is reversible, but not blindly-HAR; this means that
the language (b∗a b∗a b∗)∗ this automaton recognizes is registerless
under the markup encoding, but not even stackless under the term
encoding. This is the cost of succinctness.

4.3 Outlook
In this workwe have proposed an intermediatemodel for processing
streamed trees, increasing the expressive power of finite automata
considerably while sparing us the maintenance of the stack. We
have effectively characterized unary RPQs that can be realized in
this model, and those that can be realized by finite automata. The
latter leads to a partial solution of the weak validation problem
posed by Segoufin and Vianu [25].

The weak validation problem remains the most intriguing the-
oretical challenge in the area. Other salient problems are to char-
acterize (effectively) stackless tree languages among regular ones
and, conversely, regular tree languages among stackless ones. The
former is more relevant for query and schema processing, but the
latter may provide some useful insights as well.

Solving these problems for all regular tree languages might be
very hard, but for more restricted, yet practically relevant, sub-
classes it might be easier. For instance, it would be very useful to be
able to decide if a given XPath expression is stackless or registerless
(both as a boolean query and as a unary query). Examples 2.7, 2.9
and 2.10 suggest that stackless XPath expressions would have to
use child, next-sibling, following-sibling, and negation extremely
cautiously, but this might be alleviated by including schema infor-
mation into the setting.

Applying our results on the term encoding to JSON would also
involve incorporating rudimentary schema information, as in JSON
siblings either have different labels, or have no labels at all.

Finally, a major question is how to vectorize. A first step would
be to uncover the local parallelism of pushdown and depth-register
automata, in the spirit of [15]. Closing the distance to actual applica-
tions will require replacing circuits with a more faithful abstraction
of the capabilities of CPUs.
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A PROOF OF LEMMA 3.11 CONTINUED
Recall that we are describing transitions of the finite automaton B

simulating an E-flat automaton A, and simultaneously checking
that the invariant is maintained. We have already explained what
happens when an opening tag is read, and we are now considering
the case of the closing tag.We have already dealt with the important
corner case of non-internal pℓ . We can thus assume that pℓ is
internal. As mentioned in the body of the paper, there are four
cases, depending on whether pℓ and qℓ are in the same SCC of
A, and whether we are allowed to take a backward transition that
leads outside of the component of qℓ or not.

Case A: pℓ and qℓ are in the same SCC X , and either rℓ <
{pℓ ,qℓ} or a , aℓ or pℓ−1 is not internal; that is, we can only take
(backward) transitions within X . Consider

P =
{
p ∈ X

�� p · a ∈ {pℓ ,qℓ}
}
.

Because X contains the internal state pℓ and the rejective state
qℓ , all states in X are internal and rejective. The same holds for
P ⊆ X . Pick any two p,q ∈ P . Because pℓ and qℓ meet inside X , so
do p and q. It follows that p and q meet in q. Hence, (p,q) is a split
state, and p and q are almost equivalent. In a minimal automaton
there can be at most two different almost equivalent states, so
|P | ≤ 2. If P = ∅, then B moves to ⊥. Otherwise, P = {p′,q′}
for some p′ and q′, and B continues, replacing (rℓ ,pℓ ,qℓ) with
(rℓ ,p

′,q′). Suppose that the invariant holds before ā is processed.
If it holds by (a), then r0 · ŵā ∈ P = {p′,q′} and ŵā is compatible
with the synopsis obtained from σ by replacing (rℓ ,pℓ ,qℓ) with
(rℓ , r0 · ŵā, r0 · ŵā). Suppose that the invariant holds by (b). This
implies that rℓ ∈ {pℓ ,qℓ} and a = aℓ , so it must be the case that pℓ
is not internal. Then qℓ is equal to pℓ , so not internal either. By (b),
r0 · ŵā ∈ {pℓ−1,qℓ−1}, so it is non-internal too. Consequently, ŵā
is the empty word, which is possible only if wā is the complete
encoding of the input tree. But then the invariant is not required
to hold. Finally, the invariant cannot hold by (c), because it would
imply that qℓ−1 and qℓ are in the same SCC, which is forbidden by
the definition of synopsis.

Case B: pℓ and qℓ are in the same SCC X , and also rℓ ∈ {pℓ ,qℓ},
a = aℓ , and pℓ−1 is internal; that is, we can also take (backward)
transitions that leave X . Note that this is possible only if ℓ > 0.
Consider again the set P ⊆ X introduced above. If P = ∅, then B

continues, removing the suffix
aℓ
−−→ (rℓ ,pℓ ,qℓ) from the synopsis. In

this case, only the condition (b) of the invariant might hold before
processing ā, so ŵā is compatible with the modified synopsis, and
the invariant propagates. Assume that P is nonempty. Let p′ ∈

{pℓ−1,qℓ−1} and q′ ∈ P . We know that p′ · a and q′ · a belong
to {pℓ ,qℓ}, and that pℓ and qℓ meet in X , so we also have that
p′ and q′ meet in X . Because q′ ∈ P ⊆ X , it follows that p′ and
q′ meet in q′. As pℓ−1 is assumed to be internal, so is qℓ−1, and
consequently also p′. The state q′ is rejective because all states in
P are. It follows that (p′,q′) is a split state, so p′ and q′ are almost
equivalent. Because p′ ∈ {pℓ−1,qℓ−1} ⊆ X c and q′ ∈ P ⊆ X , we
conclude that p′ , q′. Using again the fact that there are at most
two different almost equivalent states in every minimal automaton,
we get that p′ = pℓ−1 = qℓ−1 and {q′} = P . The automaton B

continues, replacing (rℓ ,pℓ ,qℓ)with (rℓ ,p′,q′) in the synopsis σ . If
the invariant holds before processing ā, then either (a) or (b) holds.



If (a) holds, then r0 · ŵā = q′, and the invariant propagates like
before. If (b) holds, then r0 · ŵā = p′ = pℓ−1 = qℓ−1, and after
processing ā, (c) will hold.

Case C: qℓ is in SCC X but pℓ < X , and either rℓ < {pℓ ,qℓ}
or a , aℓ . We then have pℓ = pℓ−1 = qℓ−1. Suppose p · a = pℓ
for some internal p and q · a = qℓ for some q ∈ X . Then it easily
follows thatpmeets withq inq, and sop andq are almost equivalent.
Consequently,p ·a = pℓ and q ·a = qℓ are equal, which is impossible
because pℓ < X . Thus, p and q cannot both exist.

If p does not exist, B moves to the state it would take from the
synopsis σ ′ obtained from the current one by replacing (rℓ ,pℓ ,qℓ)
with (rℓ ,qℓ ,qℓ) in σ . Note that σ ′ falls into Case A. Suppose that the
invariant holds before processing ā. If it is by (a), then r0 ·ŵ = qℓ , so
ŵ will also be compatible with σ ′ and the invariant will propagate
as shown in Case A. The invariant cannot hold by (b), because
this would imply that rℓ ∈ {pℓ ,qℓ} and a = aℓ , and we have
assumed the contrary. Suppose that the invariant holds by (c). Then
(r0 · ŵā) · a = r0 · ŵ = pℓ . But, as we have shown, there are no
internal states p such that p · a = pℓ . Hence, r0 · ŵā is a noninternal
state. This is possible only if ŵā is empty. Then, wā is the whole
encoding of the input tree, and the invariant is not required to hold
any more.

If q does not exist, the state is chosen similarly, but this time
we obtain σ ′ by removing the suffix

aℓ
−−→ (rℓ ,pℓ ,qℓ) from σ . Note

that σ ′ falls into Case A or Case B: pℓ−1 is internal because it is
equal to pℓ , and pℓ−1 and qℓ−1 are in the same SCC because they
are equal. If the invariant holds before processing ā, then it must be
by (c). Then, ŵ will also be compatible with σ ′, and the invariant
will propagate as shown in Cases A and B.

Case D: qℓ is in SCC X but pℓ < X , and both rℓ ∈ {pℓ ,qℓ}
and a = aℓ . It then follows that pℓ = pℓ−1 = qℓ−1 and rℓ =
qℓ . Consequently, pℓ · a = qℓ and, because pℓ and qℓ are almost
equivalent,qℓ ·a = qℓ . Suppose thatp ·a = pℓ for some internal state
p. Then, we have p ·aa = qℓ ·aa = qℓ ; that is, p meets with qℓ in qℓ .
Since qℓ is rejective, it follows that p and qℓ are almost equivalent.
But that means that pℓ = p · a = qℓ · a = qℓ , which is impossible
because pℓ < X . Hence, no such p exists. Suppose that q · a = qℓ
for some q ∈ X \ {qℓ}. Then q · a = qℓ · a = qℓ and it follows that q
is almost equivalent to qℓ . But this is impossible because together
with pℓ < X this would give three different almost equivalent states.
Hence, such q also does not exist. We let B continue with the same
synopsis. Suppose that the invariant holds before processing ā.
If it is by (a), then r0 · ŵā = qℓ , because it is the only state in X
from which the transition over a leads to {pℓ ,qℓ}, and the invariant
propagates. If the invariant holds by (b), then r0 ·ŵā ∈ {pℓ−1,qℓ−1},
but pℓ−1 = qℓ−1 = pℓ , so for ŵā and σ we will have (c). Finally, if
the invariant holds by (c), it follows thatwā is the whole encoding
of the input tree, like in the first subcase of Case C, and the invariant
is not required to hold any more.

This completes the construction of B and the proof that every
run of B over the encoding of a tree T satisfies the invariant.

B BLIND CLASSES
We shall use the symbol ◁ for the universal closing tag. The term
encoding [T ] ∈

(
Γ ∪ {◁}

)∗ of a tree T with a-labelled root and

s

tu1(u2)n!

x

u1(u2)n!

x

(a) Tree S .

s

u1(u2)n!−1

tu2(u2)n!

x

u1(u2)n!

x

(b) Tree S ′.

Figure 7: Blind variants of fooling trees in Lemma 3.12.

immediate subtrees T1,T2, . . . ,Tn is

[T ] = a [T1] [T2] . . . [Tn ] ◁ .

Correspondingly, for u = a1a2 · · ·an ∈ Γ∗ we let ū =◁n . Like for
the markup encoding, we let

[L] =
{
[T ]

�� T ∈ L
}

for every tree language L over Γ.
A tree language L over Γ is term-registerless (resp. term-stackless)

if there exists a finite automaton (resp. depth-register automaton)
over Γ ∪ {◁} that accepts all words from [L] and rejects all words
from [Lc]. A unary queryQ is term-registerless (resp. term-stackless)
if there exists a finite automaton (resp. depth-register automaton)
over Γ ∪ {◁} that pre-selects a node v of T when running over [T ]
iff v ∈ Q(T ).

We say that states p and q blindly meet in state r if there exist
words u1,u2 ∈ Γ∗ such that

|u1 | = |u2 | and p · u1 = q · u2 = r .

By replacing ‘meet’ with ‘blindlymeet’ in Definitions 3.4, 3.6 and 3.9,
we obtain the definitions of the syntactic classes of blindly almost-
reversible, blindly HAR, blindly A-flat, and blindly E-flat word lan-
guages.

Theorem B.1. Let L be a regular language.
(1) EL is a term-registerless tree language iff L is blindly E-flat.
(2) AL is a term-registerless tree language iff L is blindly A-flat.
(3) The following conditions are equivalent:
(a) QL is a term-registerless unary query;
(b) EL and AL are term-registerless tree languages;
(c) L is blindly E-flat and blindly A-flat;
(d) L is blindly almost-reversible.

Proof. The argument is fully analogous to that in Theorem 3.2,
with Lemmas 3.5 and 3.10 to 3.12. replaced by their analogues for
term-registerless, blindly E-flat, blindly A-flat, and blindly almost-
reversible languages.

The analogue of Lemma 3.5 states that if L is a blindly almost-
reversible language, thenQL is a term-registerless query. The proof
is almost identical, except that when the closing tag ◁ is read in
state p, we pick any state p′ such that p′ ·a is almost equivalent to p
for some a ∈ Γ; because L is blindly almost-reversible, the original
argument now shows also that the choice of a does not matter.

The analogue of Lemma 3.10 states that a regular language is
blindlyA-flat iff its complement is blindly E-flat, and that it is blindly



almost-reversible iff it is both blindly A-flat and blindly E-flat; it is
proved just like the original.

The analogue of Lemma 3.11 states that if L is blindly E-flat, then
EL is term-registerless. The proof is an adaptation of the original one
to the blind setting. The states of the simulating finite automaton,
the simulation invariant, the transitions over opening tags, and
the transformation into an automaton recognizing EL are entirely
analogous, with ‘meet’ replaced everywhere with ‘blindly meet’; in
particular, we keep the labels a1, . . . ,aℓ in the synopsis. However,
the behaviour of the simulating automaton over the closing tag
needs to be adjusted so that it does not rely on the label of the
current node. We begin by dropping all references to the current
label in the conditions defining Cases A–D, which gives

Case A’: pℓ ,qℓ ∈ X but either rℓ < {pℓ ,qℓ} or pℓ−1 is not
internal;

Case B’: pℓ ,qℓ ∈ X , rℓ ∈ {pℓ ,qℓ}, and pℓ−1 is internal;
Case C’: qℓ ∈ X , pℓ < X , and rℓ < {pℓ ,qℓ};
Case D’: qℓ ∈ X , pℓ < X , and rℓ ∈ {pℓ ,qℓ}.

In each of these cases the simulating automaton needs to consider
all possible values of the current label. That is, in Cases A’ and B’,
the set P is now defined as

P =
{
p ∈ X

�� p · a ∈ {pℓ ,qℓ},a ∈ Γ
}
,

and in Case C’ we look at p · a1 = pℓ and q · a2 = qℓ for arbitrary
a1,a2 ∈ Γ. Apart from these differences, the arguments in Cases
A’–C’ are analogous to the original ones. Let us have a closer look
at Case D’. Like before we have pℓ = pℓ−1 = qℓ−1 and rℓ = qℓ .
Consequently, pℓ · aℓ = qℓ and, because pℓ and qℓ are almost
equivalent, qℓ · aℓ = qℓ . Suppose that p · a = pℓ for some internal
state p and some a ∈ Γ. Then, we have p ·aaℓ = qℓ ·aℓaℓ = qℓ ; that
is,p blindly meets with qℓ in qℓ . Since qℓ is rejective, it follows from
blind E-flatness that p and qℓ are almost equivalent. Consequently,
qℓ · a = p · a = pℓ . Because we also have that pℓ · aℓ = qℓ , it
follows that pℓ ∈ X which is a contradiction. Hence, such p cannot
exist. One then argues, like in the markup case, that there is no
q ∈ X \ {qℓ} for which there exists a ∈ Γ such that q · a = qℓ ,
and that letting the simulating automaton continue with the same
synopsis preserves the invariant.

Finally, the analogue of Lemma 3.12 states that for each regular
language L, if EL is term-registerless, then L is blindly E-flat. This
time there are important differences in the proof; we sketch it below.

We show that if L is not blindly E-flat, then [EL] cannot be
separated from [(EL)c] by a finite automaton. Suppose that the
minimal automaton A of L ⊆ Γ∗ is not E-flat. Let i be the initial
state of A. Then, there exist words s, t ,u1,u2 ∈ Γ+, x ∈ Γ∗ and
states p, q such that |u1 | = |u2 |, i · s = p, p · u1 = q · u2 = q, q · x is
rejecting, and p · t is accepting iff q · t is rejecting. It follows that
for each k > 0, su1(u2)kx ∈ Lc, and st ∈ L iff s(u1)(u2)k t ∈ Lc.
Unlike for the markup encoding, the construction of the fooling
trees depends on whether st ∈ L or st ∈ Lc

Suppose first that st ∈ Lc. Then, the trees S , S ′ used in Lemma 3.12
should be replaced with the ones in Fig. 7a. We have S < EL and
S ′ ∈ EL. Note that we have no control on whether the rightmost
branch of S ′ is labelled by a word from L or not, but it is irrelevant,
because we know that the middle branch is. The term encodings of

S and S ′ satisfy the following:

[S] = s · u1(u2)
n! xx̄ (ū2)

n!ū1 tt̄ u1(u2)
n! xx̄ (ū2)

n!ū1 s̄ ,

[S ′] = s u1(u2)
2·n! xx̄ (ū2)

n!ū2 tt̄ u1(u2)
n! xx̄ (ū2)

n!ū1(ū2)
n!−1ū1 s̄

= s u1(u2)
2·n! xx̄ (ū2)

n!ū1 tt̄ u1(u2)
n! xx̄ (ū2)

n!ū2(ū2)
n!−1ū1 s̄

= s u1(u2)
2·n! xx̄ (ū2)

n!ū1 tt̄ u1(u2)
n! xx̄ (ū2)

2·n!ū1 s̄ ,

because |u1 | = |u2 | implies ū1 = ū2. The rest of the proof is identical.
If st ∈ L, in S we replace u1 on the rightmost branch with u2,

and we modify S ′ accordingly. It then holds that S ∈ EL regardless
of whether su2(u2)n!x belongs to L or not, and S ′ < EL; the proof
again continues like in Lemma 3.12. □

Theorem B.2. For each regular language L, the following condi-
tions are equivalent:

(1) QL is a term-stackless unary query;
(2) EL is a term-stackless tree language;
(3) AL is a term-stackless tree language;
(4) L is blindly HAR.

Proof. The argument is fully analogous to that in Theorem 3.1,
with Lemmas 3.7, 3.8 and 3.16 replaced by their analogues for term-
stackless and blindly HAR languages.

The analogue of Lemma 3.7 states that the class of blindly HAR
languages is closed under complement, which is immediate from
the definition just like for HAR languages.

The analogue of Lemma 3.8 states that if L blindly HAR then QL
is term-stackless. The proof is analogous, with the onlymodification
being what we did with Lemma 3.5 in the proof of Theorem B.1:
when the closing tag ◁ is read in state p and the current depth is
greater than or equal to the maximal stored depth, we pick any
state p′ such that p′ · a is almost equivalent to p for some a ∈ Γ.
Because L is blindly HAR, the original argument now shows also
that the choice of a does not matter.

Finally, the analogue of Lemma 3.16 states that for each regular
language L, if EL is a term-stackless tree language then L is blindly
HAR. The proof is obtained by adjusting the proof of Lemma 3.16
just like the proof of Lemma 3.12 was adjusted in Theorem B.1. This
time there is only one case because we know that s(wu1+vu2)∗wt ⊆
Lc and s(wu1 +vu2)∗vt ⊆ L, and not the other way around. In the
tree R shown in Fig. 5, the copies of u immediately following copies
of w should be replaced by u1 and those immediately following
v should be replaced by u2. From there, the proof continues like
before. □
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