
On Deciding Topological Classes
of Deterministic Tree Languages

Filip Murlak ?

Institute of Informatics, Warsaw University
ul. Banacha 2, 02–097 Warszawa, Poland

fmurlak@mimuw.edu.pl

Abstract. It has been proved by Niwiński and Walukiewicz that a de-
terministic tree language is either Π1

1 -complete or it is on the level Π0
3

of the Borel hierarchy, and that it can be decided effectively which of
the two takes place. In this paper we show how to decide if the language
recognized by a given deterministic tree automaton is on the Π0

2 , the
Σ0

2 , or the Σ0
3 level. Together with the previous results it gives a pro-

cedure calculating the exact position of a deterministic tree language in
the topological hierarchy.

Keywords: deterministic tree automata, index hierarchy, Borel hierar-
chy

1 Introduction

Tree automata, introduced by Rabin [14] in order to prove decidability of second
order monadic logic of two successors, are today – together with µ-calculus – the
basic tool in modeling and verification of concurrent systems. A tree represents
all possible behaviours of an analysed system and an automaton is a coded
correctness condition. An interesting measure of complexity of such a condition
is the nesting depth of positive and negative constraints on the events occurring
infinitely often. The formalization of that criterion gives the notion of the index
of an automaton. The languages recognized by automata of different indices
constitute an ascending hierarchy. This hierarchy was proved to be strict for
the classes of deterministic [19], nondeterministic [9], alternating [1, 7] and weak
alternating automata [8].

Another approach to estimating the complexity of a language is to calculate
its level in the topological hierarchy. Skurczyński [16] proved that the finite part
of the Borel hierarchy is strict for languages recognized by weak alternating
automata. Deterministic tree languages surprisingly turned out to be either Π1

1 -
complete (hence non-Borel) or on the Π0

3 level of the Borel hierarchy. The paper
by Niwiński and Walukiewicz [11] containing the proof of the above suggests
also that two basic complexity criteria, combinatorial and topological, are closely
related – at least for deterministic automata.
? Supported by KBN Grant 4 T11C 042 25.



While the efficiency of verification methods depends on the brevity of the
correctness conditions, they often result redundant when modeling real systems.
Therefore, developing algorithmic methods for calculating actual automata’s
complexity would be interesting. So far, there have been presented procedures
calculating the index of tree languages consisting of trees which have all the
paths in a given regular ω-language [6, 10], deciding if a deterministic automaton
is equivalent to a Büchi automaton [18], and calculating the (nondeterministic)
index of deterministic automata [12]. The µ-calculus approach resulted in a pro-
cedure deciding if a given formula of modal µ-calculus is equivalent to a formula
of modal logic [13].

In this paper we concentrate on algorithmic calculation of a language’s posi-
tion in the topological hierarchy and its connections with the deterministic index
hierarchy. In Sect. 2 and Sect. 3 we remind the basic notions of automata theory
and present simple criteria determining a language’s position in the deterministic
index hierarchy and weak deterministic index hierarchy. Section 4 recalls some
necessary topological notions. In Sect. 5 we show how to decide if a deterministic
language is in the classes Σ0

2 , Π0
2 and Σ0

3 . When combined with the previous
characteristics by Niwiński and Walukiewicz, it provides a complete procedure
calculating the position of a deterministic language in the topological hierarchy.

2 Basic Notions

We shall use the symbol ω to denote the set of natural numbers {0, 1, 2, . . .}.
For an alphabet X, X∗ is the set of finite words over X and Xω is the set of
infinite words over X. The concatenation of words u ∈ X∗ and v ∈ X∗ ∪ Xω

will be denoted by uv, and the empty word by ε. The concatenation is naturally
generalized for infinite sequences of words v1v2v3 . . .. The concatenation of sets
A,B ⊆ X∗ is AB = {uv : u ∈ A, v ∈ B}.

A binary tree is any subset of {0, 1}∗ closed under the prefix relation. An
element of a tree is usually called a node. A leaf is any node of a tree which is
not a (strict) prefix of some other node. We shall be dealing mainly with labeled
trees over Σ which are functions t : dom t → Σ such that dom t is a tree. The
symbol TΣ will denote the set of full infinite binary trees over Σ, i. e. functions
{0, 1}∗ → Σ.

For any trees t, s and v, a node of t, the result of the substitution of v with
s is a tree t′ whose domain is the set dom t ∪ vdom s and

t′(u) =
{

s(u′) if u = vu′ for some u′

t(u) otherwise .

Note that u′ may be empty, so if t(u) 6= s(ε), for the label of u in t′ we choose
s(ε). We find it more convenient since the state of an automaton in a node
depends on every predecessor of the node, but not on the node itself.

The concatenation of tree languages A,B is a tree language AB consisting
of all trees obtained from any t ∈ A by substituting every leaf u of t with any
tree su ∈ B. The concatenation of infinite sequence of tree languages is a natural



generalization of the above. A more precise definition requires an auxiliary notion
of a limit. Let t0, t1, . . . be a sequence of trees such that

– dom t0 ⊆ dom t1 ⊆ . . .,
– ∀v ∈

⋃
m∈ω dom tm ∃nv ∀n ≥ nv tn(v) = tnv (v).

The limit t = lim tn is defined as follows:

– dom t =
⋃

m∈ω dom tm,
– t(v) = tnv (v).

An infinite concatenation of tree languages L0L1 . . . consists of the limits of all
sequences t0, t1, . . . such that t0 ∈ L0 and tn+1 ∈ {tn}Ln+1 for all n.

The concatenation of trees s, t is the only element of the concatenation
{s}{t}. Similarly, the concatenation of infinite sequence of trees t = t1t2t3 . . . is
the only element of {t1}{t2}{t3} . . ..

For v ∈ dom t we define t.v as a subtree of t rooted in v, i. e. dom (t.v) = {u :
vu ∈ dom t}, t.v(u) = t(vu). A segment of a tree t between u and uv is the restric-
tion of the function t.u to the set {w ∈ dom (t.u) : v is not a strict prefix of w}.

A (nondeterministic) automaton on words is a tuple A = 〈Σ,Q, δ, q0, rank〉,
where Σ is a (finite) input alphabet, Q is the set of states, δ ⊆ Q×Σ×Q is the
relation of transition and q0 ∈ Q is the initial state. The meaning of the function
rank : Q → ω will be explained later. Instead of (q, σ, q1) ∈ δ one usually writes
q

σ−→ q1. A run of an automaton A on a word w ∈ Σω is a word ρw ∈ Qω

such that ρw(0) = q0 and if ρw(n) = q, ρw(n + 1) = q1, and w(n) = σ, then
q

σ−→ q1. A run ρw is accepting if the highest rank repeating infinitely often in
ρw is even; otherwise ρw is rejecting. A word is accepted by A if there exist an
accepting run on it. The language of words accepted by A is denoted by L(A).
One says that L is recognized by A if L = L(A). An automaton is deterministic
if its relation of transition is a function Q × Σ → Q. Note, that we do not let
the transition relation be a partial function, and so there is a run – accepting
or not – on every word. We call a language deterministic if it is recognized by a
deterministic automaton.

An (nondeterministic) automaton on trees is a tuple A = 〈Σ,Q, δ, q0, rank〉,
the only difference being that δ ⊆ Q × Σ × Q × Q. Like before, q

σ−→ q1, q2

means (q, σ, q1, q2) ∈ δ. A run of A on a tree t ∈ TΣ is a tree ρt ∈ TQ such
that ρt(ε) = q0 and if ρt(v) = q, ρt(v0) = q1, ρt(v1) = q2 and t(v) = σ, then
q

σ−→ q1, q2. A path π of the run ρt is accepting if the highest rank repeating
infinitely often in π is even; otherwise π is rejecting. A run is called accepting if
all its paths are accepting. If at least one of them is rejecting, so is the whole
run. An automaton is called deterministic if its transition relation is a function
Q×Σ → Q×Q.

An automaton is called weak if the rank of visited states does not increase
during the run, i. e. whenever there is a transition p

σ−→ q1, q2, then rank p ≥
rank q1 and rank p ≥ rank q2.

The symbol GA denotes a directed edge-labeled graph representing the transi-
tion relation of A. The set of vertices is Q and whenever in A there is a transition



p
σ−→ q1, q2, in GA there is an edge between p and q1 labeled with (σ, 0) and

an edge between p and q2 labeled with (σ, 1). For sake of brevity we shall write
p

σ,0−→ q1 and p
σ,1−→ q2. A state is called productive if it is used in some accepting

run. The productive graph G+
A is analogous to GA, only now the set of vertices

is restricted to productive states and when defining the edges we demand that
all of the states p, q1, q2 are productive. We shall call a path in GA productive
if it is also a path in G+

A.
A partial run of A is a segment of any run of A. A partial run ρ realizes a

finite path π in the graph G+
A if it is a segment of an accepting run ρ′ between

two nodes x and y such that ρ′ agrees with π between x and y. More precisely, if
π = p0

σ1,d1−→ . . .
σm,dm−→ pm, then y = xd1d1 . . . dm, ρ′(x) = p0 and ρ′(xd1 . . . di) =

pi for all i. Note that, since ρ is a segment of an accepting run, all its infinite
paths are accepting. A tree segment f realizes a path π if the corresponding
partial run ρf realizes π.

When analysing the way an automaton works, one finds it useful to let the
automaton begin its run in states other than initial. An automaton starting in
the state q will be denoted by Aq.

The index of an automaton A is a pair (min rankQ,max rankQ). Scaling
down the rank function if necessary one may assume that min rank Q ∈ {0, 1}.
For an index (i, j) we shall denote by (i, j) the dual index, i. e. (0, j) = (1, j +1),
(1, j) = (0, j − 1). The index hierarchy for a certain class of automata consists
of (roughly speaking) ascending sets (levels) of languages recognized by (i, j)-
automata, where (i, j) ∈ {0, 1} × ω. It is known that index hierarchies are strict
for deterministic [19], nondeterministic [9], alternating [1, 7] and weak alternating
automata [8].

3 Deterministic Index Hierarchies

Given a deterministic language, one may ask about its deterministic index,
i. e. the exact position in the index hierarchy of deterministic automata. This
question can be answered effectively. Here we follow the method introduced by
Niwiński and Walukiewicz [10].

A sequence of loops λi, λi+1, . . . , λj in a graph of an automaton is called an
alternating chain if the highest rank appearing on λk has the same parity as k and
it is higher then the highest rank on λk−1. A (i, j)-flower is an alternating chain
λi, λi+1, . . . , λj such that all loops start in the same state q. Let Paths(L) ⊆ Σω

be the set of paths of trees from L and Paths′(L) ⊆ (Σ × {0, 1})ω denote the
language of generalized paths of L,

Paths′(L) = {〈(σ1, d1), (σ2, d2), . . .〉 : ∃t ∈ L t(d1d2 . . . di−1) = σi} .

Niwiński and Walukiewicz show that a language L is recognized by a (i, j)-
automaton iff no deterministic automaton recognizing Paths(L) contains a (i, j)-
flower. As an intermediate pass they prove the following fact.



Theorem 1 (Niwiński, Walukiewicz [10]). A deterministic automaton on
words is equivalent to a deterministic (i, j)-automaton iff it does not contain a
(i, j)-flower.

For a deterministic tree automaton A, the graph G+
A can be treated as a deter-

ministic automaton recognizing Paths’(L(A)). Conversely, given a deterministic
word automaton recognizing Paths’(L(A)), one may interpret it as a graph of
a tree automaton, obtaining thus a deterministic automaton recognizing L(A).
Hence, applying Theorem 1 one gets the following result.

Proposition 1. For a deterministic tree automaton A the language L(A) is
recognized by a deterministic (i, j)-automaton iff G+

A does not contain a (i, j)-
flower.

Similarly, one can calculate the exact position of a deterministic language in
the hierarchy of weak deterministic automata. A weak (i, j)-flower is a sequence
of loops λi, λi+1 . . . , λj such that λk is reachable in G+

A from λk+1, and λk is
accepting iff k is even. Intuitively, the notion is to provide long enough alternation
of rank parity. Therefore we have to extend it to cover the case when i is odd
and instead of λi there is an unproductive state r reachable in GA from λi+1.

Proposition 2. For any deterministic tree automaton A the language L(A) can
be recognized by a weak deterministic (i, j)-automaton iff G+

A does not contain a
weak (i, j)-flower.

Proof. (⇒) Let us suppose that G+
A contains a weak (i′, j′)-flower, (i′, j′) = (i, j).

Let gj′ be a tree segment realizing some path from the initial state q0 to a
state rj′ on λj′ . By induction, let gk realize a path from the state rk+1 ∈ λk+1

to a state rk ∈ λk for k = j′ − 1, . . . , i′. Finally, let fk realize the loop λk

(from rk to rk) for all k. Let B be a weak deterministic automaton recog-
nizing L(A). Clearly, we can choose numbers ni′ , . . . , nj′ so that the run on
gj′ (fj′)nj′ gj′−1 (fj′−1)nj′−1 . . . gi′ (fi′)ni′ would need j′− i′ changes of rank par-
ity and thus j′ − i′ + 1 different ranks. Consequently, the index of B cannot be
(i, j).

(⇐) A weak deterministic (i, j)-automaton is obtained by setting rank (q)
equal to the highest number m such that there exists a weak (ι,m)-flower with a
path from q to λm (recall that an unproductive state is a weak (1, 1)-flower). ut

Finally, for a deterministic language one may want to calculate its nondeter-
ministic index, i.e. the position in the hierarchy of nondeterministic automata.
This may be lower than the deterministic index, due to greater expressive power
of nondeterministic automata. Consider for example the language L0ω

M consisting
of trees whose leftmost paths are in a regular ω-language M . It can be recognised
by a (nondeterministic) Büchi automaton, but its deterministic index is equal
to the deterministic index of M , which can be arbitrarily high.

The problem transpired to be rather difficult and has only just been solved
in [12]. The analogous problem for nondeterministic languages remains open.



4 Topological Hierarchy

We start with a short recollection of elementary notions of descriptive set theory.
For further information see [5].

Let 2ω be the set of infinite binary sequences with a metric given by the
formula

d(u, v) =
{

2−min{i∈ω : ui 6=vi} iff u 6= v
0 iff u = v

and TΣ be the set of infinite binary trees over Σ with a metric

d(s, t) =
{

2−min{|x| : x∈{0,1}∗, s(x) 6=t(x)} iff s 6= t
0 iff s = t

.

Both 2ω and TΣ , with the topologies induced by the above metrics, are Polish
spaces (complete metric spaces with countable dense subsets). In fact, both of
them are homeomorphic to the Cantor discontinuum.

The class of Borel sets of a topological space X is the closure of the class
of open sets of X by countable sums and complementation. Within this class
one builds so called Borel hierarchy. The initial (finite) levels of it are defined as
follows:

Σ0
1 – open relations, i. e. open subsets of Xn for some n < ω,

Π0
k – complements of relations from Σ0

k,
Σ0

k+1 – countable sums of relations form Π0
k .

For example, Π0
1 are closed relations, Σ0

2 are Fσ relations, and Π0
2 are Gδ rela-

tions.
Even more general classes of sets form the projective hierarchy. We will need

only its lowest level:

Σ1
1 – analytical sets, i. e. projections of Borel relations,

Π1
1 – complements of relations from Σ1

1 .

Let ϕ : X → Y be a continuous map of topological spaces. One says that ϕ
reduces A ⊆ X to B ⊆ Y , if ∀x ∈ X x ∈ A ↔ ϕ(x) ∈ B. Note that if B is in a
certain class of the above hierarchies, so is A. For any class C a set B is C-hard,
if for any set A ∈ C there exists a reduction of A to B. The topological hierarchy
is strict for Polish spaces, so if a set is C-hard, it cannot be in any lower class. If
a C-hard set B is also an element of C, then it is C-complete.

For a deterministic automaton A one may define a function ϕA : TΣ →
Tim (rank) so that ϕA(t)(v) = rank (ρt(v)), where ρt is the run of A on t. Note
that ϕA is a continuous map that reduces L(A) to the set P of all trees satisfying
A’s parity condition.

We shall continue with a handful of examples which will turn out useful later.

Example 1. Consider the set P(1,2) ⊆ T{1,2} consisting of trees having infinitely
many 2s on every path. For each n < ω let Gn be the set of all trees that have at
least one 2 below the level n on every path. From König lemma it follows that
each Gn is open. Clearly, P(1,2) =

⋂
n∈ω Gn and so it is a Π0

2 set.



Example 2. Let P fin
(0,1) ⊆ T{0,1} be the set of trees in which there are only finitely

many 1s. For any n < ω a set Fn ⊆ T{0,1} consisting of trees having no 1s below
the level n is closed. P fin

(0,1) =
⋃

n∈ω Fn, hence P fin
(0,1) ∈ Σ0

2 .

Example 3. Let L0∗1ω

a ⊆ T{a,b} be the set of trees which have an a on every
path from the set 0∗1ω. Suppose that it is a Σ0

2 set. Let L0∗1ω

a =
⋃

n∈ω Fn, Fn is
closed for all n. We claim that for every n there exists mn such that in every tree
from Fn the letter a occurs on the path 0n1ω above the level mn. If there was
no such number, then we could find a sequence tk of trees having no letters a on
the path 0n1ω above the level lk, where l1 < l2 < l3 < . . .. As T{a,b} is compact,
there exists a subsequence tki convergent in Fn. However the limit of tki cannot
be in Fn for it has no letter a on the path 0n1ω. Now, consider a tree t with a in
nodes 0n1mn+1 and b in other nodes. Clearly, t ∈ L0∗1ω

a , but t /∈
⋃

n∈ω Fn. This
way we have shown that L0∗1ω

a /∈ Σ0
2 .

Example 4. In quite a similar way one proves that the set Q = (0∗1)∗0ω is not
in Π0

2 (in fact, it is Σ0
2 -complete).

Example 5. Let L0∗1ω

Q denote the language of trees such that the rightmost path
from every node of the form 0∗ belongs to the language Q defined above. We
shall see that it is Π0

3 -complete, and therefore it is not in Σ0
3 . Let us take any

M =
⋃

i<ω Xi with Xi in Σ0
2 . Since Q is Σ0

2 -complete, for each i there exists
fi reducing Xi to Q. One easily defines a continuous reduction of M to L0∗1ω

Q

assigning to each t a tree having the word fi(t) on the path 0i1ω for all i, and
0s in all the other nodes.

5 Deciding Levels of Topological Hierarchy

The basic tool for investigating automata’s properties is the technique of gadgets
or difficult patterns in the graph of an automaton. In the topological context,
the general recipe goes like this. For every class identify a gadget satisfying the
following condition: if the gadget appears in an automaton A, then it provides
a reduction of some difficult language to L(A); otherwise L(A) is in the class
considered.

Wagner used this technique successfully in his solution of the general problem
of continuous reductions between ω-languages [19]. For infinite words, the Borel
hierarchy collapses at the level ∆0

3 and below it is strict. The levels Π0
1 and Σ0

1

correspond to weak deterministic (1, 2) and (0, 1) automata; the class ∆0
2 consists

of all weak deterministic automata; Π0
2 and Σ0

2 are exactly deterministic Büchi
and co-Büchi languages. We shall see that the situation for trees is slightly
different.

We start with the gap property for deterministic tree languages. An automa-
ton A admits a split if in G+

A there are two loops q0
ρ,0→ q1 → . . . → q0 and

q0
σ,1→ q2 → . . . → q0 such that the highest ranks occurring on them are of

different parity and the higher is odd.



Theorem 2 (Niwiński, Walukiewicz [11]). For a deterministic automaton
A, L(A) is on the level Π0

3 of the Borel hierarchy iff A does not admit split;
otherwise L(A) is Π1

1 -complete (hence non-Borel).

Owing to this result, it is enough to decide if a language is on the levels Σ0
1 , Π0

1 ,
Σ0

2 , Π0
2 , Σ0

3 and use the split criterion to get complete information on its position
in the topological hierarchy. Before dealing with this task we shall see that it
does not get any easier, and so, not only there exist non-Borel tree languages
but even the Borel hierarchy for trees is higher than for words.

Proposition 3. The Borel hierarchy for deterministic tree languages is strict
below Π0

3 .

Proof. The language L0∗

a consisting of trees having an a on the leftmost path
is open, but obviously is not closed, L0∗

a ∈ Σ0
1 \Π0

1 . An example of a language
from Π0

1 \Σ0
1 can be {t0}, where t0(v) = 0 for every node v. The set Q can be

reduced to P fin
(0,1) by a map {0, 1}ω 3 w 7→ tw ∈ T0,1 where tw is a tree whose

leftmost path is w and having 0 in all the other nodes. Hence P fin
(0,1) ∈ Σ0

2 \Π0
2 .

It can also be easily seen that L0∗1ω

a is a Π0
2 set and we have already proved that

it is not a Σ0
2 . Finally, the language L0∗1ω

Q has been shown not to be in the Σ0
3

class, but clearly is in Π0
3 . ut

Having seen the strictness of our confined hierarchy, we shall continue with
the characterization of its levels. The description of the open and the closed
languages is probably well known, so we state it here, together with a short
proof, just for the sake of completeness.

Proposition 4. For any deterministic tree automaton A

1. L(A) is closed iff A is equivalent to a weak deterministic (1, 2)-automaton 1,
2. L(A) is open iff A is equivalent to a weak deterministic (0, 1)-automaton.

Proof. We will prove only (1). First, suppose that A is not equivalent to a weak
deterministic (1, 2)-automaton. It follows from Proposition 2 that in G+

A there
must be an accepting loop λ2 reachable from a rejecting loop λ1. Let g1 realize
a path from q0 to some q1 ∈ λ1, g2 realize a path form q1 to some q2 ∈ λ2, and
f1, f2 realize loops λ1 (from q1 to q1), λ2 (from q2 to q2) respectively. Consider
tn = g1(f1)ng2(f2)ω and t = g1(f1)ω. Clearly, tn ∈ L(A) and tn → t when
n →∞, but t /∈ L(A). Hence L(A) is not closed.

Now, if L(A) is recognized by a weak deterministic automaton B, then it is
the inverse image of a point under the continuous map ϕB and so it is closed. ut

The combinatorial characterization of Π0
2 -languages transpires to be equally

elegant.

1 Recall that we do not let an automaton stop. If we did, there should be (0, 0) instead
of (1, 2).



Theorem 3. For a deterministic tree automaton A, the language L(A) is on
the level Π0

2 of the Borel hierarchy iff A is equivalent to a deterministic Büchi
automaton.

Proof. (⇒) Suppose that L(A) is not recognized by a deterministic Büchi au-
tomaton. From Proposition 1 it follows that in G+

A there exist an accepting loop
λ0 and a rejecting loop λ1 forming a (0, 1)-flower. The loops λ0 and λ1 cannot
be equal, so there is a node q lying on both loops, such that the next edges going
out of q in λ0 and λ1 have different labels. Let us assume first that the edges are
labeled with different letters a 6= b:

λ0 : q
a,d0−→ r −→ . . . −→ q ,

λ1 : q
b,d1−→ s −→ . . . −→ q .

Let f0, f1 be tree segments realizing the loops λ0 and λ1 respectively (both from
q to q). Note that f0 and f1’s roots are labeled with different letters a and b.
Consider a map ϕ : 2ω → TΣ defined by the formula

ϕ(x0x1x2 . . .) = ffx0fx1fx2 . . . ,

where f is a tree segment realizing a path from q0 to q. The map ϕ is continuous,
since d(ϕ(x), ϕ(x′)) ≤ d(x, x′)|λ0|. Thus we have reduced (0∗1)∗0ω to L(A),
which, by Example 4, implies that L(A) is not a Π0

2 language.
The second case is slightly more sophisticated. We have

λ0 : q
a,0−→ r −→ . . . −→ q

λ1 : q
a,1−→ s −→ . . . −→ q

(or dual). Consider a path in the graph G+
A along the edges of the loop λ1 starting

from q. We claim that it must reach a node q′ such that there is an edge e from
q′ to q′′′ labeled with the same direction (0 or 1) as the edge in the loop but
with a different letter, e.g.

λ1 : q
a,1−→ s −→ . . . −→ q′

b,0−→ q′′ −→ . . . −→ q

↘c,0

q′′′
.

Were there no such an edge, all the runs starting in q would loop on λ1 and q

would be unproductive. Let π0 be the path q
a,1−→ s −→ . . . −→ q′

e−→ q′′′. The
state q′′′ is productive, so we can extend π0 to an infinite accepting path π in
G+

A. For f0 we choose a tree segment realizing both λ0 and π. This is possible
owing to the fact, that λ0 and π start with edges labeled with the same letter
and different directions. As before, f1 can be any tree segment realizing λ1. Now
we can continue like in the previous case.

(⇐) L(A) can be reduced to P(1,2), which is a Π0
2 -set. ut



We shall now continue with describing the Σ0
2 languages. Recall the language

L0∗1ω

a ⊆ T{a,b} consisting of trees which have an a on every path from the set
0∗1ω. Even though one may easily construct a deterministic (0, 1)-automaton
recognizing this language, it is not a Σ0

2 set. Since a simple analog of the Π0
2

case condition has shown insufficient, a more careful analysis of the automaton’s
graph is needed. We will say that a node v ∈ G+

A is accessible with a split if

in G+
A there exist an accepting loop u1

σ,d0−→ u2 −→ . . . −→ u1 and a path

u1
σ,d1−→ u′2 −→ . . . −→ v, where d0 6= d1. We will say that a loop or a flower is

accessible with a split, meaning that it contains a node accessible with a split.

Theorem 4. For a deterministic tree automaton A, the language L(A) is on
the level Σ0

2 of the Borel hierarchy iff A is equivalent to a deterministic (0, 1)-
automaton and G+

A does not contain a rejecting loop accessible with a split.

Proof. (⇒) Let us suppose that L(A) is a Σ0
2 language. To prove the equivalence

to a deterministic (0, 1)-automaton follow the dual version of the method used in
the previous theorem. There exist a rejecting loop λ1 and an accepting loop λ0

forming a (1, 2)-flower. Find tree segments f0, f1 realizing λ0, λ1. Make sure they
are different by finding an accepting path π leaving λ1. The map ϕ defined in
the previous proof reduces (1∗0)ω to im ϕ∩L(A). Were L(A) a Σ0

2 set, so would
(1∗0)ω, which, by Example 4, is not true. Let us now concentrate on the second
part of the condition. Suppose that G+

A does contain a rejecting loop λ1 accessible
with a split from an accepting loop λ0 along a path π. For n ∈ ω let πn be an
infinite accepting path having a prefix π(λ1)n but no prefixes π(λ1)m for m > n
(find an edge leaving the rejecting loop λ1 just as it was done in the second case
of the previous proof) and πω = π(λ1)ω. For each α ∈ ω+1 = ω∪{ω} consider a
tree segment fα realizing both λ0 and πα, this being possible since the first edges
of both paths are labeled with the same letter σ and different directions d0, d1.
For any x = (x1, x2, . . .) ∈ (ω+1)ω let tx = ffx1fx2 . . ., where f is a tree segment
realizing a path from the initial state q0 to u1. We shall define a continuous map
ϕ : T{a,b} → TΣ . For s ∈ T{a,b} let yi = min({|w| : w ∈ 0i1∗, s(w) = a}∪ω). Let
zi = max(yi−i, 0) if yi < ω and zi = ω if yi = ω. Let us now set ϕ(s) = tz, where
z = (z0, z1, . . .). The map ϕ reduces L0∗1ω

a to L(A). However, we have already
shown that L0∗1ω

a is not a Σ0
2 language. Hence G+

A cannot contain a rejecting
loop accessible with a split.

(⇐) Investigating the proof of Theorem 1 one easily observes that the re-
duction is careful enough not to introduce any rejecting loops accessible with a
split, provided there are no such loops in the original automaton. Therefore, we
may assume that A is a (0, 1)-automaton such that G+

A does not contain a re-
jecting loop accessible with a split. A state is called relevant if it has the highest
rank on some productive loop. We may change the ranks of productive irrelevant
states to 0, and assume from now on that the odd states are either relevant or
unproductive. We claim that the odd states occur only finitely many times on
accepting runs of A. Suppose that an odd state p occurs infinitely many times
in an accepting run ρ. Then it appears in an infinite number of incomparable
nodes v0, v1, . . . of ρ. Let πi be a path of ρ going through the node vi. Since



2ω is compact, we may assume, passing to a subsequence, that the sequence πi

converges to a path π. As vi are incomparable, at most one of them, say vi0 ,
may lie on π. Let us remove πi0 from the sequence πi. Consider the node wi in
which p occurs for the first time on πi after leaving π and let π0

i be the path
from the last common node of π and πi to wi. Cutting the loops off if needed,
we may assume that |π0

i | ≤ |Q| for all i ∈ ω. Subsequently, there exist a path
π0 repeating infinitely often in the sequence π0

0 , π0
1 , . . .. Moreover, the path π is

accepting, so the starting node of π0 must lay on an accepting productive loop.
As p is productive, the assumption implies that it is relevant and, being odd,
lies on some productive rejecting loop. Hence, G+

A contains a rejecting loop ac-
cessible with a split – a contradiction. This way we have shown that ϕA reduces
L(A) to P fin

0,1 , and so L(A) is a Σ0
2 language. ut

Let us now consider the class Σ0
3 . Every deterministic Σ0

3 language is, due
to Theorem 2, in the ∆0

3 = Π0
3 ∩ Σ0

3 class. Below we present a combinatorial
description of this class of languages.

Theorem 5. For a deterministic tree automaton A, L(A) is a Σ0
3 set iff G+

A

does not contain a (0, 1)-flower accessible with a split.

Proof. First let us suppose that G+
A contains a (0, 1)-flower accessible with a

split. Following the method used in Theorem 3 one easily finds a map reducing
the language L0∗1ω

Q to L(A). Subsequently, L(A) is not a Σ0
3 language.

Now, suppose that G+
A does not contain a (0, 1)-flower accessible with a split.

We shall find a Σ0
3 representation of the set R ⊆ TQ of accepting runs of A. The

theorem will follow since the map TΣ 3 t 7→ ρt ∈ TQ is continuous. Let us
consider, then, the set X of strongly connected components of G+

A. Recall that
they form a directed acyclic graph, i. e. no path returns to a component it has
left. The language R can be expressed by the following formula

R =
⋂

X∈X
RX ,

where RX is the set of runs whose every path staying forever in X is accepting.
Owing to this simple observation, it is enough to prove that the sets RX are Σ0

3 .
Let ΠX denote the set of all paths from the initial state q0 to some state in

X containing only one state from X. Note that ΠX is countable for every X. Let
us first suppose that X is accessible with a split. For π ∈ ΠX let RX,π denote
the set of runs whose every path going along π either leaves X or is accepting.
By the hypothesis, X contains no (0, 1)-flowers, and so it can be replaced by
an equivalent component X ′ using only ranks 1 and 2. Therefore, given q ∈ X ′,
the set of runs of Aq, whose all paths are accepting or leave X ′, is a Π0

2 set.
Obviously, so is RX,π. As it also holds that

RX =
⋂

π∈ΠX

RX,π ,

RX is a Π0
2 set.



The case of X not accessible with a split is slightly fastidious. Let ρ be an
accepting run of A. Consider ρX , a subtree of ρ formed by the nodes which have
a successor whose labeling state is in X. No state from X is accessible with
a split, therefore it cannot appear in infinitely many incomparable nodes of ρ.
Hence, ρX has only finitely many branches. Let ρ0

X denote the tree ρX restricted
to the highest level below which there are no branching points. Let R0

X denote
the set of all such trees; note that, although RX may be uncountable, R0

X is
countable. Obviously,

RX =
⋃

s∈R0
X

RX,s ,

where RX,s is the set of runs from RX coinciding with a tree s ∈ R0
X in its

domain. Observe that RX,s is equal to the set of runs ρ′ satisfying the following
conditions:

(1) ρ′ coincides with s in its domain,
(2) the states from X appear only in successors of leaves of s,
(3) in every subtree of ρ′ rooted in a leaf of s the states from X appear infinitely

often on at most one path,
(4) in every subtree of ρ′ rooted in a leaf of s the highest rank of the states from

X appearing infinitely often is even.

The condition (1) obviously defines an open set. The condition (2) defines a
closed set and so does the condition (3), because it is equivalent to saying that
no node of the subtree has both children in X. The condition (4) is of the B(Σ0

2)
type. By B(Σ0

2) we mean the closure of Σ0
2 by the finite Boolean operations; it

is clearly a subclass of Σ0
3 . Hence RX,s is a Σ0

3 set and so is RX . ut

As a conclusion we obtain the main result of this paper.

Corollary 1. The problem of calculating the exact position in the topological
hierarchy of a language recognized by a deterministic tree automaton is decidable
within the time of finding the productive states of a deterministic automaton.

Proof. From Proposition 4 it follows that the language recognised by a determin-
istic automaton A is closed iff A is equivalent to a weak (1, 2)-automaton. This,
by Proposition 2, can be reformulated as follows: L(A) is closed iff G+

A does not
contain a weak (0, 1)-flower. Now, to decide whether a deterministic automaton
recognises a closed set, first determine its productive states, then build its pro-
ductive graph and check for weak (0, 1)-flowers. Note that two last steps can be
easily done in polynomial time. The case of open languages is entirely dual.

For Π0
2 and Σ0

2 levels follow analogous argument only now using Theorem 3
and Theorem 4 respectively, and Proposition 1. For Π0

3 and Σ0
3 levels use the

gap property and Theorem 5.
This way for a given deterministic language one obtains its exact level in the

topological hierarchy. ut



In general, deciding the topological complexity of a deterministic tree lan-
guage is as difficult as calculating the unproductive states of an automaton, the
latter being equivalent to deciding a language’s emptiness. In 1969 Rabin [14]
showed that the emptiness problem is decidable, and in 1988 Emerson and Jutla
[3] presented an algorithm with time complexity O((nd)3d), where n is the num-
ber of states and d is the number of ranks used. The emptiness problem can be
easily reduced to solving parity games. The late nineties brought improved algo-
rithms for this problem by Browne et al. [2] with complexity O(d2mn

d
2 ) and by

Seidl [15] with complexity O(dm(n+d
d )

d
2 ), where n, m, and d are the numbers of

vertices, edges, and ranks in the game graph. The investigation of parity games
resulted in polynomial algorithms in plenty of special cases, but so far it is not
known if the original problem is polynomial. One of the last achievements in
this field is the procedure by Jurdziński and Vöge [4] which is apparently quite
efficient, however its complexity has not, at present, got any nontrivial upper
bounds.

Acknowledgment

The author would like to thank Damian Niwiński for helpful comments and
discussions, and the anonymous referees for helpful comments.

References

1. Bradfield, J. C.: The modal mu-calculus alternation hierarchy is strict. Theoret.
Comput. Sci. 195 (1998) 133–153

2. Browne, A., Clarke, E. M., Jha, S., Long, D. E., Marrero, W.: An improved algorithm
for the evaluation of fixpoint expressions. Theoret. Comput. Sci. 178 (1997) 237–255

3. Emerson, E. A., Jutla, C. S.: The complexity of tree automata and logics of pro-
grams. In: Proc. FoCS ’88. IEEE Computer Society Press (1988) 328–337

4. Jurdziński, M., Vöge, J.: A discrete strategy improvement algorithm for solving
parity games. In: Proc. CAV 2000. Lecture Notes in Computer Science, Vol. 1855.
Springer-Verlag (2000) 202–215

5. Kechris, A. S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics,
Vol. 156. Springer-Verlag (1995)

6. Kupferman, O., Safra, S., Vardi, M.: Relating Word and Tree Automata. In: 11th
IEEE Symp. on Logic in Comput. Sci. (1996) 322–332

7. Lenzi, G.: A hierarchy theorem for the mu-calculus. In: auf der Heide, F. M., Monien,
B. (eds.): Proc. ICALP ’96. Lecture Notes in Computer Science, Vol. 1099. Springer-
Verlag (1996) 87–109

8. Mostowski, A. W.: Hierarchies of weak automata and weak monadic formulas. The-
oret. Comput. Sci. 83 (1991) 323-335.

9. Niwiński, D.: On fixed point clones. In: Kott, L. (ed.): 13th ICALP ’86. Lecture
Notes in Computer Science, Vol. 226. Springer-Verlag (1986) 464–473

10. Niwiński, D., Walukiewicz, I.: Relating hierarchies of word and tree automata. In:
STACS ’98. Lecture Notes in Computer Science, Vol. 1373. Springer-Verlag (1998)
320–331



11. Niwiński, D., Walukiewicz, I.: A gap property of deterministic tree languages.
Theoret. Comput. Sci. 303 (2003) 215–231

12. Niwiński, D., Walukiewicz, I.: Deciding nondeterministic hierarchy of deterministic
tree automata. In: Proc. WoLLiC 2004 (to appear in Electronic Notes in Theoretical
Computer Science)

13. Otto, M.: Eliminating recursion in µ-calculus. In: STACS’99. Lecture Notes in
Computer Science, Vol. 1563. Springer-Verlag (1999) 531–540

14. Rabin, M. O.: Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Soc. 141 (1969) 1–35

15. Seidl, H.: Fast and simple nested fixpoints. Information Processing Letters 59
(1996) 303–308

16. Skurczyński, J.: The Borel hierarchy is infinite in the class of regular sets of trees.
Theoret. Comput. Sci. 112 (1993) 413–418

17. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.): Handbook of Formal Languages, Vol. 3. Springer-Verlag (1997) 389–455

18. Urbański, T. F.: On deciding if deterministic Rabin language is in Büchi class. In:
Montanari, J. R. U., Welzl, E. (eds.): Proc. ICALP 2000. Lecture Notes in Computer
Science, Vol. 1853. Springer-Verlag (2000) 663–674

19. Wagner, K.: Eine topologische Charakterisierung einiger Klassen regulärer Folgen-
mengen. J. Inf. Process. Cybern. EIK 13 (1977) 473–487


