
XXXX

Monadic datalog and regular tree pattern queries
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Containment of monadic datalog programs over trees is decidable. The situation is more complex when
tree nodes carry labels from an infinite alphabet that can be tested for equality. Then, it matters whether
the descendant relation is allowed or not: the descendant relation can be eliminated easily from monadic
programs only when label equalities are not used. With descendant, even containment of linear monadic
programs in unions of conjunctive queries is undecidable and positive results are known only for bounded-
depth trees.

We show that without descendant containment of connected monadic programs is decidable over ranked
trees, but over unranked trees it is so only for linear programs. With descendant it becomes decidable
over unranked trees under restriction to downward programs: each rule only moves down from the node
in the head. This restriction is motivated by regular tree pattern queries, a recent formalism in the area of
ActiveXML, which we show to be equivalent to linear downward programs.
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1. INTRODUCTION
Query languages based on first order logic, even extended with counting capabilities,
like SQL, have limited expressive power due to their locality. To express non-local
properties, recursion is used. A classical recursive query language is datalog, obtained
by extending unions of conjunctive queries (UCQs) with a fixpoint operator; for in-
stance, the existence of a path between nodes X and Y in a graph is well known not
to be expressible in first order logic (nor in full SQL, see [Libkin 2003]), but is easily
expressible with a datalog program:

path(X,Y )← E(X,Y ) ;

path(X,Y )← E(X,Z), path(Z, Y ) .

Unsurprisingly, the increased expressive power makes the analysis of queries very
difficult. Consider the following classical example [Naughton 1989]:

P : buys(X,Y )← likes(X,Y ) ; P ′ : buys(X,Y )← likes(X,Y ) ;

buys(X,Y )← trendy(X), buys(Z, Y ) . buys(X,Y )← trendy(X), likes(Z, Y ) .

The two programs are equivalent, but the second does not use recursion at all. Thus,
by replacing a recursive call to the intensional predicate buys, with a call to the exten-
sional predicate likes, readily available in the database, one can avoid costly recursive
evaluation. One could also optimize queries by removing redundant rules or applying
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other, more complicated heuristics. Any such heuristic will eventually need to check if
the modified query is indeed equivalent to the original. This is not an easy task; after
the following, seemingly innocent, modification the two programs are not equivalent
any more (in fact, Q is not equivalent to any non-recursive program):

Q : buys(X,Y )← likes(X,Y ) ; Q′ : buys(X,Y )← likes(X,Y ) ;

buys(X,Y )← knows(X,Z), buys(Z, Y ) . buys(X,Y )← knows(X,Z), likes(Z, Y ) .

How to distinguish the two situations?

Background. Traditionally, static analysis of queries focuses on a more fundamen-
tal decision problem of containment, in which one asks if the results of one query are
always contained in the results of another query; equivalence easily reduces to con-
tainment, and vice versa for query languages closed under union. For full datalog both
these problems are in general undecidable [Shmueli 1993]. It is also undecidable if a
given datalog program is equivalent to some non-recursive datalog program [Gaifman
et al. 1993] (equivalence to a given non-recursive program is decidable [Chaudhuri and
Vardi 1992]). The negative results for full datalog fuel interest in decidable fragments.
Most importantly, containment is decidable for monadic programs, using only unary
intensional predicates, with better complexity bounds for programs that are also lin-
ear, that is, have at most one use of an intensional predicate in each rule [Cosmadakis
et al. 1988; Benedikt et al. 2012]; but interesting extensions have been proposed as
well [Bonatti 2004; Calvanese et al. 2005].

A different way to decidability leads via a restriction of the class of possible database
instances, typically to trees or tree-like structures. This can be justified either by the
nature of the data—for instance, a representation of the hierarchical structure of a
company—or by the data format itself, as is the case for XML or JSON. When the
class of structures is restricted to finitely-labelled trees (or words), even satisfiability
is undecidable (see e.g. [Abiteboul et al. 2013]), but for monadic programs we regain
decidability of containment [Gottlob and Koch 2004; Frochaux et al. 2014]. This de-
cidability result, however, does not carry over to a more adequate model of real-life
tree-like data, in which tree nodes carry labels from an infinite alphabet that can be
tested for equality. A recent paper [Abiteboul et al. 2013] shows that in this model even
containment of linear monadic programs in unions of conjunctive queries is undecid-
able. Restriction to bounded-depth trees restores decidability, even for containment
of arbitrary programs in monadic programs, but this is not very surprising: without
sibling order datalog programs cannot make much of unbounded branching.

Focus. In this paper we aim beyond bounded-depth trees. We work with unordered
trees over infinite alphabet; that is, the extensional predicates include label tests, label
equality, child, and descendant, but not sibling order. This is in tune with a large
proportion of the literature of the subject, but in real-life applications sibling order
is meaningful and may be used in queries. Unfortunately, its presence quickly leads to
undecidability; we discuss this in more detail in the concluding section of the paper.
Moreover, we consider only connected programs; that is, all nodes mentioned in the
program are connected by child or descendant predicates. This is not an uncommon
assumption either [Cosmadakis et al. 1988; Gaifman et al. 1993]. A practical reason is
that real-life programs tend to be connected (cf. [Bancilhon and Ramakrishnan 1986]).
Programs that are not connected combine pieces of unrelated data, which corresponds
to the cross product, an unnatural operation in the database context. It seems even
more natural to assume connectedness in the tree-structured data model.

The starting point is the observation that for monadic programs it matters if the
descendant relation is allowed or not. Indeed, the simplest idea of replacing each use
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of descendant with its recursive definition in terms of child (analogous to the first
example), does not give a monadic program. In fact, descendant can only be eliminated
from monadic programs that use label equality locally: for instance, rule

P (X)← Q(X), child(X,Y ), X ∼ Y, desc(Y,Z), R(Z) ,

which compares labels of nodes connected with the child predicate, can be replaced
with

P (X)← Q(X), child(X,Y ), X ∼ Y,R′(Y ) ,

R′(Y )← child(Y, Z), R′(Z) ,

R′(Y )← child(Y, Z), R(Z) ,

but the same approach does not work for rule

P (X)← Q(X), child(X,Y ), X ∼ Y, desc(Y, Z), R(Z), Y ∼ Z ,

which compares labels of nodes connected only with the descendant predicate. In fact,
one cannot even express that a node has a descendant with the same label. As the
undecidability result of [Abiteboul et al. 2013] uses the descendant predicate a lot, it
does not carry over directly to child-only programs, that is, programs that do not use
descendant. This is one of the two fragments we focus on.

For the case with descendant, we work with the class of downward programs, where
each rule only moves down from the node in the head. While forbidding descendant is
a natural restriction (pointed out as an open problem in [Abiteboul et al. 2013]), down-
ward programs may seem exotic. But in fact, they were our initial point of interest.
Our original motivation comes from the area of ActiveXML, where testing equiva-
lence of ActiveXML systems amounts to solving the containment problem for regular
tree pattern queries (RTPQs): essentially, regular expressions over the set of tree pat-
terns using child and descendant axes and label equalities. In [Abiteboul et al. 2011]
it is shown that the containment problem is decidable (in EXPTIME) for RTPQs with
restricted use of label equalities, mimicking data comparisons allowed in XPath (an
XML query language used widely in practice and extensively studied [Benedikt et al.
2008; Figueira 2009; Miklau and Suciu 2004; Neven and Schwentick 2006]). This re-
sult relies on Figueira’s EXPTIME-completeness of satisfiability for RegXPath(↓,=),
i.e., XPath with child axis and data equality, extended with Kleene star (descendant
is expressible with child and Kleene star, unlike for monadic datalog) [Figueira 2009].
We show that RTPQs are equivalent to linear downward programs (a special case of
a more general correspondence between monadic programs and a natural extension
of RTPQs). Hence, decidability of the containment problem for linear downward pro-
grams immediately gives decidability of the unrestricted ActiveXML problem.

The use of label equalities, which was the source of difficulties in [Abiteboul et al.
2011], is precisely what distinguishes RegXPath from monadic datalog. Without label
equalities, positive RegXPath (no negation) coincides with monadic datalog, and the
correspondence extends to natural fragments of the two formalisms. Once label equal-
ities are allowed, the expressive power of RegXPath falls short even of conjunctive
queries: for instance, one cannot express in RegXPath (positive or not) that a given
node has three descendants with the same label, whose parents have labels a, b, c. On
the other hand, as we have seen, restricting to monadic programs also limits the way in
which labels can be compared in datalog: an example of a property expressible in posi-
tive RegXPath(↓,=), but not in monadic datalog, is that the same label can be reached
from a given node by going down through a-labelled nodes, and by going down through
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b-labelled nodes. This can be expressed easily using binary intensional predicates:

P (X)← Y ∼ Z, desca(X,Y ), descb(X,Z),

descσ(X,Y )← child(X,X ′), σ(X ′), descσ(X ′, Y ),

descσ(X,Y )← child(X,Y )

with σ = a, b, but there is no way to compare the labels of the two descendants of X
without passing them as arguments of the intensional predicates. Thus, in the pres-
ence of label equalities, the two formalisms diverge and neither upper bounds nor
lower bounds carry over between them.

Results. Our results are summarized in Table I, where D-Datalog(↓, ↓+) stands for
downward programs, and Datalog(↓) stands for child-only programs. We are mostly
interested in unranked trees, where nodes can have arbitrarily many children, but
to provide a broader background for our main results, we also consider ranked trees,
where the number of children is fixed, and words, which can be seen as unary trees.

Unranked trees Ranked trees Words

linear non-linear linear/non-lin. linear/non-lin.

D-Datalog(↓, ↓+) EXPSPACE 2-EXPTIME UNDEC. UNDEC.

Datalog(↓)
2-EXPTIME-hard

UNDEC. 2-EXPTIME PSPACE
in 3-EXPTIME

Table I: Complexity of containment for monadic datalog fragments.

Our main contributions are the decision procedures for the containment of down-
ward programs and linear child-only programs over unranked trees. In the lat-
ter case there is a gap between the upper and lower bound, but the problem be-
comes 2-EXPTIME-complete when restricted to containment in non-recursive pro-
grams. Rather unexpectedly, for non-linear child-only programs we lose decidability:
it turns out that using non-linearity we can simulate the descendant predicate to the
extent sufficient to repeat the reduction used for unrestricted programs. It is also un-
usual that for ranked trees and words the situation is essentially the opposite: for
non-linear child-only programs containment is decidable, and for downward (even lin-
ear) programs it is not. (Due to slight discrepancies between data models, this result
does not follow directly from [Abiteboul et al. 2013], and has to be reproved).

Techniques. The differences between the ranked and unranked case are reflected
in the techniques used to show decidability. In the ranked case the proof strategy is
rather standard:

(1) show that any tree that is a counter-example to containment can be relabeled so
that it only uses labels from a fixed alphabet of exponential size;

(2) turn both programs to automata working over finitely-labelled trees and test them
for containment of the recognized languages.

For words the complexity is lower because the bound on the alphabet in (1) is polyno-
mial and the containment test is cheaper.

For unranked trees the approach is somewhat dual: instead of limiting the size of
the alphabet, we make the labels in the counter-example as different as possible. More
precisely, the proof strategy is as follows:
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(1) show that any counter-example to containment can be turned into a canonical one
(essentially, a universal model for one of the programs), which avoids merging wit-
nessing nodes and reusing labels whenever possible;

(2) turn both programs to automata working over finitely-labelled trees encoding the
canonical counter-examples and test them for containment of the recognized lan-
guages.

Interestingly, it is what makes one approach fail that makes the other work: bound-
ing the alphabet size requires bounded branching, and not merging witnessing nodes
requires unbounded branching.

The proofs of the upper bounds are self-contained, modulo standard properties of
word and tree automata, plus a lesser-known result on alternating two-way automata
[Cosmadakis et al. 1988; Vardi 1998]. Lower bounds use standard hard problems, or
their easy variations.

Improvements. The exponential gap for linear child-only programs over unranked
trees, which was already pointed out in the conference version of this paper, has
been recently closed using rather different methods: the problem turns out to be
2-EXPTIME-complete [Bojańczyk et al. 2015]. The argument amounts to showing that
for linear child-only programs it is enough to consider counter-examples of bounded
clique-width [Courcelle and Olariu 2000]—a complexity measure of structures, simi-
lar to tree-width—and then evaluating programs over the usual clique decompositions,
which are finitely labelled trees.

Organization. In Section 2 we introduce datalog and RTPQs, and explore the connec-
tions between them. Then, after a brief glance at containment over words and ranked
trees in Section 3, we move on to unranked trees to discuss our main results in Sec-
tion 4. All undecidability arguments are moved to Section 5 and all hardness proofs
are presented in Section 6. We conclude in Section 7.

Note. A 12-pages long, preliminary version of this paper appeared in conference pro-
ceedings [Mazowiecki et al. 2014]. There, we proved that containment of child-only
programs over words is in EXPSPACE in general and PSPACE-complete for linear pro-
grams; and over ranked trees it is in 3-EXPTIME in general and 2-EXPTIME-complete
for linear programs. This left an exponential complexity gap for non-linear programs
in both cases. Here, we close this gap using entirely different arguments: for arbi-
trary child-only programs we show PSPACE-completeness over words (Proposition 3.1)
and 2-EXPTIME-completeness over ranked trees (Theorem 3.3). Moreover, the present
paper gives full proofs of the results on unranked trees (Proposition 4.1, Theorem 4.2,
and Theorem 4.6); in [Mazowiecki et al. 2014] we only gave very high level sketches for
Theorem 4.2, and Theorem 4.6, omitting all arguments and automata constructions,
and the reduction establishing Proposition 4.1 was skipped entirely.

2. DATALOG AND RTPQS
Both formalisms work over finite unordered unranked trees labeled with letters from
a fixed infinite alphabet Σ. We write nodest for the set of nodes of tree t, and labt :
nodest → Σ for the function assigning labels to nodes. We use standard notation for
axes: ↓, ↓+, ↑, ↑+ stand for child, descendant, parent, and ancestor relations. Binary
relation ∼ holds between nodes with identical labels. We also have a unary predicate
a for each a ∈ Σ, holding for the nodes labeled with a.

Many papers on tree-structured data work with a slightly different data model,
called data trees, where each node has a label from a finite alphabet and a data value
from an infinite data domain. In that model labels can be used explicitly in the for-
mulas, but cannot be directly tested for equality, and data values can be tested for
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equality, but cannot be used explicitly (as constants). These two models are very sim-
ilar, but not directly comparable for query languages with limited negation. However,
we can easily incorporate additional finite alphabet to our setting, obtaining a gener-
alization of the two settings, and the complexity results do not change. Forbidding the
use of constants from the infinite alphabet may affect some of our lower bounds, but
not the ones showing undecidability.

2.1. Datalog
We begin with a brief description of the syntax and semantics of datalog; for more de-
tails see [Abiteboul et al. 1995] or [Ceri et al. 1990]. A datalog program P over a
relational signature S is a set of rules of the form head ← body , where head is an atom
over S and body is a (possibly empty) conjunction of atoms over S written as a comma-
separated list. There is a designated rule called the goal of the program. All variables
in the body that are not used in the head, are implicitly quantified existentially. The
size of a rule is the number of different variables that appear in it. The relational
symbols, or predicates, in S fall into two categories. Extensional predicates are the
ones explicitly stored in the database; they are never used in the heads of rules. In
our setting they come from {↓, ↓+,∼} ∪ Σ. Alphabet Σ is infinite, but program P uses
only its finite subset ΣP . Intensional predicates, used in the heads, are defined by the
rules. The program is evaluated by generating all the atoms (over intensional predi-
cates) that can be inferred from the underlying structure (tree) by applying the rules
repeatedly, to the point of saturation, and then taking atoms matching the head of the
goal rule. We write P(t) for the set of atoms returned by program P over tree t. Each
inferred atom can be witnessed by a proof tree: an atom inferred by rule r from in-
tensional atoms A1, A2, . . . , An is witnessed by a proof tree whose root has label r, and
its children are the roots of proof trees for atoms Ai (if r has no intensional predicates
in its body, the root has no children).

Example 2.1. The program below computes nodes from which one can reach label
a along a path such that each node on the path has a child with identical label and a
descendant with label b (or has label b itself):

P (X)← X↓Y, P (Y ), X↓Y ′, X ∼ Y ′, Q(X) (p1)

P (X)← a(X) (p2)

Q(X)← X↓Y,Q(Y ) (q1)

Q(X)← b(X) (q2)

p1

q1

q2

p1

q2 p2

c

c b

b a

The intensional predicates are P and Q, and the goal is P . The proof tree shown in the
center witnesses that P holds in the root of the tree on the right.

In this paper we consider only monadic programs, that is, programs whose inten-
sional predicates are at most unary. Moreover, throughout the paper we assume that
programs do not use 0-ary intensional predicates. For general programs this is merely
for the sake of simplicity: one can always turn 0-ary predicate Q to unary predicate
Q(X) by introducing a dummy variable X. For connected and downward programs
(described below) this restriction matters.

A datalog program is linear, if the right-hand side of each rule contains at most one
atom with an intensional predicate (proof trees for such programs are single branches).
For a datalog rule r, let Gr be the graph whose vertices are the variables used in r and
edge is placed between X and Y if the body of r contains an atomic formula X↓Y or
X↓+Y . A program P is connected if for each rule r ∈ P, Gr is connected. We say that
P is downward if for each rule r ∈ P, Gr is a directed tree whose root is the variable
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(X)in

a b c

(Y )out

+ + +

+

+

+

(X)in

a b c

(Y )out

+ + +

+

X

Y (b)in

Y (Z)out

(b)in

X Y (Z)out

Y

c

c b

c a

Fig. 1: Four graph patterns; all except the first one match in the tree on the right.

used in the head of r. The program from Example 2.1 is connected and downward, but
not linear. In fact, each downward program is connected.

We work exclusively with connected programs. As argued in the introduction, this is
a natural and common assumption. We write Datalog(↓, ↓+) for the class of connected
monadic datalog programs, and Datalog(↓) for connected monadic programs that do not
use the relation ↓+. For linear or downward programs we use combinations of letters L
and D, e.g., LD-Datalog(↓) means linear downward programs from Datalog(↓).

Recall that conjunctive queries (CQs) are existential first order formulas of the
form ∃x1 . . . ∃xk ϕ, where ϕ is a conjunction of atoms. Sometimes we also speak of (fi-
nite) unions of conjunctive queries (UCQs), corresponding to programs with a sin-
gle intensional predicate (goal), which is never used in the bodies of rules. Like for
datalog we use notation CQ(↓, ↓+), CQ(↓), UCQ(↓, ↓+), UCQ(↓).

Throughout the paper we work with the Boolean variant of containment, which is
unsatisfiability of P ∧ ¬Q, where P and Q are treated as Boolean queries; that is, we
ask if for each tree t, P(t) 6= ∅ implies Q(t) 6= ∅. In the unary variant of containment
one asks if for each tree t, P(t) ⊆ Q(t). Using well known methods one can reduce
the unary variant to the Boolean one (not by simply rewriting queries, though), but
the opposite reduction requires descendant or recursion. Hence, all our upper bounds
transfer to unary containment, but our lower bounds transfer only for fragments al-
lowing recursion or descendant.

2.2. RTPQs
We now move to the second formalism. Recall that Σ denotes the fixed infinite alphabet
of node labels. Let ∆ be an infinite set of variables and let τ ⊆ {↓, ↓+, ↑, ↑+} be a non-
empty set of axes (in [Abiteboul et al. 2011] only ↓ and ↓+ are used). A graph pattern
over τ is a directed multigraph with vertices labeled with elements of Σ∪∆ and edges
labeled with elements of τ . We write verticesπ for the set of vertices of pattern π and
labπ : verticesπ → Σ ∪∆ for the labeling function. Additionally, each pattern π has two
distinguished nodes: in(π) and out(π).

Definition 2.2. A homomorphism h : π → t from a pattern π over τ to a tree t is a
function h : verticesπ → nodest such that for all vertices v, w in π

— if labπ(v) ∈ Σ, then labt(h(v)) = labπ(v);
— if labπ(v) = labπ(w) ∈ ∆, then h(v) ∼ h(w); and
— h preserves binary relations from τ .

We say that π matches in t, written as t |= π, if there exists a homomorphism h : π → t.
We write t, v |= π if h maps in(π) to v and t, v, w |= π if h also maps out(π) to w.

Four examples of graphs patterns are given in Figure 1. Only the last three can be
matched in the tree on the right: to match the first one we need letters a, b, c on a single
branch. The last two patterns are equivalent, but they use different sets of relations:
the third uses only ↓ and the fourth uses ↓ and ↑.
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A tree pattern query (TPQ) over τ is a graph pattern π over τ that is a directed
tree, whose in node is the root. For instance, the second and the fourth pattern in
Figure 1 are TPQs. The third one is not a TPQ, because its in node is not in the root,
but it can be rewritten into an equivalent TPQ (the fourth pattern) at the cost of using
relation ↑. Finally, the first pattern is not a TPQ and is not equivalent to a TPQ, but it
is equivalent to a union of 6 TPQs. The set of all TPQs over τ is denoted by TPQ(τ). Let
Π = π1 · ... · πn be a word over alphabet TPQ(τ), with πi ∈ TPQ(τ). A homomorphism
h : Π → t is a sequence of homomorphisms hi : πi → t for i = 1, . . . , n such that
hi(out(πi)) = hi+1(in(πi+1)) for all i < n. We write t |= Π if there is a homomorphism
h : Π→ t; t, v |= Π if h maps in(π1) to v; and t, v, w |= Π if h also maps out(πn) to w.

Definition 2.3 ([Abiteboul et al. 2011]). A regular tree pattern query (RTPQ) ϕ
over τ is a regular expression over the alphabet TPQ(τ). L(ϕ) denotes the language
generated by ϕ. We write t, v, w |= ϕ iff there is Π ∈ L(ϕ) such that t, v, w |= Π, and
similarly for t, v |= ϕ and t |= ϕ. The set of all RTPQs over τ is denoted by RTPQ(τ).

Example 2.4. Let π be the fourth pattern in Figure 1. Then[
(a)in ↓ (X)out

]
· π∗ ·

[
(a)in

out
]

is an RTPQ that selects pairs of a-labelled nodes that are connected by a path (going
down the tree) such that each internal node on the path has label b and has a child
with the same label as one of its siblings (or itself).

Example 2.5. To illustrate further the power of RTPQs, we show how to simulate
the n-bit binary counter, enumerating values from 0 to 2n − 1, with an RTPQ of size
O(n2). To increase the counter, we need to find the least significant 0, change it to 1
and change all less significant bits to 0; all more significant bits remain unchanged.
Skipping ↓ to ease the notation, we can express this with patterns

inci = (X1)inX2 · · ·Xn−i01 · · · 1(X1)outX2 · · ·Xn−i10 · · · 0 for i < n ,

incn = (0)in1 · · · 1(1)out0 · · · 0 .

Then, we combine patterns inci into a counter going from 0 to 2n − 1:

cn = val0 ·
(
inc1 ∪ inc2 ∪ · · · ∪ incn

)∗ · val2n−1

where valk is number k stored in n bits in binary, e.g., val0 = (0)in
out0 · · · 0. This expres-

sion works if we run it on a tree consisting of a single branch: if such tree satisfies cn,
then it must contain all values from 0 to 2n − 1. Note that by locating the out node in
pattern inci on the (n + 1)-th position, we pass many values between two consecutive
TPQs, because the following nodes must overlap with the initial n nodes of the next
TPQ. On arbitrary trees this is no longer the case, but we can make the expression
work by running it up the tree, i.e., replacing ↓ with ↑.

2.3. Equiexpressiveness and witnessing patterns
The usual correspondence between patterns and CQs holds also for trees over infinite
alphabet, except that relation ∼ in patterns is not represented explicitly, but by re-
peated labels from ∆. Hence, the simplest translation from patterns to CQs involves
quadratic blowup (it can be avoided). As observed in [Gottlob et al. 2006], each satis-
fiable graph pattern can be expressed as a union of TPQs reflecting different ways of
mapping the pattern to a tree. While the size of the TPQs can be bounded by the size
of the pattern, their number is exponential. Given this, the following is routine.
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PROPOSITION 2.6. The following classes of queries have the same expressive power:
(1) RTPQ(↓, ↓+, ↑, ↑+) and L-Datalog(↓, ↓+);
(2) RTPQ(↓, ↓+) and LD-Datalog(↓, ↓+);

(3) RTPQ(↓, ↑) and L-Datalog(↓);
(4) RTPQ(↓) and LD-Datalog(↓).

Translations to datalog are polynomial; translations to RTPQs are exponential.

PROOF. We show that for every linear monadic datalog program P, there is an
equivalent RTPQ ϕP , and conversely, for every RTPQ ϕ there is an equivalent lin-
ear monadic program Pϕ. The remaining claims follow easily from these two general
translations. Recall that we assume throughout the paper that all programs are con-
nected. In the third and fourth claim this is necessary, because disconnected graph
patterns cannot be expressed as unions of TPQs without the long axes, ↓+, ↑+. But if
programs can use long axes, like in the first claim, they can easily move to any node in
the tree and this assumption is not necessary any more.

From RTPQs to datalog. If ϕ = π, an equivalent datalog program is of the form
G(X) ← bodyπ, where each node of π becomes a variable in the program, the in node
becomes X, and appropriate relations are copied. For example, TPQ π from Exam-
ple 2.4 gives G(X) ← X↓Y,X↓Z,X ′↓X,X ′↓Y ′, b(X), Y ∼ Y ′. Note how the repeated
variable Y in π is reflected by the atomic formula Y ∼ Y ′.

In general, let Aϕ be a finite automaton over the alphabet consisting of TPQs occur-
ring in ϕ that recognizes L(ϕ). The program Pϕ is created as follows. For each state q of
Aϕ, we introduce a new intensional predicate q(X), and for each transition (q, π, q′) in
Aϕ we add a rule q(X)← bodyπ, q

′(Y ), where Y is the variable corresponding to the out
node of π (Y = X if the in and out nodes coincide). If q′ is accepting, we also add rule
q(X) ← bodyπ. The goal of Pϕ is G(X) ← q0(X), where q0 is the initial state of Aϕ. For
instance, an automaton corresponding to the RTPQ

[
(a)in ↓ (X)out

]
· π∗ ·

[
(a)in

out
]

from
Example 2.4 has states p, q, r, where p is the initial state and r is the only accepting
state, with transitions (p, [(a)in ↓ (X)out], q), (q, π, q), and (q, [(a)in

out], r). This gives the
following program

G(X)← P (X) ,

P (X)← a(X), X↓Y,Q(Y ) ,

Q(X)← X↓Y,X↓Z,X ′↓X,X ′↓Y ′, b(X), Y ∼ Y ′, Q(Z) ,

Q(X)← a(X), R(X) ,

Q(X)← a(X) ;

since there are no transitions from state r, the penultimate rule can be dropped.
From datalog to RTPQs. Let P be a linear monadic datalog program. Without loss of

generality we can assume that each rule of P is consistent, i.e., its body is satisfiable
in a tree. Turn the conjunction of all the atoms in the body over extensional predicates
into a graph pattern. The in node is the node corresponding to the variable in the head
of the rule and the out node is the node corresponding to the variable used by the only
intensional predicate in the body of the rule (here we use the linearity of P). If there is
no intensional predicate in the rule’s body, then the out node can be any node as this
pattern will not be connected to any further patterns; set out = in for concreteness.
As we have mentioned, this graph pattern (seen as a binary query) can be rewritten
as a union of exponentially many TPQs. Let T be the set of all TPQs obtained by
transforming P ’s bodies.

We now construct an automaton A reading words over T . The states of A are the
intensional predicates of P, plus the accepting state >. The transitions of A follow
the rules of P. Let π be a TPQ obtained from rule R(X) ← . . . , Q(Y ), where Q is an
intensional predicate. We add transition (R, π,Q) to A. For rules without intensional
predicates in the body, we use > as the target state of the transition. The initial state

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: April 2016.



XXXX:10 Filip Mazowiecki et al.

X

X Y

X

Y bX

X Y a

b

ε

εε ε

ε

c

c b

b a

Fig. 2: A pattern with ε-edges and a tree where it can be matched.

is the goal of P. Next, we turn the automaton A into an equivalent regular expression
ϕP (of exponential size). Expression ϕP is an RTPQ and (seen as a unary query) it is
equivalent to P.

Rewriting graph patterns into unions of tree patterns gives exponential alphabet
T , and expression ϕP is exponential in the size of automaton A’s state-space (which
is linear in the size of P). Thus, expression ϕP is single exponential in the size of
program P. Since exponential blow-up is unavoidable when translating automata to
regular expressions, it is also unavoidable here.

When rules are translated into patterns, and vice versa, variables correspond to
nodes; the variable in the head corresponds to the in node, and the variable used in
the intensional atom (unique in linear programs) corresponds to the out node. Thus,
we may speak of in or out variables, and head or intensional nodes.

The connection between datalog and patterns goes beyond linear programs. Consider
patterns with an additional relation ε, interpreted as node equality; we indicate the use
of ε-edges by including ε in the signature, e.g., TPQ(↓, ↓+, ε). A homomorphism from
such a pattern π is a family of homomorphisms from all maximal ε-free subpatterns of
π, such that nodes connected by ε-edges are mapped to the same tree node. Note that
pattern nodes labelled with the same variable must be mapped to tree nodes with the
same label only if they are in the same ε-free subpattern. For instance, in Figure 2 the
pattern on the left can be matched in the tree on the right by mapping the nodes in
the top layer to the root of the tree, the first node of the middle layer to the left child of
the root, the remaining nodes of the middle layer to the right child of the root, the first
node of the bottom layer to the b-leaf, and the remaining nodes of the bottom layer to
the a-leaf (the ε-edges are horizontal only for readability).

Since proof trees of linear programs are single branches, they can be interpreted as
words of graph patterns (corresponding to rule bodies). Each such word has a natural
representation as a pattern with ε-edges, obtained by inserting an ε-edge from the out
node of each pattern to the in node of the following pattern. This gives a pattern rep-
resentation for proof trees of linear programs. To generalize it to non-linear programs,
let πr be the graph pattern corresponding to the conjunction of extensional atoms in
the body of rule r, and let GP be the set of all πr ’s. Then, with each proof tree one can
associate a graph pattern by replacing each r-labeled node by the pattern πr together
with appropriate ε-edges between πr ’s intensional nodes and its children’s head nodes.
Patterns obtained this way are called witnessing patterns. Note that each maximal
connected ε-free subpattern of a witnessing pattern corresponds to a rule of P. Figure 2
shows the witnessing pattern for the proof tree from Example 2.1.

2.4. Automata
Throughout the paper all decidability results use automata constructions. We briefly
recall the standard automata model for ranked trees here.
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A (bottom-up) tree automaton A = 〈Γ, Q, δ, F 〉 on at most R-ary trees consists of a
finite alphabet Γ, a finite set of states Q, a set of accepting states F ⊆ Q, and transition
relation δ ⊆

⋃R
k=0Q×Γ×Qk. A run on a tree t over Γ is a labeling ρ of twith elements of

Q consistent with the transition relation, i.e., if v has children v1, v2, . . . , vk with k ≤ R,
then (ρ(v), labt(v), ρ(v1), . . . , ρ(vk)) ∈ δ. In particular, if v is a leaf we have (q, a) ∈ δ.
Run ρ is accepting if it assigns a state from F to the root. A tree is accepted by A if it
admits an accepting run. The language recognized by A, denoted by L(A), is the set of
all accepted trees. We recall that testing emptiness of a tree automaton can be done in
PTIME, but complementation involves an exponential blow-up.

To work on ordered unranked trees we present them as binary trees, using the usual
“previous sibling, last child” encoding. That is, an unranked tree t is turned into a
binary tree tb as follows: copy the root from t to tb; for each node v from t let vb be its
copy in tb, as the left child of vb we put a copy of the previous sibling of v, and as the
right child we put a copy of the last child of v. If v is a left-most child, we put a stub
node labelled with a special symbol # /∈ Σ as the left child of vb; similarly, if v is a leaf
we put a stub node as the right child of vb. Thus we can use the same automata for the
encoded ordered unranked trees. To use them for unordered unranked trees, just pick
an arbitrary order on siblings.

As an intermediate automata model, closer to datalog than the bottom-up automata,
we shall use the two-way alternating automata introduced in [Cosmadakis et al. 1988].
A two-way alternating automatonA = 〈Γ, Q, qI , δ〉 consists of an alphabet Γ, a finite
set of states Q, an initial state qI ∈ Q, and a transition function

δ : Q× Γ→ BC+
(
Q× {−1, 0, 1}

)
describing actions of automatonA in state q in a node with label a as a positive Boolean
combination of atomic actions of the form (p, d) ∈ Q× {−1, 0, 1}.

A run ρ of A over tree t is a tree labelled with pairs (q, v), where q is a state of A and
v is a node of t, whose root is labelled with the pair consisting of q0 and the root of t,
and if a node of ρ with label (q, v) has children with labels (q1, v1), . . . , (qn, vn), and v
has label a in t, then there exist d1, . . . , dn ∈ {−1, 0, 1} such that

— vi is a child of v in t for all i such that di = 1;
— vi = v for all i such that di = 0;
— vi is the parent of v in t for all i such that di = −1; and
— Boolean combination δ(q, a) evaluates to true when atomic actions

(q1, d1), . . . , (qn, dn) are substituted by true and the remaining ones by false.

Tree t is accepted by automaton A if it admits a finite run. By L(A) we denote the
language recognized by A; that is, the set of trees accepted by A.

Example 2.7. Consider the language of trees over the alphabet {a1, a2, . . . , an}, in
which some branch contains all letters. To recognize this language, a two-way alternat-
ing automaton nondeterministically chooses a path down the tree, and at some point
decides to stop and send up the tree n subprocedures, each looking for one of the letters
ai: the states are q0, q1, . . . , qn, the initial state is q0, and the transition relation is

δ(q0, ai) = (q0, 1) ∨
(
(q1, 0) ∧ (q2, 0) ∧ · · · ∧ (qn, 0)

)
,

δ(qi, aj) = (qi,−1) ,

δ(qi, ai) = true

for i = 1, 2, . . . , n and j 6= i. Note that each equivalent (nondeterministic) bottom-up
automaton has exponentially many states.
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According to the definition above, two-way alternating automata only distinguish
between going up, down, and staying where they are. In a more general model, appro-
priate for ordered ranked trees, one could also distinguish between going to the first
child, the second child, etc. Given that our datalog programs are not able to make such
distinction, this simplified definition suffices.

The notion of two-way alternating automata is naturally adapted to words by view-
ing words as unary trees.

The computation model of two-way alternating automata is very similar to that of
datalog programs, making them a perfect intermediate formalism on the road to non-
deterministic bottom-up automata. From there one continues thanks to the following.

PROPOSITION 2.8 ([COSMADAKIS ET AL. 1988; VARDI 1998]). For each two-way
alternating automaton A (over words or ranked trees), there exist single-exponential
nondeterministic bottom-up automata recognizing the language L(A) and its comple-
ment, whose states and transitions can be enumerated in polynomial working memory.

Notice that complementing two-way alternating automata is not trivial because there
can be infinite runs that are not accepting.

3. RANKED TREES
To warm up, we first look at the special case of unary trees—or simply words—where
complexities are different than for trees of higher arity, and where some ideas can be
illustrated without much of the technical difficulty of trees of higher arity. Following
the word interpretation, the relations ↓ and ↓+ should be understood as next position
and following position.

3.1. Special case: words
Over data words and data trees, containment of monadic datalog programs with de-
scendant is undecidable—even containment of linear monadic programs in unions of
conjunctive queries [Abiteboul et al. 2013, Proposition 3.3]. As discussed in Section 2,
despite obvious similarities between our setting and the setting of data trees, neither
lower bounds nor upper bounds carry over immediately. The reduction in [Abiteboul
et al. 2013] relies on the presence of finite alphabet and cannot be directly adapted to
our setting, but with a little effort the use of finite alphabet can be eliminated. Once
descendant is disallowed, we immediately regain decidability. This may seem a very
strong restriction, but in fact—as explained in the introduction—child-only programs
can simulate the descendant relation with recursion as long as equality tests are local.

PROPOSITION 3.1. Containment over words is
(1) undecidable for LD-Datalog(↓, ↓+) (even containment in UCQs);
(2) PSPACE-complete for Datalog(↓).

The proof of item (1) is moved to Section 5 (Proposition 5.1). It is a relatively direct
reduction from the standard grid tiling problem. We encode the grid as a word built
from its consecutive rows. We rely crucially on the fact that in words (as opposed to
trees) positions have unique successors. The programs use ↓ to verify the horizontal
relation, and ↓+ and label equalities to verify the vertical relation. For the lower bound
in item (2) we show an easy reduction based on the binary counter encoding from
Section 2. We prove that even satisfiability for L-Datalog(↓) programs is PSPACE-hard
(see Section 6, Proposition 6.1).

In this section we prove that containment for Datalog(↓) is in PSPACE. We begin by
showing that it suffices to check containment over a finite alphabet. Recall that for a
program R we write ΣR for the set of labels explicitly used in R.
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LEMMA 3.2. Let P,Q ∈ Datalog(↓) over an infinite alphabet Σ, and let Σ0 = ΣP ∪
{⊥1,⊥2, . . . ,⊥n}, where ⊥1,⊥2, . . . ,⊥n ∈ Σ \ (ΣP ∪ ΣQ) are distinct fresh labels and n
is the maximal size of a rule in P or Q. Then, P ∧ ¬Q is satisfiable in a word over Σ if
and only if it is satisfiable in a word over Σ0.

PROOF. The right to left implication is obvious. Arguing in the other direction, sup-
pose we have a word v over Σ that satisfies P ∧ ¬Q. Our goal is to change the word
v into a word over Σ0. Without loss of generality, we can assume that v does not use
labels from ΣQ\ΣP . The procedure processes consecutive letters of the word v and puts
some of them on a list `, initially empty. We denote the size of the list by |`|. Let i be
the position of the next letter to process. If the letter vi is from the alphabet ΣP we do
nothing. If vi is already on the list, we move it to the beginning of the list and proceed
to the next letter. Assume vi /∈ ΣP and vi /∈ `. If |`| < n, we add vi at the beginning of `
and proceed to the next letter. If |`| = n, we modify the word v as follows:

(1) let a be the last letter in `;
(2) let b be a fresh letter that does not occur in v;
(3) for all j > i such that vj = a, change vj to b;
(4) for all j ≥ i such that vj = vi, change vj to a; and
(5) move the letter a to the beginning of `.

After processing the last letter of v we obtain a word using only letters from ΣP and at
most n letters from Σ \ (ΣP ∪ ΣQ). Hence, we can turn it into a word over Σ0, without
changing the equalities among letters of the word and letters from ΣP ∪ ΣQ. Let us
denote this word by u.

For instance, suppose that n = 3 and v = a1a1ba2a2ba3a3ba4a4b, where b ∈ ΣP , ai 6∈
ΣP and ai are all different. Then the modified word is u = a1a1ba2a2ba1a1ba2a2b. It is
clear that the whole procedure never changes equality of labels within distance n, and
does not affect labels from ΣP ∪ ΣQ. Since within the rules of P,Q all variables are
connected with ↓, it follows that u satisfies P ∧ ¬Q.

By the results of [Gottlob and Koch 2004], monadic datalog programs over ranked
and unranked trees (hence, also words) over a finite alphabet can be translated to
MSO. Hence, the above lemma immediately gives decidability of the containment prob-
lem. To get the PSPACE upper bound we shall translate programs to tree automata
without passing through MSO. As an intermediate formalism we shall use two-way
alternating automata.

PROOF OF PROPOSITION 3.1. It suffices to show that for a given program R ∈
Datalog(↓) and finite alphabet Σ0 one can construct in PTIME a two-way alternat-
ing automaton AR recognizing words over Σ0 that satisfy R. Indeed, by Lemma 3.2
it suffices to check satisfiability of P ∧ ¬Q in words over the linear-size alphabet Σ0.
From automata AP and AQ by Proposition 2.8 we obtain one-way non-deterministic
automata BP ,B¬Q of exponential size that recognize respectively the languages L(AP)
and the complement of L(AQ). From this we easily get a product automaton BP∧¬Q
equivalent to the query P ∧¬Q. The size of BP∧¬Q is exponential in size of P, Q, but its
states and transitions can be generated on the fly in polynomial space. Indeed, Propo-
sition 2.8 guarantees that the states of BP and B¬Q have polynomial representation
and their transition relations can be enumerated in polynomial space, so each time
we need a transition in the product automaton from a given state over a given letter,
we enumerate the transition relations of BP and B¬Q discarding the obtained tuples
until we find the ones we are looking for. To check emptiness of BP∧¬Q we make a
simple nondeterministic reachability test. By Savitch’s theorem, this gives a PSPACE
algorithm.
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Let us fix a program R ∈ Datalog(↓) and a finite alphabet Σ0. Since we work over
words and consider child-only connected programs, without loss of generality we can
assume that each rule r is of the form

H(X0)←
`−1∧
i=k

Xi ↓ Xi+1, ψ(Xk, Xk+1, . . . , X`)

where k ≤ 0 ≤ ` (notice that k might be negative) and ψ(Xk, Xk+1, . . . , X`) is a conjunc-
tion of atoms over unary predicates and ∼; that is, it does not use ↓. This means that
the pattern πr corresponding to the body of r is a word.

In the automaton AR = 〈Σ0, Q, q0, δ〉 we are about to define, we allow transitions of
a slightly generalized form: the transition function δ assigns to each state-letter pair a
positive Boolean combination of elements of

Q× {−N,−(N − 1), . . . , 0, . . . , N − 1, N}

for a fixed constant N ∈ N, rather than just Q × {−1, 0, 1}. The semantics of this is
the natural one: (q, k) means that the automaton moves by k positions (left or right
depending on the sign of k) and changes state to q. Each generalized automaton can
be transformed to a standard one at the cost of enlarging the state-space by the factor
of 2N + 1. In our case N will be bounded by the maximal number of variables used in
any rule of program R.

Let us describe the automaton AR. The state-space Q is

Σ0 ∪R ∪ {q0} ;

that is, it consists of the letters from Σ0, the rules of program R, and an additional
initial state q0. The transition relation δ is defined as follows. In the initial state q0,
regardless of the current letter, we loop moving to the right until we reach the position
in the word where we start evaluating program R:

δ(q0, _ ) = (q0,+1) ∨ (rgoal, 0) ,

where rgoal is the goal rule of R. When we are in state r ∈ R, regardless of the current
letter, we check that the body of r can be matched in the input word in such a way that
X0 is mapped to the current position:

δ(r, _ ) =
∧

a(Xi)∈Br

(a, i) ∧
∧

Xi∼Xj ∈Br

∨
b∈Σ0

(b, i) ∧ (b, j) ∧
∧

P (Xi)∈Br

∨
r′∈RP

(r′, i) ,

where Br is the set of atoms in the body of rule r andRP ⊆ P is the set of rules defining
intensional predicate P . In state a ∈ Σ0 we simply check that the letter in the current
position is a:

δ(a, a) = true , and δ(a, b) = false for b 6= a .

Checking correctness and the size bounds for AR poses no difficulties.

3.2. General case
The results for words can be lifted to ranked trees: complexities are higher, but the
general picture remains the same.

THEOREM 3.3. Over ranked trees containment is
(1) undecidable for LD-Datalog(↓, ↓+) (even containment in UCQs);
(2) 2-EXPTIME-complete for Datalog(↓).
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u

·v

n− 1

Fig. 3: Processing node v

Like for words, the undecidability proof is moved to Section 5 (Proposition 5.3); it
is a slight modification of the undecidability proof in Proposition 3.1. The 2-EXPTIME
lower bound can be obtained already for D-Datalog(↓) and L-Datalog(↓); both reductions
are given in Section 6 (Proposition 6.3 and Proposition 6.4). The proof is a reduction
from the emptiness problem for alternating Turing machines using at most 2n tape
cells. We encode runs of alternating Turing machines as trees with nodes labelled
with the states of the respective configurations, and below each such node we attach
a full binary tree of depth n, whose leaves store the contents of the tape cells. In this
encoding the tape cells of consecutive configurations are within small distance (linear
in n), which allows the programs to verify the correctness of the encoding.

In this section we show the 2-EXPTIME upper bound, and again we begin by bound-
ing the size of the alphabet.

LEMMA 3.4. Consider programs P,Q ∈ Datalog(↓) and a number R ∈ N, and let
Σ0 = ΣP ∪ {⊥1,⊥2, . . . ,⊥Rn}, where ⊥1,⊥2, . . . ,⊥Rn ∈ Σ \ (ΣP ∪ ΣQ) are distinct fresh
labels and n is the maximal size of a rule in P or Q. Then, P ∧ ¬Q is satisfiable in an
at most R-ary tree over Σ if and only if is satisfiable in an at most R-ary tree over Σ0.

PROOF. Analogously to Lemma 3.2, we describe a procedure that traverses the tree
with labels from ΣP ∪ (Σ\ΣQ) in a top-down fashion, level by level, and replaces labels
from Σ \ ΣQ with elements of {⊥1,⊥2, . . . ,⊥Rn}. The set of processed nodes always
consists of i full levels starting from the root, and some nodes from level i+ 1.

Let v be a node on level i+ 1 to process (see Fig. 3), and let u be the node n− 1 edges
up the tree (or the root if v is too close to the root). Suppose the label of v is a. If a ∈ Σ0,
we do nothing. Assume a /∈ Σ0. Pick a label ⊥j that does not appear in processed
descendants of u, nor in u itself. We can always find such a label because the number
of processed descendants of u (including u itself) is bounded by

∑n−1
i=0 R

i = Rn−1
R−1 < Rn,

and so is the number of labels from {⊥1,⊥2, . . . ,⊥Rn} used in these nodes. Let b ∈ Σ\Σ0

be a fresh label. We now replace all appearances of ⊥j with b, but only in unprocessed
descendants of node u. Observe that these nodes are separated from nodes that keep
their label ⊥j by distance at least n. Next, we replace all appearances of a with ⊥j ,
but only in the unprocessed descendants of u. Again, the distance from these nodes to
other nodes with label a or ⊥j is at least n. Thus, the modification does not affect the
outcome of any label comparison done by rules of programs in P ∧ ¬Q (because they
use only the short axis and are connected).

After all nodes are processed, all labels in t are from Σ0 and t still satisfies P∧¬Q.

Like for words, by [Gottlob and Koch 2004] we can conclude decidability of contain-
ment. A more detailed complexity analysis in [Frochaux et al. 2014] shows that con-
tainment of Datalog(↓) programs without ∼ on trees over a finite alphabet is EXPTIME-
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complete. We have already reduced containment over infinite alphabet to containment
over a finite alphabet of exponential size. We shall now see that ∼ can be eliminated
without further blow-up, and the 2-EXPTIME upper bound follows from the bound of
[Frochaux et al. 2014]. For the sake of completeness, we include the full proof, rather
than just invoking the result of [Frochaux et al. 2014]. It relies on the translation of
programs to two-way alternating automata. As a side comment, [Frochaux et al. 2014]
also gives a 2-EXPTIME upper bound for programs allowing descendant, for which we
have undecidability over infinite alphabet; this means that in the presence of descen-
dant the reduction to a finite alphabet fails.

PROOF OF THEOREM 3.3. For a given program R ∈ Datalog(↓) with rules of size at
most n and a finite alphabet Σ0, we shall construct a two-way alternating automaton
AP of size O(‖R‖ · |Σ0|n · n) recognizing trees over Σ0 that satisfy R; here, ‖R‖ is the
total size of program R. The construction will take time polynomial in the size of the
input and output. Using this construction, like for words, by Lemma 3.4 and Proposi-
tion 2.8 we reduce the containment problem to the emptiness problem for a nondeter-
ministic tree automaton, this time of double exponential size, and test emptiness with
the standard PTIME algorithm.

Let us fix a program R ∈ Datalog(↓) and a finite alphabet Σ0. Given that we are only
interested in trees over alphabet Σ0, we can eliminate the use of ∼ from R: if a rule
contains X ∼ Y we replace this rule with |Σ0| variants in which X ∼ Y is replaced
with a(X), a(Y ) for a ∈ Σ0. The size of the program grows by a O(|Σ0|n) factor; the size
of the rules grows only by a constant factor.

Since we are working on trees we can further transform the program so that the
patterns corresponding to the rules of the program are trees (with in and out nodes
positioned arbitrarily). Indeed, it can be done by unifying variables X and Y whenever
the rule contains X ↓ Z and Y ↓ Z for some variable Z, and removing rules containing
atom U ↓ U , or atoms a(U) and b(U) for some variable U and distinct letters a and b.
This modification does not increase the size of the program.

Finally, we rewrite each rule into a set of rules of the form

H(X0)← a(X0) ∧ ψ0(X0) ∧
∧̀
i=1

axi(X0, Xi) ∧ ψi(Xi)

where a ∈ Σ0, axi(X0, Xi) is either X0 ↓ Xi or Xi ↓ X0, and ψi(Xi) is a conjunction of
(monadic) intensional atoms. That is, one rule can only test the label and some inten-
sional predicates for the current node, and demand existence of neighbours (children or
parents) satisfying some intensional predicates. This modification introduces auxiliary
intensional predicates, but the size of the program increases only by O(n) factor.

The resulting program is essentially a two-way alternating automaton, only given
in a different syntax.

4. UNRANKED TREES
We have seen in Section 3 that over ranked trees containment is undecidable for down-
ward programs, but decidable for child-only programs. Over unranked trees exactly
the opposite happens. Containment for general programs, even for L-Datalog(↓, ↓+), re-
mains undecidable as explained in Section 3, but the reduction for LD-Datalog(↓, ↓+) in
Theorem 3.3 relies heavily on the fixed number of children and does not go through for
unranked trees. In Section 4.1 we obtain decidability even for D-Datalog(↓, ↓+). More
surprisingly, we lose decidability for Datalog(↓): using non-linearity and recursion we
can simulate ↓+ to a point sufficient to repeat the reduction for words (see Section 5).

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: April 2016.



Monadic datalog and regular tree pattern queries XXXX:17

X

X a

X

X

X

X a

Y

Y

X

X a

a

a

X

X a

a

b

b a

a

b

c1

c2

b

a

a

(0) (1) (2) (3) (4) (5)

+

ε

+

ε

+

ε

+ +

Fig. 4: Consecutive steps in transforming a pattern (0) into a canonical model (5).

PROPOSITION 4.1. Over unranked trees containment of Datalog(↓) programs in
UCQ(↓) queries is undecidable.

In Section 4.2 we show that containment for linear Datalog(↓) programs is decidable.

4.1. Downward programs
The aim of this section is to prove the following theorem.

THEOREM 4.2. Over unranked trees containment is 2-EXPTIME-complete for
D-Datalog(↓, ↓+), and EXPSPACE-complete for LD-Datalog(↓, ↓+).

As usual, the proofs of the lower bounds are moved to Section 6 (Proposition 6.2
and Proposition 6.3). In the non-linear case, hardness does not require ↓+. This is
not so surprising: already in Proposition 4.1 we simulate ↓+ using non-linearity. The
2-EXPTIME-hardness reduction is the same as for D-Datalog(↓) over ranked trees (The-
orem 3.3). The EXPSPACE-hardness for linear downward programs is based on similar
ideas, but due to technical difficulties this is the most involved reduction.

The proof of the positive claims of Theorem 4.2 bears some similarity to the argu-
ment showing decidability of containment of datalog programs in UCQs over arbitrary
structures [Chaudhuri and Vardi 1992]. We show that satisfiability of P ∧ ¬Q can be
tested over special trees, so called canonical models, and the set of suitable encodings
of canonical models satisfying P ∧ ¬Q is recognized by a tree automaton.

So far our decidability results relied on bounding the number of labels in the models
of P ∧ ¬Q; this requires a bound on the number of children. Over unranked trees we
do the opposite: we use the fact that witnessing patterns of downward programs admit
injective (up to ε-edges) homomorphisms into unranked trees, and we make the labels
as different from each other as permitted by P.

Definition 4.3. A tree is a canonical model for a satisfiable pattern π from
TPQ(↓, ↓+, ε), if it can be obtained in the course of the following procedure:

(1) rename variables so that maximal ε-free subpatterns use disjoint sets of variables
(do not change equalities within maximal ε-free subpatterns);

(2) unify labels of nodes connected with ε-edges (since π is satisfiable, whenever end-
points of an ε-edge have different labels, at least one is labeled with a variable:
replace all occurrences of this variable with the other label);

(3) merge all nodes connected with ε-edges;
(4) substitute each variable with a fresh label;
(5) replace each ↓+ edge with a sequence of nodes labeled with fresh labels, connected

with ↓ edges.

An example of the construction described in Definition 4.3 is given in Fig. 4.
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Note that a pattern from TPQ(↓, ↓+, ε) represents a family of canonical models: fresh
labels and, more importantly, the lengths of ↓+ paths are chosen arbitrarily.

LEMMA 4.4. Let P, Q ∈ D-Datalog(↓, ↓+). Then P ∧ ¬Q is satisfiable over unranked
trees if and only if it is satisfiable in a canonical model of a witnessing pattern of P.

PROOF. Let t be a model for P ∧ ¬Q and let π be the corresponding witnessing
pattern for P. Let π′ be the pattern obtained from π by merging and unifying nodes
connected with ε. By construction, π and π′ are equivalent and their classes of canonical
models coincide. It suffices to provide a canonical model of π′ that does not satisfy Q.

Let t.v be the subtree of t rooted at node v. Consider a copy of t with t.v duplicated,
i.e., with an additional copy of t.v also rooted at v. Then, the modified tree satisfies Q if
and only if t |= Q. The ‘if ’ implication is obvious. For the ‘only if ’ direction suppose that
there is a witnessing pattern with a homomorphism h to the modified tree. Whenever
h maps a pattern node to a node w in the additional subtree, we modify h to map that
pattern node to the original copy of w in t.v. Since there is no sibling relation in the
signature, the modified h preserves binary relations and remains a homomorphism.

Consequently, we can duplicate subtrees of t so that π′ is matched injectively but Q
remains not satisfied. The next step is to remove from t all nodes that are not in the
image of π′ and have no descendant in the image of π′ (this is important because of
↓+-edges in π′). The obtained tree t′ is still a model for P ∧ ¬Q.

Up to relabeling, t′ is also a canonical model for π′. Let tπ′ be a canonical model for
π′ where the lengths of paths between nodes connected with ↓+-edges are the same
as the lengths of the corresponding paths in t′. Trees tπ′ and t′ are isomorphic up
to the labeling, and the isomorphism is compatible with the injective homomorphism
from π′ to t′. Consequently, whenever two nodes in tπ′ have equal labels, by definition
the corresponding nodes in π′ have equal labels, and so their images in t′ also have
equal labels. Similarly, whenever a node in tπ′ has a label explicitly used in P, the
corresponding node in t′ has the same label. This proves that tπ′ |= P ∧ ¬Q.

Let N be the maximal number of variables in a rule in P. Let TPQP(↓, ↓+, ε) be the
class of patterns from TPQ(↓, ↓+, ε) with branching bounded by N and labels coming
from ΣP ⊆ Σ (labels used explicitly in P) or a fixed set ∆0 ⊆ ∆ of size N . As P is
downward, its witnessing patterns are elements of TPQP(↓, ↓+, ε).

Let Σ0 = ΣP∪∆0. Patterns in TPQP(↓, ↓+, ε) can be viewed as trees over the alphabet
Σ0×{↓, ↓+, ε}, where the first component is the label of the node in the pattern, and the
second component determines the kind of edge between the node and its parent (in the
root the second component plays no role, we may assume that is ε). Conversely, each
tree over this alphabet corresponds to a pattern from TPQP(↓, ↓+, ε) (up to the second
component of the root label). The technical core of Theorem 4.2 is the following lemma.

LEMMA 4.5. The set of patterns π ∈ TPQP(↓, ↓+, ε) such that P ∧¬Q is satisfied in a
canonical model of π is recognized by a double exponential tree automaton, whose states
and transitions can be enumerated in exponential working memory.

PROOF. We first show how to recognize (encodings of) canonical models of patterns
from TPQP(↓, ↓+, ε) that satisfy P ∧ ¬Q, and then explain how this gives the claim.

Encoding. Our goal is to have patterns over the alphabet Σ0 × {↓, ε}, because each
pattern without ↓+ corresponds to a unique canonical model (up to the choice of fresh
labels). We take care of this by adding a new label $ to the alphabet Σ0. Suppose we
want to have v↓+w in our pattern. We encode it by adding a path from v to w with nodes
labeled by ($, ↓). From the point of view of canonical models, the intended meaning
is that nodes labeled with ($, ↓) encode nodes with unique labels. We disallow ($, ε),
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because contracting ε-edges might violate uniqueness of represented labels. From now
on, patterns are over Σ0 × {↓, ε} with a special label $ ∈ Σ0.

Partial matchings. In order to evaluate programs on the encodings, our automaton
will need to store information about partial homomorphisms from patterns to the en-
coded tree. For pattern κ ∈ TPQ(↓, ↓+), let Pos(κ) be the set of all nodes of κ and all
↓+-edges of κ. The building blocks of the states are partial matchings of κ, i.e., ele-
ments of

Part(κ) = (Σ0 ∪ {[,⊥})Pos(κ) .

A partial matching f ∈ Part(κ) will summarize information about a partial homomor-
phism from κ into the subtree s of the canonical model read so far by the automaton:
f(p) = ⊥ means that the homomorphism is not defined on p. If f(p) 6= ⊥ for all p, we
call f a total matching; it represents a total homomorphism that maps the root of
κ to the root of s. More generally, if f maps the parent of some p ∈ Pos(κ) to ⊥ and
f(p) 6= ⊥, then p is mapped to the root of s by the homomorphism represented by f .
We shall be only interested in partial homomorphisms whose domains are unions of
subtrees of κ; that is, we assume that if f(p) 6= ⊥ and q is a descendant of p in κ, then
f(q) 6= ⊥. This convention applies also to ↓+-edges. A ↓+-edge from u to v is treated as a
virtual node whose parent is u and the unique child is v. If this virtual node is matched
at the root of tree s, it means that the subtree rooted at v has been matched, but v is
not mapped to the root of s, but somewhere below.

If f(p) ∈ Σ0 then f(p) is the label of the node to which p was mapped. If p is a ↓+-
edge the label does not matter, it only matters whether f(p) 6= ⊥; we shall assume
that ↓+-edges are always mapped to ⊥ or [. Let us now explain how we use the value
[ for node positions. The automaton will sometimes go through an ε-edge, which is
indicated by ε in the letter in the root of s. As explained before, even though some of
the labels we remember in partial matchings may repeat above the ε-edge, in reality
they represent different labels in the model: the only labels that are really the same
are the labels from ΣP and the label used in the root of s. Therefore, before we finish
processing the node s, we shall replace all other labels in f with [, which means that
these positions of κ were mapped to nodes with labels that will never appear again in
the model. Suppose f maps a node v from κ to ⊥ but κ requires this node to have the
same label as a different node already mapped to [. Then we can forget f because we
will never find the label for v outside of s.

Automaton evaluating a downward program R on encodings. The states of automa-
ton AR are subsets of

Part(R) =
⋃
r∈R

Part(πr)

plus an accepting state > (the state space is doubly exponential). The automaton es-
sentially computes partial matchings of patterns corresponding to the rules ofR in the
currently read subtree, and uses them to find a matching of a witnessing pattern.

Suppose that the currently processed node v has label (a, ε). In this case we shall
propagate up the tree partial matchings at the children of v, not at v itself. Let M be
the union of states in v’s children (possibly none), closed under compatible unions of
partial matchings. Recall that positions mapped to [ in different partial matchings of
pattern πr in fact get different labels; this gives incompatibility if they are labeled with
the same variable in πr, and such partial matchings cannot be combined. The state in
v is M , except that each b ∈ Σ0 \ (ΣP ∪{a}) used in a matching should be replaced with
[, because any future occurrences of b will represent different labels.

If the label of the currently processed node v is (a, ↓), we also start from the union
M of states in v’s children, closed under compatible unions of partial matchings. This
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gives partial matchings at the children of v. Now, we would like to compute partial
matchings at v. Essentially, we should extend each matching f ∈M of pattern πr to v,
whenever possible. How do we do this?

Assume position p is an unmatched node in πr. We can extend f to p if and only if

— each descendant of p is matched; and
— either p has label a, or p has label x ∈ ∆ and each matched node position p′ with the

same label x is mapped to a.

If we choose to extend, we set f(p) = a, unless a = $; since $ represents a label that
occurs nowhere else, if a = $ we set f(p) = [. If at least one of p’s children is a matched
node position, we must extend f to p; if we cannot, we discard f .

If position p is an unmatched ↓+-edge, we can (and must) extend f to p, if and only if
the unique child of p is matched. As we have explained, we map p to [. Note also that if
a ↓+-edge p is matched (at some child of v) and its parent position is not matched, we
can also match p at v: the matching f is not modified at p, but it represents a different
homomorphism.

Let M ′ be the set of all possible extensions of matchings from M . Clearly, M ′ cor-
rectly represents all partial homomorphisms from patterns πr to the read subtree. But
we are interested in homomorphisms of witnessing patterns, not just of patterns πr.
We cannot remember the whole matchings of witnessing patterns, because they can
be arbitrarily large. The trick is to forget parts of it as soon as they are no longer
needed. Consider a node u in πr that corresponds to a variable occurring in some in-
tensional atoms of rule r. It is clear, that if node u is to be matched at the currently
processed node v of the tree, each of these intensional atoms should be witnessed by
a total matching (at v) of a pattern corresponding to one of its rules. Note that this is
a recursive condition, as these patterns may need other patterns matched at v. Thus,
the state after processing v should contain exactly those partial matchings that satisfy
these requests for each node to be matched at v. We can compute them from R and M ′
in PTIME (simple reachability), which means time exponential in the size of R.

Automaton AR accepts if it finds a total matching of the pattern corresponding to
the goal rule of R.

Recognizing patterns whose canonical models satisfy P ∧ ¬Q. We define the stan-
dard product automaton AP × AQ, where AQ denotes the complement of AQ (it is
deterministic, so there is no blow-up). This automaton recognizes whether P ∧ ¬Q is
satisfied in the encoded model. We modify this automaton to work on the original en-
codings of the models, i.e., on patterns from TPQP(↓, ↓+, ε): upon reading label (a, ↓+),
the automaton first updates the states as if the label was (a, ↓), and then performs
ε-transitions simulating arbitrary long paths of nodes labeled with ($, ↓). This intro-
duces non-determinism, but it does not matter since we already have an automaton
for the whole query P ∧ ¬Q.

To test satisfiability of P ∧¬Q, we build the automaton given by Lemma 4.5 and test
its emptiness. Since emptiness can be tested in PTIME, this is a 2-EXPTIME algorithm.

If P is linear (Q may be non-linear), we can do better. As proof trees of linear pro-
grams are words, their witnessing patterns have a very particular shape: one main
branch (corresponding to the recursive calls of intensional predicates) and small sub-
trees off this branch with at most N branches (fragments of patterns corresponding
P ’s rules). Over such trees emptiness of a given automaton B can be tested by a non-
deterministic algorithm in space O(N log |B|). Indeed, the claim is well known (and
easy to prove) for trees with at most N branches (see e.g., [Neven and Schwentick
2006]). In our case, the algorithm can keep guessing the main path bottom-up, to-
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gether with the states in the nodes just off the path, and use the previous result as a
subprocedure to test if B can accept from these states.

Generating the automaton from Lemma 4.5 on the fly in exponential working mem-
ory, we can test its emptiness on trees of special shape in EXPSPACE. A natural gen-
eralization of the claim above gives EXPSPACE algorithm for nested linear programs,
where any predicate defined by a linear subprogram can be used freely outside of this
subprogram. Nested linear programs are a more robust class then linear programs,
e.g., they are closed under conjunction.

4.2. Linear child-only programs
For child-only programs, we get decidability if we assume linearity.

THEOREM 4.6. Over unranked trees containment for L-Datalog(↓) is in 3-EXPTIME;
containment of L-Datalog(↓) programs in UCQ(↓) queries is 2-EXPTIME-complete.

The lower bound is proved in Section 6 (Proposition 6.4); the reduction is the same
as for L-Datalog(↓) over ranked trees (Theorem 3.3). The general strategy to prove the
upper bound is as for downward programs, but this time we face a new difficulty. The
patterns corresponding to rules of L-Datalog(↓) programs need not be tree patterns any
more, but without loss of generality we can assume that they are: since each rule is
connected, by merging nodes sharing a child one obtains a pattern from TPQ(↓, ↑). Wit-
nessing patterns are then elements of TPQ(↓, ↑, ε): sequences of TPQ(↓, ↑) patterns con-
nected with ε-edges between out nodes and in nodes. The problem is that for such pat-
terns, before demanding injective homomorphisms, we need to merge not only nodes
connected with ε-edges, but also (again) nodes sharing a child.

The first step to fix this is to adjust canonical models. One way to do this is to modify
accordingly item 3 in Definition 4.3 (item 5 becomes void), but we prefer to give a
different definition (yielding the same object), that reflects more accurately the way
automata look at canonical models.

Definition 4.7. Fix a pattern π ∈ TPQ(↓, ↑, ε) and rename variables so that maxi-
mal ε-free subpatterns of π use disjoint sets of variables. The canonical model tπ and
the witnessing canonical homomorphism hπ : π → tπ are constructed by an itera-
tive procedure processing the nodes of π in a top down fashion. With each processed
node, the partially constructed tπ and hπ are extended, and some variables of π may
get unified or substituted with constants from Σ (formally, an equivalence relation θπ
is maintained over the labels of π—variables and constants). We begin with a tree con-
sisting of a single node v0 and a partial homomorphism hπ(root(π)) = v0. While there
is an unprocessed node x, whose parent y is processed and hπ(y) = v, we perform one
of the following, depending on the label of edge (x, y):

(↓) add a new node u with label labπ(x) as the last child of v, and set hπ(x) = u;
(ε) unify labtπ (v) and labπ(x) in π and in tπ, and set hπ(x) = v;
(↑) if v has a parent u, unify labtπ (u) and labπ(x), and set hπ(x) = u,

if v has no parent, add parent u with label labπ(x), and set hπ(x) = u.

If at any point unification of two constants is attempted, the procedure fails. Other-
wise, before returning the result, we replace each variable in tπ with a fresh constant.

Sibling order in case (↓) is specified intentionally, for the purpose of the automata
construction in Lemma 4.11 below. An example of the construction is given in Fig. 5.

LEMMA 4.8. Let π, ρ be patterns from TPQ(↓, ↑, ε), and let π be satisfiable.

(1) There exists a canonical model tπ, unique up to the choice of fresh labels and the
sibling order, and a witnessing homomorphism hπ : π → tπ.
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Fig. 5: Consecutive steps in transforming a pattern (0) into a canonical model (5).
Nodes are processed in the prefix order.

(2) If tπ satisfies ρ, then each tree satisfying π also satisfies ρ (unless ρ uses one of the
fresh constants from the construction of tπ).

PROOF. Each unification of labels in the construction described in Definition 4.7 is
induced by unifying labels of nodes that must be mapped to the same tree node (by
the semantics of patterns). Consequently, if pattern π can be mapped to some tree,
unification of two different constants will never be attempted during the construction.
Hence, for a satisfiable π the procedure always successfully builds tπ and hπ : π → tπ.
The order in which the nodes of π are processed only influences the sibling order in tπ.

Before the final substitution of variables with fresh constants, tπ can be seen as a
pattern π′ ∈ TPQ(↓). By construction, π′ is equivalent to π. As long as ρ does not use the
fresh constants replacing variables of π′ in tπ, each homomorphism g : ρ → tπ induces
a homomorphism ĝ : ρ → π′. Now, if a tree t satisfies π, it also satisfies π′ with some
witnessing homomorphism g′ : π′ → t, which gives a homomorphism ĝ ◦ g′ : ρ→ t.

As an immediate corollary from Lemma 4.8 we obtain an analogue of Lemma 4.4.

COROLLARY 4.9. Let P,Q ∈ Datalog(↓). P ∧ ¬Q is satisfiable over unranked trees
iff it is satisfiable in a canonical model of a witnessing pattern of P.

Thus, like before, deciding satisfiability of P ∧ ¬Q amounts to testing existence of a
witnessing pattern π for P whose canonical model does not satisfy Q. This is also more
involved than for downward programs: nodes arbitrarily far apart in π may represent
the same node of the canonical model. An automaton cannot compute this correspon-
dence; we need to make it explicit. In place of direct encodings of patterns, we shall use
encodings that combine information about π, tπ, and hπ in a single tree. The idea is to
encode π and hπ as an additional labeling of tπ. But, since unboundedly many nodes of
π can be mapped to the same node of tπ, there is no natural way to do it with a finite
alphabet. The solution is to restrict the representation to the main branch of π, which
determines the way P traverses the tree.

Being an L-Datalog(↓) program, P traverses the tree by moving from node to node
checking some local conditions, until it reaches an accepting state: a satisfied non-
recursive rule. Each time, the node to move to is determined by what we call the spine
of the current rule r, which can be defined in terms of the corresponding pattern πr as
follows. The spine of π ∈ TPQ(↓, ↑), is formed by the shortest path connecting in(π) to
out(π). The remaining nodes form the limbs of π; they are a collection of subpatterns,
each attached to a spine node. If the in and out nodes in πr coincide—which by conven-
tion includes all non-recursive rules—we call r stationary. For stationary rules the
spine is trivial: it consists of the in node and no edges.

The partition into spine and limbs can be lifted to witnessing patterns. Since pro-
gram P is linear, all the ε-edges in a witnessing pattern π are on a single branch: this
branch, from the root down to the last ε-edge, is the spine of π. Note that the spine
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of π is the concatenation of the spines of the maximal ε-free subpatterns of π, with
ε-edges inserted between them (the spine of the last one consists of a single node, as
the corresponding rule of P is non-recursive).

Let ρ be the spine of π. Observe that canonical model tρ is isomorphic to the subtree
hπ(ρ) of tπ, and that hρ coincides with hπ restricted to ρ (up to this isomorphism). We
shall focus on ρ, tρ, hρ. Note that there is still no bound on the number of nodes of ρ
mapped to a single node of tρ. But hρ induces a mapping from edges of ρ to edges of tρ,
and the number of non-ε edges mapped to a single edge of tρ is bounded by 2. Indeed, in
the procedure building tρ for any pattern ρ that does not branch, each edge is traversed
once when it is created, upwards or downwards. If it was created while going down, it
may be traversed once more, going up. Once we go up along an edge, we never come
back, because whenever we go down, we move to a freshly created node.

Consequently, we can encode ρ, tρ, hρ as a tree obtained from tρ by erasing node
labels, and labeling its edges with the edges of ρ mapped to them by hρ. More precisely,
the labels come from the alphabet(

Spine(P) ∪ {>}
)
×
(
Spine(P) ∪ {>}

)
,

where Spine(P) is the disjoint union of the sets of spine edges of πr, for all rules r ∈ P.
The two coordinates describe traversing the edge downwards and upwards, respec-
tively; > is used for edges traversed only once.

Example 4.10. Consider the program on the left and the patterns on the right cor-

P (X)← X↓Z1, Z1↓Z2,

a(X), Q(Z2)

Q(X)← Z1↓Z2, Z2↓X,Z1↓Z3, Z3↓Z4,

X ∼ Z3, Q(Z4)

Q(X)← Z1↓Z2, Z2↓X,Z1↓Z3,

X ∼ Z1, b(Z3)

(a)in

Z1

(Z2)out

e1

e2

pattern π0

Z1

Z2

(X)in

X

(Z4)out

f2

f1

f3

f4

pattern π1

X

bZ2

(X)in
out

g3g2

g1

pattern π2

responding to its rules. The canonical model tπ for witnessing pattern π = π0π1π1π2 is
shown below, on the left; the highlighted nodes belong to tρ, where ρ is the spine of π.

a

21 3 b

2 3 a

(e1, f2)
(f3, f2)

(f3,>)

(e2, f1) (f4, f1) (f4,>)

To the right is the encoding of ρ; note how the use of > reflects the fact that the spine
of π2 contains no edges.

Theorem 4.6 is an immediate corollary from the following lemma. Formally, one can
turn edge labelled trees to node labelled trees by moving the label from the edge to the
lower of the two nodes it connects; the root gets label (>,>).
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LEMMA 4.11. The set of encodings of spines of witnessing patterns of P, whose
canonical models satisfy P∧¬Q, is regular. The recognizing (unranked) tree automaton
can be computed in 3-EXPTIME in general, and in 2-EXPTIME if Q ∈ UCQ(↓).

PROOF. The encoding we chose has one drawback: it is not injective. While the miss-
ing information about the limbs and the corresponding nodes of the canonical model
can be easily recovered (as long as we know the program P), keeping only ↑ and ↓ edges
means that the information about stationary rules is lost completely.

The automata construction is easier to describe for an extended encoding, where the
stationary rules are listed explicitly: between any two siblings of the original encoding
we allow an arbitrary sequence of leaves with edges leading to them labelled with
the in-nodes of stationary rules. Obviously, an automaton recognizing these extended
encodings can be turned into an automaton recognizing the original encodings: the
new automaton simply guesses the stationary rules as it goes.

The automaton has to check that

(1) the input tree is an extended encoding of the spine of a witnessing pattern π for P;
(2) the canonical model tπ exists (equivalently, pattern π is satisfiable) ; and
(3) Q is not satisfied in the canonical model tπ.

Unlike in Lemma 4.5, where we built independent automata for P and Q and took a
product automaton for P ∧ ¬Q, here we construct the whole automaton at once. How-
ever, the components are to some extent independent and we describe them separately.

To verify (1), it suffices to check two sub-conditions. First, that pattern edges in la-
bels always go down in the first component and up in the second component. Second,
that reading the labels in the whole tree in the depth-first order starting from the
root—the first component when going down and the second when going up (for station-
ary rules the second component is empty)—we obtain a sequence that can be turned
into the spine of a witnessing pattern by erasing the initial and final > symbols and
inserting ε-edges between consecutive rules. Both sub-conditions can be easily checked
with an automaton of size polynomial in the size of P. From now on we assume that
the automaton reads an extended encoding of the spine ρ of a witnessing pattern π (in
which maximal ε-free subpatterns use disjoint sets of variables). Verifying the remain-
ing two conditions is much more involved.

Checking condition (2) amounts to verifying that the construction of the canonical
model described in Definition 4.7 succeeds, that is, unification of two constants from
ΣP (the set of labels used explicitly in P) is never attempted. Towards this goal, observe
a certain compositionality of canonical models. Consider two patterns π0, π1, possibly
sharing variables. Slightly abusing notation, we shall write π0π1 for the pattern ob-
tained by identifying the out node of π0 and the in node of π1 (without relabeling the
shared variables). How is tπ0π1

related to tπ0
and tπ1

? The canonical models tπ0
and tπ1

come together with equivalence relations θπ0
and θπ1

describing the unification of la-
bels in π0 and π1. Since π0 and π1 may share variables, θπ0

and θπ1
do not have disjoint

domains and after taking their union we need to close it under transitivity to obtain the
correct equivalence relation over the labels of π0π1. This may unify some more labels
and possibly result in a failure if unification of two constants is attempted. If this suc-
ceeds, it follows easily from Definition 4.7 that tπ0π1 can be obtained by merging tπ0 and
tπ1

along the paths going upwards from the nodes hπ0
(out(π0)) and hπ1

(in(π1)). Again,
this will typically induce some unifications of labels on the two paths, which may re-
sult in a failure. Thus, we have an operation on canonical models that corresponds
to concatenation of patterns. Using this operation we can build canonical models for
a pattern by composing canonical models for its fragments (by the uniqueness of the
canonical model, the result does not depend on the way we partition the pattern).
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To build (an abstraction of) the canonical model tπ the automaton will process the
encoding of ρ bottom-up and compose (abstractions of) the canonical models for frag-
ments of π induced by the infixes of ρ. The subtree of the encoding of ρ rooted at a
node u corresponds to the infix ρu of ρ, determined by the first and last component of
the label of the edge leading to node u from its parent. Hence, when the automaton is
in node v of the encoding, and has already processed subtrees rooted in the first k of
the v’s children v1, v2, . . . , vm, then it has seen an infix ρ′ = ρv1ρv2 . . . ρvk of the spine
ρ. For any infix σ of ρ, let π[σ] denote the fragment of π consisting of σ and all the
limbs of π attached to σ (to avoid duplicates, the limbs attached to the last node of σ
are included only if it is also the last node of the spine of some πr). The automaton
has to retain sufficient information about the canonical model tπ[ρ′] to test if it can be
further composed with the canonical model for π[ρvk+1

] to obtain the canonical model
for π[ρv1ρv2 . . . ρvkρvk+1

].
From the way we compose canonical models it follows immediately that it suffices

to store the equivalence classes of labels shared by the canonical models and those
represented in the paths along which we merge the canonical models. Given that sub-
patterns corresponding to rules use disjoint sets of variables, it suffices to store the
equivalence classes of labels in the first and last rule of ρ′. Since ρ′ was read from a
sequence of subtrees rooted at subsequent siblings in the encoding, the first and last
node of ρ′ are mapped to the same node u of the canonical model tπ[ρ′], and all others
are mapped to the subtree rooted at u. Consequently, the limbs of π[ρ′] may reach at
most n levels up from u, where n is the maximal size of a rule in program P. This
means that the path from u up to the root has length at most n. But this path is pre-
cisely the one along which tπ[ρ′] will be merged with the canonical model for π[ρvk+1

];
we shall refer to it as the merging path. Summing up, we need to represent at most 3n
equivalence classes of labels: n for the merging path, n for the first rule of ρ′, and n for
the last rule of ρ′. The classes containing a constant from ΣP will be represented by
this value (there is at most one such constant in each class), the remaining classes will
be represented with fresh labels from a fixed set ∆0 ⊆ ∆, say ∆0 = {1, 2, . . . , 3n}. The
information about the first and last rule is stored in the form of partial matchings. A
partial matching of pattern πr (corresponding to a rule r) is a function

f : verticesπr → ΣP ∪∆0 ∪ {[,⊥}
where ⊥ indicates that a node is not processed yet, and [ means it has been processed,
but the equivalence class of its label will not appear in the tree any more; we write
Part(πr) for the set of all partial matchings of πr. Altogether, the component of the
state-space used by the satisfiability test is

Part(P)2 × (ΣP ∪∆0)n

where Part(P) =
⋃
r∈P Part(πr) and (ΣP ∪∆0)n represents the equivalence classes of

the labels on the merging path.
Let us see that this information can be updated as the automaton processes the

encoding of the spine ρ. It is convenient to diverge from the formal definition given in
the preliminaries and let the automaton evaluate subtrees and subforests associated
with subsequent siblings. More precisely, suppose a node v has children v1, v2, . . . , vm.
The state for a subforest associated to v1, v2, . . . , vk+1 is obtained based on the state for
the subforest associated to v1, v2, . . . , vk and the state for the subtree rooted at vk+1.
The state for the subtree rooted at v is obtained based on the state for the subforest
associated to v1, v2, . . . , vm and the label on the edge from v’s parent to v. Assuming this
convention, combining the information computed for ρ′ = ρv1ρv2 . . . ρvk and ρvk+1

into
the information for ρv1ρv2 . . . ρvkρvk+1

amounts to performing the unifications induced
by variables shared by the last pattern of ρ′ and the first pattern of ρvk+1

, and the
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unifications induced by identifying the corresponding nodes of the merging paths, and
then keeping the information about the (unified) merging path, the first rule of ρ′
and the last rule of ρvk+1

. When the automaton is done with all the children of v, it
has to turn the information computed for ρv1ρv2 . . . ρvm into the information for ρv =
eρv1ρv2 . . . ρvme

′, where (e, e′) is the label on the edge from v’s parent to v. This is done
by combining the information about the canonical models for π[e], π[ρm], and π[e′],
just like above; if v happens to be a leaf, we take the information about the canonical
model for π[ee′]. As the final step before moving up we shift the stored path: we cut
off the lowest node and add a new one on top with a label from ∆0 that is not used
anywhere else (the size of ∆0 guarantees there is one). If v is a leaf representing a
stationary rule r, we return the information about the canonical model for πr (without
shifting up). Note that the whole computation involves the information stored and one
or two fragments of patterns corresponding to rules of P, so it can be precomputed and
encoded in the transition relation of the automaton.

Condition (3) requires checking that Q is not satisfied in the canonical model tπ.
To achieve this, automaton AP∧¬Q will compute all possible subwords of proof words
(proof subwords, for short) for Q satisfied in the part of tπ analyzed so far. More pre-
cisely, being in node v and having processed first k of its m children v1, v2, . . . , vm, the
automaton will have computed proof subwords of Q that can be satisfied in the canon-
ical model tπ[ρ′], where ρ′ = ρv1ρv2 . . . ρvk .

To represent information about patterns corresponding to the rules forming proof
subwords, we use partial matchings like in the downward case, but with an important
difference. Before, we were always matching the patterns in the currently processed
node v. Now, the node v does not correspond to the root of tπ[ρ′], but to some node u
which can be as low as n levels deep in tπ[ρ′]. Moreover, the part of the tree above u will
still evolve, as more limbs of π reaching up are incorporated. Consequently, we cannot
assume that patterns are matched at the root of tπ[ρ′] either. We need to allow matching
at any node on the path in tπ[ρ′] from u upwards (the merging path). To represent this,
we use numbers between 0 and n determining how many nodes above u a node of the
pattern is matched, and [ for nodes mapped off the merging path starting in u. Let
Match(πr) be the set of functions

f : verticesπr →
(
ΣP ∪∆0 ∪ {[}

)
× {0, 1, . . . , n, [} ∪ {⊥}

and define

Match(Q) =
⋃
r∈Q

Match(πr) .

As proof subwords forQ can be arbitrarily long, automatonAP∧¬Q cannot keep them
directly in memory. The first idea is to represent them with pairs of partial matchings,
corresponding to the first and the last rule of the proof subword. When processing the
tree, the automaton would extend these partial matchings locally, and compose com-
patible pairs of partial matchings, dropping the complete middle one. Unfortunately,
this is not enough. Automaton AP∧¬Q collects information about tπ by processing the
spine ρ of π. While existence of each node of tπ is triggered by a nearby spine node,
equalities of labels in tπ can be enforced by very distant spine nodes. Indeed, incor-
porating a limb can unify some labels on the merging path, and these labels could
have been used anywhere in tπ. This of course affects the proof subwords satisfied in
tπ. Consequently, even intermediate patterns of a proof subword that seemingly refer
only to distant parts of tπ may not be fully matched: they may require label equality
(or presence of a constant), that will be enforced only after incorporating into tπ some
limbs attached to the yet unprocessed part of ρ. The automaton AP∧¬Q has to assume
that all these missing requirements will be met later, when additional information
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about tπ is provided. Therefore, for every proof subword of Q, we store not only partial
matchings of the first and last pattern, but partial matchings of all the patterns in the
proof subword. As the automaton collects information about tπ, those partial match-
ings become less partial, and are dropped as soon as they become complete matchings;
if any of them becomes impossible to complete, the whole proof subword is discarded.
While the proof subwords have unbounded length, the corresponding sets of partial
matchings are contained in the fixed finite set Match(Q). This is possible because some
patterns may be already matched completely somewhere lower in the tree, and some
patterns may yield identical partial matchings (the proof subword could then be short-
ened, but we do not care). Thus, each proof subword is represented as a set of partial
matchings of its rules, with the ones for the first and last rule distinguished. Since
AP∧¬Q needs to represent all proof subwords satisfied in the processed part of tπ, the
additional component of the state-space is

P
(
Match(Q)× P(Match(Q))×Match(Q)

)
IfQ ∈ UCQ(↓), each proof word consists of a single rule, so we use P(Match(Q)) instead.

Finally, compared to previous uses, we allow more flexibility in partial matchings.
Nodes with constant labels can be also assigned variables (but not different constants),
and nodes with the same variable label can be assigned different labels, as long as
there is at most one constant among them. On the other hand, we shall still con-
sider only partial matchings in which nodes assigned values different from ⊥ form
a connected subpattern. Moreover, if a partial matching of pattern πr represents an
intermediate rule of the proof subword, this subpattern contains the whole spine of
πr. A partial matching is considered complete, when each node with constant label is
assigned this label, and all nodes with the same variable label are assigned the same
label (not ⊥).

Let us describe how this information is maintained. Using the notation introduced
for (2), suppose we have computed the information about the canonical models tπ[ρ′]

and tπ[ρ′′], where ρ′ = ρv1ρv2 . . . ρvk and ρ′′ = ρvk+1
, and about the proof subwords of

Q they satisfy. We have already seen how to compute the information about tπ[ρ′ρ′′],
necessary to verify condition (2). To compute the information about proof subwords of
Q satisfied in tπ[ρ′ρ′′], we perform the following three steps.

(1) Computing the information about tπ[ρ′ρ′′] involved performing some unifications of
labels in tπ[ρ′] and tπ[ρ′′]. The information about proof subwords of Q refers to the
same labels, so we apply all these unifications there as well (this typically makes
some partial matchings more complete).

(2) We take the union of the two sets representing proof subwords satisfied in tπ[ρ′]

and tπ[ρ′′], and close it by concatenation as follows. We can concatenate (f,H, g)
and (f ′, H ′, g′) if g and f ′ are compatible partial matchings of the same pattern:
they agree on the nodes assigned values different from ⊥ and at least one of these
nodes is mapped to the merging path (that is, the second component of the assigned
value is not [). The result of the concatenation is

(f,H ∪H ′ ∪ {g ∪ f ′}, g′) ,
where (g ∪ f ′)(x) equals g(x) if g(x) 6= ⊥, and f ′(x) otherwise.

(3) When computing information about tπ[ρ′ρ′′], some labels are forgotten: the ones
represented only in the matching of the last pattern of ρ′ or the first pattern of ρ′′.
These labels will not occur in the tree anymore (even if the values representing
them in the automaton do). We discard all (f,H, g) such that H contains a partial
matching that assigns a constant or a forgotten label to a node with a different
constant label, or assigns either two different constants or a forgotten label and any
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other value (including ⊥) to nodes with the same label. In the remaining (f,H, g)
we replace with [ all occurrences of forgotten labels.

Assume now the automaton has processed all the children of node v, obtaining in-
formation about the canonical model tπ[ρ′] for ρ′ = ρv1ρv2 . . . ρvm , and about the proof
subwords for Q satisfied in tπ[ρ′]. In order to incorporate the information about the
new edges e, e′ (read from the label on the edge from v’s parent to v) and the limbs
connected to them, we repeat the steps (1)-(3) above twice: first for tπ[e] and tπ[ρ′], and
then for tπ[eρ′] and tπ[e′]; the information about the proof subwords of Q satisfied in
tπ[e] and tπ[e′] can be precomputed. If v is a leaf, we take the precomputed information
about tπ[ee′]. After this is done, it remains to shift the whole representation up by one
level. This amounts to decreasing by one the numbers used in the partial matchings
(0 is replaced with [). It may also involve forgetting the label of the lowest node of the
stored path, so step (3) above has to be repeated. If v is a leaf representing a stationary
rule r, we just take the precomputed information for tπr (without shifting up).

If at any point AP∧¬Q finds a complete proof word for Q, it rejects.
The number of states of AP∧¬Q is triple exponential in |Q|. Notice that the third

exponential comes from the double power-set used for the evaluation of Q. In the case
of containment in UCQ(↓), the size of the automaton drops to double exponential in
|P|+ |Q|. The construction can be easily implemented within declared time bounds.

5. UNDECIDABILITY RESULTS
In this section we prove the three undecidability results claimed in Section 3 and Sec-
tion 4: for LD-Datalog(↓, ↓+) over words and ranked trees, and for Datalog(↓) over un-
ranked trees.

We begin with the first item of Proposition 3.1, that is, LD-Datalog(↓, ↓+) over words.
As each Boolean UCQ(↓, ↓+) query can be expressed as an LD-Datalog(↓, ↓+) program,
Proposition 5.1 below is all we need to show. In the proof we use an RTPQ-like syntax
for programs on words. In acronyms and notations we replace letter T with letter W
(for word): we speak of WPQs, RWPQs, RWPQ(→,→+) etc. For readability, in such
queries we write the arrows horizontally, and we often skip the symbol→ entirely. Let
us underline that the RWPQs are always considered on models restricted to words.

PROPOSITION 5.1. Over words, containment of LD-Datalog(↓, ↓+) programs in
UCQ(↓, ↓+) queries is undecidable.

PROOF. We show undecidability via a reduction from the tiling problem: Given

— a finite set of tiles K,
— a horizontal correctness relation H ⊆ K ×K,
— a vertical correctness relation V ⊆ K ×K,
— an initial tile τini,
— a final tile τfin,

decide if there exist natural numbers M,N such that there is a tiling of the M×N grid
that has τini in cell (1, 1), τfin in cell (M,N), and all pairs of adjacent tiles satisfy the
appropriate relation, H or V .

We encode the tiling as a word over D = K ∪ N ∪ {#}. Placing a tile is represented
by four letters, (n, n′,m, t), where n, n′,m ∈ N denote row identifier, next row identifier,
and column identifier, and t ∈ K is the tile placed in position (n,m) in the grid. The
tiling is encoded row by row in the word. Consecutive rows are separated by #’s.

We shall construct queries ϕ,ψ ∈ RWPQ(→,→+). Query ϕ will describe constraints
enforced by tiling relations, initial configuration and ending tile. Query ψ will be a
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union of conjunctive queries and ¬ψ will be used to guarantee that each matched word
is a proper encoding of some tiling.

To guarantee that horizontal and vertical tiling relations are satisfied we use query

α =
∨

(τ,τ ′)∈H

∨
(τ,τ ′′)∈V

(R)in R′ C τ → (R)out R
′ C ′ τ ′ →+ R′R′′ C τ ′′ → R′R′′ C ′

where variables R,R′, R′′ represent row identifiers, and variables C,C ′ represent col-
umn identifiers. Last three nodes of α enforce that the tiles form a proper grid, without
it, there could be some unnecessary tiles between column C and C ′ in the row R′.

In the last row of the grid, we do not need the vertical constraints, so the following
simpler formula suffices:

β =
∨

(τ,τ ′)∈H

(R)in R′ C τ → (R)out R
′ C ′ τ ′

The positive query ϕ is defined as

ϕfirst-tile · (ϕrow)∗ · ϕlast-row (1)

where

ϕfirst-tile =(#)in
out 1 2 1 τini

initiates the first tile,

ϕlast-row =
[
(#)in (R)out

]
· β∗ ·

[
(R)in R′ C τfin (#)out

]
enforces correct last row and the last tile of the tiling, and

ϕrow =
∨

(τ,τ ′′)∈V

∨
τ ′∈K

[
(#)in (R)out

]
· α∗ ·

[
(R)in R′ C τ (#)out R

′R′′ 1 τ ′ →+ R′R′′ C τ ′′#
]

ensures correctness of the all the remaining rows.
Each time α is used, it enforces that consecutive tiles match the horizontal relation

H and that for each tile there exists another tile with correct row and column that
matches the vertical relation V . Similarly for β. Note that apart from enforcing tiling
constraints, ϕ also guarantees that each word matching ϕ has only symbols from K
on positions corresponding to tiles and that between two #’s the row and next row
identifiers are the same.

The negative query ψ will be a union of conjunctive queries describing possible errors
in the encoding; this way, each word satisfying ¬ψ will be a correct encoding of the
tiling. To keep uniform notation, we present these queries as disjunctions of WPQs;
the in and out nodes can be placed arbitrarily, as we only care for emptiness.

Possible coding errors are:

(1) symbols after τfin#,
(2) # or tile identifier appearing in wrong position,
(3) two consecutive # symbols (empty row),
(4) the same row identifier used in two different rows,
(5) the same column identifier twice in one row.

To make sure that the first occurrence of τfin# ends the words we use

(τfin)in
out → #→ X .

The positive query ϕ ensures that row and next row are the same between two #’s, so
to find # or tiles used as row identifiers it is enough to check first and second position
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after each #: ∨
τ∈K∪{#}

(#)in
out → τ ,

∨
τ∈K∪{#}

(#)in
out → R → τ .

To find tiles or #’s used as column identifiers, we rely on the fact that column identifier
always precedes a tile: ∨

τ∈K

∨
τ ′∈K∪{#}

(τ ′)in
out → τ .

The query for two consecutive # symbols is of course

(#)in
out → # .

To find the remaining errors—repeated column identifiers within a single row and
repeated row identifiers in different rows—we need relation →+. For repeated row
identifiers in different rows we use

(#)in
out R →+ #R ,

relying on the fact that query ϕ enforces that within each row, each position uses the
same row identifier. For repeated column identifiers within a single row we apply∨

τ∈K

∨
τ ′∈K

RR′ C τ →+ RR′′ C τ ′ ,

using the fact that we have just excluded reusing row identifiers by different rows, and
that tile identifiers are always placed at correct positions; query ϕ actually enforces
that R′ and R′′ are equal, but there is no need to use that.

We need to show that a correct tiling exists if and only if ϕ ∧ ¬ψ is satisfiable. En-
coding of each correct tiling is a word satisfying ϕ ∧ ¬ψ. For the converse, let us take a
word w satisfying ϕ ∧ ¬ψ. By the first subquery of ψ, the out node of ϕ is matched at
the last position of w, and without loss of generality, we can assume that the in node
of ϕ is mapped in the first position of w. That means that each position of the word w
is visited by ϕ. Consequently, the word can be divided into rows (segments separated
by #’s), such that within each row

— the number of positions is divisible by 4,
— positions 1, 5, . . . , have the same label: row identifier;
— positions 2, 6, . . . , have the same label: next row identifier;
— positions 4, 8, . . . , contain a tile, and subsequent tiles respect relation H.

By ¬ψ, tiles and # are not used in place of row, next row, or column identifier. By ϕ,
the row identifier of each row (except the first), is equal to the next row identifier of
the previous row. By ¬ψ, row and column identifiers are unique. Consequently, the
fragment of subquery α connected with →+ is always matched in the next row. Since
ϕ sets each first column identifier to 1, and copies the last column identifier from the
previous row, the previous assertion implies the sequence of column identifiers in each
row is the same (in particular, all rows have equal length), and the corresponding tiles
satisfy relation V .

PROPOSITION 5.2. Over trees, both ranked and unranked, the containment problem
of L-Datalog(↓, ↓+) programs in UCQ(↓, ↓+) queries is undecidable.

PROOF. This follows directly from the proof of Proposition 5.1. It suffices to change
the queries used in the word case by replacing → with ↑ and →+ with ↑+. As there is
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only one path up in the tree starting at any given node, the reduction behaves exactly
like in the word case.

We now adapt the above reduction to ranked trees, to prove the undecidability result
from Theorem 3.3.

PROPOSITION 5.3. Over ranked trees, containment of LD-Datalog(↓, ↓+) programs
in UCQ(↓, ↓+) queries is undecidable.

C

τ[R−1
. . .[1

. . .[1 [R−1

Fig. 6: C↓τ modified

PROOF. We again modify slightly the reduc-
tion from Proposition 5.1. First, change the ar-
rows from → to ↓. Next, let R be the maximal
rank of the trees. The queries will use R ad-
ditional symbols ΣR = {[1, [2, . . . , [R}. We mod-
ify the positive query ϕ from Proposition 5.1 by
adding under each node R − 1 children with la-
bels [1, [2, . . . , [R−1. For example, subquery C ′↓τ ′
of query β becomes the query shown in Figure 6.

Additionally, in the query ϕlast-row, we add Rth child, with label [R, below the last
node. The negative query ψ additionally ensures there are no nodes below nodes la-
beled with elements of ΣR. We add to ψ disjunct

n∨
i=1

[i ↓ X .

This way the query ϕ has to be matched within a single path (the one without nodes
from ΣR) and thus the encoding of the tiling problem is correct.

Finally, we prove Proposition 4.1, which we repeat below for convenience.

Proposition 4.1. Over unranked trees containment of Datalog(↓) programs in UCQ(↓)
queries is undecidable.

PROOF. We show how to modify the encoding from Proposition 5.2 to work for
Datalog(↓) programs (recall that the reduction in Proposition 5.2 was obtained by re-
placing → and →+ with ↑ and ↑+ in the reduction from Proposition 5.1). The main
difference is that now we cannot use the relation ↑+. We shall show how to simulate
it using recursion and non-linearity of the programs. We stress that our programs will
not be equivalent: the simulation will require additional nodes in the underlying tree.

We shall work with datalog programs, rather than regular pattern queries. Let P be
a datalog program equivalent to the positive query from the proof of Proposition 5.2.
Let r be a rule of P that uses ↑+ (formally, datalog programs use only ↓ and ↓+, but
we shall allow ↑ and ↑+ as syntactic sugar enhancing readability). Since program P
expresses an RTPQ whose patterns are not branching, rule r can be rewritten as

P (X1)← C1(X̄), Xk↑+Y1, C2(Ȳ ), C∼(X̄, Ȳ ), (2)

where X̄ = X1, . . . , Xk, Ȳ = Y1, . . . , Y` are disjoint tuples of variables, C1(X̄) and
C2(Ȳ ) are conjunctions of atoms over X̄ and Ȳ respectively, C1(X̄) does not use ↑+,
and C∼(X̄, Ȳ ) is a conjunction of atoms of the form Xi ∼ Yj .

We shall now eliminate Xk ↑+ Y1 from r, obtaining a rule r′, which uses a new inten-
sional predicate U . Hence, rule r′ may be non-linear if C1(X̄) contains an intensional
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a

a

R : R(X1)← a(X1), X1↑+Y,X1 ∼ Y

R′ : R(X1)← a(X1), X1↑X ′2,
path(X ′1, X

′
2, X

′
3), X1 ∼ X ′1, U(X ′1)

a

a $

a

$

a

$

a

Fig. 7: Simulating the ancestor relation with recursion (irrelevant labels and defini-
tions of predicates path and U are skipped). The intended model for the modified pro-
gramR′ (right) is obtained from a model for the original programR (left), by attaching
additional subtrees along the path traversed by the ancestor relation.

atom. Rule r′ is given as
P (X1)← C1(X̄), Xk↑X ′k+2,

path(X ′1, . . . , X
′
k+2),

k∧
i=1

Xi ∼ X ′i, U(X ′1),

where path(X ′1, . . . , X
′
k+2) =

∧k+1
i=1 X

′
i ↑X ′i+1, $(X ′k+1) and $ is a fresh label. The idea is

that r′ matches C1(X̄), but instead of matching C2(Ȳ ), it requires a copy of X̄ with
the same labels in a subtree (single path formed by X ′1, . . . , X

′
k) attached under the

parent X ′k+2 of Xk, additionally separated with a $-labelled node X ′k+1. Originally in r
we had Xk↑+Y1; here, intuitively, X ′k+2 is the first candidate for Y1. This copying will
be repeated by U , until C2(Ȳ ) can be matched (see Figure 7); the reason for copying
is that while matching C2(Ȳ ) we need to satisfy the label equalities in C∼(X̄, Ȳ ). We
implement it as follows:

U(X1)← path(X1, . . . , Xk+2), Xk+2↑X ′k+2,

path(X ′1, . . . , X
′
k+2),

k∧
i=1

Xi ∼ X ′i, U(X ′1) ,

U(X1)← path(X1, . . . , Xk+1, Y1), C2(Ȳ ), C∼(X̄, Ȳ ) .

Thus we have removed one occurrence of ↑+. Now, if C2(Ȳ ) contains further occur-
rences of ↑+, simply repeat the whole procedure for the second rule for U , etc.

This way we change the rules of the positive program P. We cannot use the same
technique for the negative program Q for two reasons. First, it uses recursion and we
would like to keepQ non-recursive to get undecidability of containment in UCQs. More
importantly, it requires additional nodes in the tree: if those nodes are not there, the
tree does not satisfy the modified Q.

In order to deal properly with relation ↑+ in program Q, we need to recall the details
of the reduction from the proof of Proposition 5.2. Recall that we encoded each tile as
a tuple (n, n′,m, t), where n is the the row identifier, n′ is the next row identifier, m is
the column identifier, and t is a tile. Consecutive rows were separated by #. For the
correctness of the reduction it was essential that row identifiers and column identifiers
be unique. The negative program Q needed relation ↑+ only to detect two columns
with the same identifier within a single row of the tiling, and two rows with the same
identifier. Here, we take care of these two kinds of errors in a different way.

Suppose there is a tiling with k rows and l columns. Let r1, . . . , rk be row identifiers
and let c1, . . . , cl be the column identifiers. We shall modify program P to enforce that
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(for all nodes that are part of the encoding) each ri-labelled node has i − 1 additional
children with labels r1, . . . ri−1, and each cj-labelled node has j− 1 children with labels
c1, . . . cj−1. To ensure the uniqueness of row and column identifiers, we add to Q a rule
that does not allow nodes to have a child with the same label.

Whenever a variable X in rule r of P refers to a node representing a column identi-
fier, we add an additional atom E(X) to r. Predicate E is defined as

E(X)← X ↑4 Y ↑Z, τ(Z), Y ↓ X ′, X ∼ X ′, E′(X ′) ,
E(X)← X ↑2 Y,#(Y ) ,

E′(X)← X ↑5 Y ↑Z, τ(Z), Y ↓ X ′, X ∼ X ′, E′(X ′) ,
E′(X)← X ↑3 Y,#(Y ) ,

where τ ranges over the set of tiles, expressions like X ↑4 Y ↑Z are shorthands for
X ↑4 Y, Y ↑Z, and ↑k stands for the k-fold composition of relation ↑, clearly expressible
with a CQ, which can be inlined in the rule. That is, we copy the label of X (column
identifier) into the label of a child of each ancestor node representing a column, until
we see #, indicating the end of the row. In the first rule we check if the parent Z of Y
is labeled with a tile, because we do not want to apply this rule when the upward path
is a proper encoding and the row changes. Since in the first step we go up one level less
then in the following steps, we need an auxiliary predicate E′.

Similarly, whenever variable X refers to a node representing a row identifier, we add
atom F (X), with predicate F defined as

F (X)← X ↑4 Y ↑3 Z, τ(Z), Y ↓ X ′, X ∼ X ′, F ′(X ′) ,
F (X)← X ↑5 Y ↑3 Z, τ(Z), Y ↓ X ′, X ∼ X ′, F ′(X ′) ,
F (X)← X ↑3 Y ↑Z, τfin(Y ),#(Z) ,

F ′(X)← X ↑5 Y ↑3 Z, τ(Z), Y ↓ X ′, X ∼ X ′, F ′(X ′) ,
F ′(X)← X ↑6 Y ↑3 Z, τ(Z), Y ↓ X ′, X ∼ X ′, F ′(X ′) ,
F ′(X)← X ↑4 Y ↑Z, τfin(Y ),#(Z) .

The middle rule for F and F ′ is needed to jump over #-labelled nodes: unlike for col-
umn identifiers, we want to continue copying until we see the final tile τfin followed by
#, which indicates the end of the last row.

The negative query Q is obtained by taking the union of all the ↑+-free CQs forming
the negative query in the proof of Proposition 5.2, together with the following simple
CQ, which prevents a node and its child from having the same label:

∃X ∃Y X↓Y ∧X ∼ Y .

Combined with the mechanism for copying labels representing row and column iden-
tifiers, described above, this ensures that row and column identifiers are unique. Note
that in the simulation of ↑+ in program P we separated the copied nodes with $ pre-
cisely to avoid satisfying this CQ unintentionally.

6. LOWER BOUNDS
In this section we present the hardness arguments, organized into four propositions.
The first two use RTPQs and their word variant, RWPQs (see Section 5); by Proposi-
tion 2.6 the established bounds carry over to the corresponding fragments of datalog.
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We begin with a simple reduction proving the PSPACE lower bound for satisfiability
over words, claimed in Proposition 3.1 (Section 3).

PROPOSITION 6.1. Satisfiability for RWPQ(→) is PSPACE-hard.

PROOF. In the proof we use the RWPQ notation for programs on words introduced
in Section 5. To prove hardness, we reduce the space-bounded halting problem known
to be PSPACE-complete. More precisely, let n be a number given in unary and let M
be a Turing machine using not more than n tape cells. We construct an RWPQ of size
polynomial in |M| and n that is satisfiable if and only if M accepts the empty word.
In this reduction it is not important whether nodes have labels taken from a finite or
infinite alphabet: one can restrict to labels explicitly mentioned in the RWPQ.

Assume that Γ is the tape alphabet of M containing the blank symbol ⊥, Q is the
set of states containing the initial state qini and the accepting state qfin, and δ is the
transition relation. Without loss of generality we can assume that the fixed alphabet
Σ contains Q and two disjoint copies of Γ, denoted by Γ and Γ̂. The symbols from Γ̂ are
decorated with ̂ ; they will be used to mark the head’s position on the tape: â means
that the machine’s head is over this occurrence of symbol a.

The basic building block of our RWPQ is a WPQ for one transition rule and position
on the tape (we skip most→ symbols for readability):

(q1)inX1X2 . . .Head . . . Xn →
(q2)outX1X2 . . .Head

′ . . . Xn

where q1, q2 are states of M , Head and Head ′ are 3-symbol descriptions of the tape
contents around the machine’s head. Specific content of Head will be determined by the
type of transition (whether the head moves right, left or stays in the same position).
Note that the out node is located on the state symbol in the second configuration.
This way, when we apply Kleene star to our pattern, consecutive patterns will overlap,
ensuring that the run is correct.

For different head movements, patterns will be different but very similar. For exam-
ple, for head over i-th tape cell, transition t saying “in state q1, seeing letter a, change
state to q2, write c, and move the head to the right”, and letter b in the next tape cell,
we use WPQ

ϕi,t,b = (q1)inX1X2 . . . Xi−1 â bXi+2 . . . Xn

→ (q2)outX1X2 . . . Xi−1 c b̂Xi+2 . . . Xn .

The variables Xi repeating in both configurations ensure that the content of the tape
does not change. Symbol â is changed to c, and b becomes b̂ to mark the new position of
the head. Additionally, there must be separate patterns for head positions in the first
and the last tape symbol.

The final RWPQ is defined as

ϕini ·
( n∨
i=1

∨
t∈δ

∨
b∈Γ

ϕi,t,b

)∗
· ϕfin

where

ϕini = (qini)
in
out⊥̂⊥ . . .⊥ , ϕfin = (qfin)in

outX1X2 . . . Xn

describe initial and final configurations, respectively.
Take a word satisfying this RWPQ and trim the infix and suffix that is not used in

the matching. The remaining word clearly encodes a correct accepting run ofM, using
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at most n tape cells. Conversely, each run using at most n tape cells is encoded as a
word satisfying this RWPQ.

One remaining issue is the size of the constructed query. Let Σ0 = Q∪Γ∪Γ̂ be the set
of all labels explicitly mentioned in the RWPQ. Patterns ϕini and ϕfin have size n + 1,
and each pattern ϕd,i,b has size 2(n+ 1). Since there are at most n · |δ| · |Σ0| patterns in
the disjunction, the total size of the query is polynomial in |M| and n.

We now move to the EXPSPACE lower bound of Theorem 4.2 (Section 4.1). We show
hardness already for containment in non-recursive queries, that is, UCQs. In terms of
patterns, UCQs are unions (or disjunctions) of TPQs.

PROPOSITION 6.2. Over unranked trees containment of RTPQ(↓, ↓+) queries in
unions of TPQ(↓, ↓+) queries is EXPSPACE-hard.

PROOF. We give a reduction from the following variant of the tiling problem: Given

— a number n (in unary),
— a finite set of tiles K,
— a horizontal correctness relation H ⊆ K ×K,
— a vertical correctness relation V ⊆ K ×K,
— an initial tile τini,
— a final tile τfin,

decide if there exists a natural number m such that there is a tiling of the m× 2n grid
that has τini as the top left tile, i.e., the tile in position (1, 1), τfin as the bottom right tile,
i.e., the tile in position (m, 2n), and all pairs of adjacent tiles satisfy the appropriate
relation, H or V . It is easy to prove that this is an EXPSPACE-complete problem: such
a tiling can be seen as a run of a Turing machine using 2n tape cells.

r1

0

0

τ

r1

0

1

τ ′ ...

Fig. 8: Fragment of a model encoding a tiling, showing the first two tiles, τ and τ ′

(n = 2, irrelevant labels are skipped). The first row is identified by the label r1, column
identifiers are encoded in binary.

We shall construct query ϕ ∈ RTPQ(↓, ↓+) and query ψ, a union of TPQ(↓, ↓+) queries,
such that ϕ ∧ ¬ψ is satisfiable if and only if the tiling exists. Query ϕ will encode the
tiling and the query ψ will ensure its correctness; the encoding is similar to the one
used to prove Proposition 5.1. There, we worked with words and we could easily force
consistent ordering of column identifiers. Now we work with trees and this is no longer
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possible; instead, we use explicit binary encoding of column identifiers. The tiling is
thus encoded as sequence of segments of the form r b1 b2 . . . bn τ where r is the row
identifier, b1 b2 . . . bn encode column identifier in binary, and τ is a tile symbol (see
Figure 8). Without loss of generality we can assume that the fixed infinite labeling al-
phabet Σ contains set K, as as well as labels 0 and 1 used to encode column identifiers.

We begin with query ϕ. Recall that we write ↓i for the i-fold composition of relation ↓,
which can be expressed with a ↓-pattern (using fresh variables for intermediate nodes).

To check horizontal and vertical correctness relations we use expression

α =
∨

(τ,τ ′)∈H

∨
(τ,τ ′′)∈V

(R)in
out ↓B1 ↓ . . . ↓Bn ↓ τ︸ ︷︷ ︸

current tile

↓ R ↓n+1 τ ′︸ ︷︷ ︸
next tile

↓+

R ↓ 1 ↓ . . . ↓ 1︸ ︷︷ ︸
last tile in row

↓X ↓R′ ↓+ R′ ↓B1 ↓ . . . ↓Bn ↓ τ ′′︸ ︷︷ ︸
tile below current

(the last tile in the row is visited only for navigational purposes). We need special
variants of this expression, αfirst, αpenul and αlast, for the cases where the current tile
is the first, penultimate and last tile in a row. They cover edge cases: the tile below
current starting immediately after X, next tile equal to the last tile, and no next tile.
For example, αlast is defined as follows:

αlast =
∨

(τ,τ ′′)∈V

(R)in
out ↓ 1 ↓ . . . ↓ 1 ↓ τ︸ ︷︷ ︸
current (last) tile

↓R′↓+R′ ↓ 1 ↓ . . . ↓ 1 ↓ τ ′′︸ ︷︷ ︸
tile below current

.

Expressions αfirst and αlast additionally check that the current tile is indeed first or
last, by using 0s or 1s instead of variables Bi.

To combine these expressions we need a way to move to the next tile, where we touch
the most delicate aspect of the reduction. Making the step requires reading the current
column identifier and the next column identifier; that is, we must read each column
identifier twice. Given that we are only allowed to go down the tree, we cannot ensure
that the two reads go down the same branch; we can only control depth in the tree. The
idea is to ensure that each node within one generation of descendants of the current tile
encodes the same bit of the column identifier: first bit in the first generation, second
bit in the second generation, etc. The next tile is stored in generation (n + 1). The
integrity of this encoding will be ensured by the negative query ψ. Keeping that in
mind, we check the whole row with expression ϕrow, defined as

ϕrow =
(
αfirst β γ

)
·
(
αβ γ

)∗ · (αpenul β γ
)
·
(
αlast β

)
,

where expression β ensures that each generation (from 0 to n) contains 0 or 1,

β =
(
(R)in

out ↓
1 0 + (R)in

out ↓
1 1
)
·
(
(R)in

out ↓
2 0 + (R)in

out ↓
2 1
)
· · · · ·

(
(R)in

out ↓
n 0 + (R)in

out ↓
n 1
)
,

and expression γ moves to the next tile and increments the column identifier,

γ =

n∨
i=1

γi

with pattern γi defined as
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(R)in

0Bi−1. . .B1 1 . . . 1 (R)out

1Bi−1. . .B1 0 . . . 0

ii− 11 i+ 1 n

n+ 2

ii− 1
1 i+ 1 n

The query ϕ can be now defined as

ϕ = ϕfirst-tile · (ϕrow δnext)
∗ · ϕlast-row · ϕlast-tile ,

where expressions ϕfirst-tile and ϕlast-tile enforce correct initial and final tile,

ϕfirst-tile = (R)in
out ↓

n+1 τini , ϕlast-tile = (R)in
out ↓

n+1 τfin ,

δnext moves to the next row,

δnext = (R)in ↓n+2 (R′)out ,

and ϕlast-row is a variant of ϕrow in which references to the next row are eliminated.
We now move to query ψ, which detects inconsistencies in the encoding. We begin

with column identifiers. Already query β ensures that each generation of descendants
of a tile contains 0 or 1; but it must not contain both. Moreover, generations containing
0 and those containing 1 may contain other values too: they must not be mixed. Both
conditions are ensured by the following disjuncts of ψ, with 1 ≤ i ≤ n, which check that
no value occurs in an ith generation containing 0 and an ith generation containing 1:

(X)in
out

R

B0

R′

B 1

+ +

i i ii

Next we deal with tiles. To ensure unique current and next tile we use disjuncts

(R)in
out

τ1 τ2

n+ 1 n+ 1

(R)in
out

τ1 τ2

2n+ 3 2n+ 3

for all tiles τ1 6= τ2. For the tile below the current tile we need a more complicated
expression. For all tiles τ1 6= τ2 we add disjunct

(R)in
out

R

R′1. . .1

R

R′′1. . .1

R′

τ1B′n. . .B′1

R′′

τ2B′′n. . .B′′1

B′n. . .B′1 B′′1 . . . B′′n
+1 n

1 n n+ 2

+ n1

1 n n+ 2

+

n1 n+ 1

+

n1 n+ 1
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which finds two copies of the last tile of a row R, moves down to two instances of
the next row, and finds different tiles τ1 and τ2 in columns whose identifiers, encoded
by B′1 . . . B

′
n and B′′1 . . . B

′′
n, are equal. We cannot test equality directly, because the

encodings need not be identical. Indeed, to address the tile below current, expression
α uses arbitrary representatives B1, B2, . . . , Bn (not necessarily 0s or 1s) of the bits
of the current tile’s column identifier. In fact, there may be no 0s and 1s at all in the
generations encoding the column identifier of the tile below current. Because of that,
instead of comparing all possible instances of the tile below current with each other, the
expression compares all of them with the unique instance on the main branch visited
by query ϕ. For this instance, expression β does guarantee 0 or 1 in each generation. To
test equality of column identifiers, we match B′′1 . . . B

′′
n to these 0s and 1s, and check if

they occur in pairs with B′1 . . . B′n in the generations encoding the current tile’s column
identifier. This is correct by the first collection of disjuncts of expression ψ.

Next, we establish the 2-EXPTIME lower bound of Theorem 4.2 (Section 4.1), and
the first strengthening of the one from Theorem 3.3 (Section 3).

PROPOSITION 6.3. Containment for D-Datalog(↓) is 2-EXPTIME-hard over trees
and ranked trees.

PROOF. Consider the following problem: given a natural number n in unary and an
alternating Turing machineM, decide ifM accepts the empty word using at most 2n

tape cells. This problem is AEXPSPACE-complete and AEXPSPACE = 2-EXPTIME. We
construct a pair of programs P,Q such that P ∧ ¬Q is satisfiable iffM accepts 1n.

Let Q be the set of states of machine M, containing the initial state qini and the
accepting state qfin. Without loss of generality we assume that state qini is used only
once in each run (no transitions lead to it) and that each configuration with a uni-
versal state has exactly two successor configurations: for each universal state q and
each letter a, machine M has exactly two transitions. Each transition is of the form
(q, a, q′, b, d), where b is the letter to be written in the current cell and d ∈ {L, S,R}
specifies where the machine’s head moves: left, stay, or right.

The run of M is a binary tree. Each node of the tree is labelled with a pair (q, T )
where q is a state and T is the content of the tape with one distinguished cell containing
the head. If q is universal, the node has two children; if q is existential, it has one child.
In the root the state must be qini, and in leaves only the accepting state qfin is allowed.

Let us describe how we encode the runs. Each configuration (q, T ) is represented by
a state node u labeled with state q and two or three subtrees, depending on whether q
is existential or universal. The first subtree, called tape tree, encodes tape content T
(described later). The remaining subtrees, one or two, encode successor configurations
together with the transitions generating them. Figure 9 presents a fragment of the
encoding of a run: from the initial state qini existentially chosen transition t1 moves to
state q1, then universally chosen transitions t2 and t3 move to states q2 and q3, etc.;
tape trees Ti encode the corresponding tape contents.

This encoding requires trees of rank at least three, but it is easy to adjust it to binary
trees, by introducing an additional dummy node for universal states. For the sake of
readability we shall continue the reduction with this encoding.

Tape trees are full binary trees of height n. Such tree has 2n leaves so the content of
every tape cell can be stored in a node directly below a leaf of this subtree. We use the
set of labels {(0, 0)}∪

{
(0, i), (1, i)

∣∣ 1 ≤ i ≤ n
}

. The root of each tape tree has label (0, 0)
and each node at level i − 1 has two children, labelled with (0, i) and (1, i); slightly
informally, we can think of them as the left and right child. Below the nodes on the
n-th level, labelled with (0, n) or (1, n), we encode the content of the cells. For that we
use labels from the set Γ×{⊥,>}, where Γ is the tape alphabet ofM. With > we mark

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: April 2016.



Monadic datalog and regular tree pattern queries XXXX:39

qini

T0

t1

q1

T1

t2 t3

q2 q3

...
...

Fig. 9: Encoding of a run.

the unique position of the head of M. Consider a branch of the tape tree; the labels
of the nodes on this branch are (0, 0), (z1, 1), . . . (zn, n), b with zi ∈ {0, 1}. Then, b is the
content of the cell whose number is encoded in binary by the sequence z1 . . . zn.

We are now ready to describe the rules of program P. Recall that we use expression
X1 ↓ X2 ↓ . . . ↓ Xk as shorthand for X1 ↓ X2, X2 ↓ X3, . . . , Xk−1 ↓ Xk. The goal rule is

P (X)← qini(X), run(X) .

For each state q of machineM,

— if q is existential, for each transition t = (q, a, q1, b, d), with d ∈ {L, S,R} we add rule

run(X)← q(X), X ↓ X ′, (0, 0)(X ′), conf (X ′),

X ↓ Y1 ↓ Z1, t(Y1), q1(Z1), run(Z1) ;

— if q is universal, for each pair of transitions ti = (q, a, qi, bi, di), i = 1, 2, we add rule

run(X)← q(X), X ↓ X ′, (0, 0)(X ′), conf (X ′),

X ↓ Y1 ↓ Z1, t1(Y1), q1(Z1), run(Z1),

X ↓ Y2 ↓ Z2, t2(Y2), q2(Z2), run(Z2) .

Additionally, we include a rule for the accepting state

run(X)← qfin(X), X ↓ X ′, (0, 0)(X ′), conf (X ′) .

Notice that these rules ensure only the correctness of states in successor configura-
tions. Predicate conf enforces a tape tree under each state node; correct evolution of
tape content will be verified later by the negative program Q. The rules for conf are

conf (X)← (x, i− 1)(X),

X ↓ Y, (0, i)(Y ), conf (Y ),

X ↓ Z, (1, i)(Z), conf (Z)

conf (X)← (x, n)(X),

X ↓ Y, a(Y )

for i = 1, . . . , n, x ∈ {0, 1} such that (x, i− 1) 6= (1, 0), and a ∈ Γ× {⊥,>}.
Of course, a model for P doest not need to be a correct run ofM. To ensure correct-

ness, we need to detect the following errors:

(1) two different contents in the same tape cell;
(2) incorrect initial tape content;
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(3) inconsistent tape content in consecutive configurations.

This will be done by the negative programQ by means of a disjunction of non-recursive
queries, each detecting some kind of error. Let us start with (1). In general the models
can be unranked trees and the program P cannot ensure that nodes do not have chil-
dren with the same labels. Thus, each cell might be encoded by many paths. To ensure
that all these paths encode the same cell content, we add rule

Q(X)← (0, 0)(X),

X ↓ Y1 ↓ Y2 ↓ . . . ↓ Yn ↓ Z, c(Z),

X ↓ Y ′1 ↓ Y ′2 ↓ . . . ↓ Y ′n ↓ Z ′, c′(Z ′),
Y1 ∼ Y ′1 , Y2 ∼ Y ′2 , . . . , Yn ∼ Y ′n

for each pair of different tape contents, c 6= c′.
To check (2) we detect nonempty cells and head in any cell but the first one

Q(X)← X ↓ Y0 ↓ Y1 ↓ . . . ↓ Yn ↓ Z, qini(X), (0, 1)(Y1), . . . , (0, n)(Yn), a(Z)

Q(X)← X ↓ Y0 ↓ Y1 ↓ . . . ↓ Yn ↓ Z, qini(X), (1, i)(Yi), b(Z)

for i = 1, 2, . . . , n and tape contents a 6= ([,>), b 6= ([,⊥), where [ ∈ Γ stands for blank.
Checking (3) is more involved. To verify that the tape content evolves correctly, it

suffices to compare triples of consecutive cells in consecutive configurations. This can
be done with rules

Q(X)← X ↓ X1 ↓ X2, t(X1),

X ↓ Z0, triple(Z0, Z1, . . . , Zn, Y1, Y2, Y3), a(Y1), b(Y2), c(Y3),

X2 ↓ Z ′0, triple(Z ′0, Z
′
1, . . . , Z

′
n, Y

′
1 , Y

′
2 , Y

′
3), a′(Y ′1), b′(Y ′2), c′(Y ′3) ,

Z0 ∼ Z ′0, Z1 ∼ Z ′1, . . . , Zn ∼ Z ′n,

for all a, b, c, a′, b′, c′ ∈ Γ × {⊥,>} such that consecutive symbols a, b, c cannot change
to a′, b′, c′ when machine M makes transition t; but we need to define predicate
triple(Z0, Z1, . . . , Zn, Y1, Y2, Y3) which selects three consecutive cells Y1, Y2, Y3 in the
tape tree rooted at Z0, with Z1, . . . , Zn forming the path to Y1. It can be defined by
the following rules for i = 1, 2, . . . , n− 1:

triple(Z0, Z1 . . . , Zn, Y1, Y2, Y3) ← Z0 ↓ . . . ↓ Zi−1,

Zi−1 ↓ Zi ↓ . . . ↓ Zn ↓ Y1, (0, i)(Zi), (1, i+ 1)(Zi+1), . . . , (1, n− 1)(Zn−1), (0, n)(Zn),

Zi−1 ↓ Z ′i ↓ . . . ↓ Z ′n ↓ Y2, (0, i)(Z ′i), (1, i+ 1)(Z ′i+1), . . . , (1, n− 1)(Z ′n−1), (1, n)(Z ′n),

Zi−1 ↓ Z ′′i ↓ . . . ↓ Z ′′n ↓ Y3, (1, i)(Z
′′
i ), (0, i+ 1)(Z ′′i+1), . . . , (0, n− 1)(Z ′′n−1), (0, n)(Z ′′n) ,

triple(Z0, Z1, . . . , Zn, Y1, Y2, Y3) ← Z0 ↓ . . . ↓ Zi−1,

Zi−1 ↓ Zi ↓ . . . ↓ Zn ↓ Y1, (0, i)(Zi), (1, i+ 1)(Zi+1), . . . , (1, n− 1)(Zn−1), (1, n)(Zn),

Zi−1 ↓ Z ′i ↓ . . . ↓ Z ′n ↓ Y2, (1, i)(Z ′i), (0, i+ 1)(Z ′i+1), . . . , (0, n− 1)(Z ′n−1), (0, n)(Z ′n),

Zi−1 ↓ Z ′′i ↓ . . . ↓ Z ′′n ↓ Y3, (1, i)(Z
′′
i ), (0, i+ 1)(Z ′′i+1), . . . , (0, n− 1)(Z ′′n−1), (1, n)(Z ′′n) ,

corresponding to two types of triples of consecutive binary numbers:

z1 . . . zi−1011 . . . 110, z1 . . . zi−1011 . . . 111,

z1 . . . zi−1011 . . . 111, z1 . . . zi−1100 . . . 000,

z1 . . . zi−1100 . . . 000, z1 . . . zi−1100 . . . 001.
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As it is written, program Q is not a UCQ, because it uses nested intentional predicate
triple. Actually, it is not even monadic, because predicate triple is not unary. However,
being used only twice, predicate triple can be in-lined without exponential blow-up.

Finally, we show the 2-EXPTIME lower bound from Theorem 4.6 (Section 4.2), and
the second strengthening of the one from Theorem 3.3 (Section 3).

PROPOSITION 6.4. Containment for L-Datalog(↓) is 2-EXPTIME-hard over trees and
ranked trees.

PROOF. For L-Datalog(↓) we reduce the same problem and use the same encoding
as in Proposition 6.3. This time, we can only use linear rules, but the programs do not
have to be downward: they can walk up and down the tree. To enhance readability of
the program we allow predicate ↑ as syntactic sugar. The tree encoding the run ofM
will be traversed by program P in the prefix order. Recall that we assume that the
initial state qini is only used once in each run (no transitions lead to it), so the program
knows when to stop after traversing the whole tree.

The goal rule remains unchanged,

P (X)← qini(X), run(X).

Predicate run over a node with label q ensures a child with label (0, 0) that is the root
of a tape tree, i.e., a full binary tree of depth n storing tape content of machineM:

run(X)← q(X), X ↓ Y, (0, 0)(Y ), conf(Y )

for all q ∈ Q,
conf(X)← (x, i)(X), X ↓ Y, (0, i+ 1)(Y ), conf(Y )

for all i = 0, . . . , n− 1 and x = 0, 1,

conf(X)← (x, n)(X), X ↓ Y, b(Y ),upConf(X)

for all b ∈ Γ× {⊥,>} and x = 0, 1,

upConf(X)← (0, i)(X), X ↑ Y ↓ Z, (1, i)(Z), conf(Z)

upConf(X)← (1, i)(X), X ↑ Y,upConf(Y )

for all i = 1, . . . , n .

After coming back to the node with label (0, 0), program P continues checking the run
ofM by moving to the next configuration:

upConf(X)← (0, 0)(X), X ↑ Y ↓ Z ′ ↓ Y ′, q(Y ), t(Z ′), s(Y ′), run(Y ′) ,

where t ranges over transitions from existential state q to state s, and the first of each
pair of transitions over the same letter from universal state q to state s (we assume
an arbitrary fixed order within these pairs; the second transition of the pair will be
checked after traversing the subtree rooted at the s node). If the current state is ac-
cepting, program P backtracks to check the rest of the tree

upConf(X)← (0, 0)(X), X ↑ Y, qfin(Y ),upRun(Y ) ,

which is done with the help of predicate upRun, similar to upConf:

upRun(Y )← Y ↑ Z ↑ Y ′, q(Y ′), t1(Z), s1(Y ),

Y ′ ↓ Z ′′ ↓ Y ′′, t2(Z ′), s2(Y ′′), run(Y ′′) ,

upRun(Y )← Y ↑ Z ↑ Y ′, q(Y ′), t(Z), s(Y ),

upRun(Y ′) ,

upRun(Y )← Y ↑ Z, qini(Z) ,
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where t1, t2 range over pairs of transitions from universal state q over the same letter,
leading to states s1, s2; t ranges over transitions from existential state q to state s and
the second of each pair of transitions over the same letter from universal state q to
state s; the program terminates when it returns to the (unique) node labelled with qini.

The negative program Q needs one additional rule

Q(X)← Y ↓ X, qini(X) ,

which ensures that label qini can appear only in the actual root of the tree. Otherwise,
rules of Q may remain as in Proposition 6.3, since every UCQ is a linear program.

7. CLOSING REMARKS
The containment problem for connected monadic datalog on trees over infinite alpha-
bet is known to be undecidable [Abiteboul et al. 2013]. We investigated two restrictions:
downward programs, D-Datalog(↓, ↓+), and child-only programs, Datalog(↓), obtaining
an almost complete picture (see Table I, page 4). Most importantly, we showed that
over unranked trees containment is decidable for downward programs (2-EXPTIME-
complete and EXPSPACE-complete in the linear case) and linear child-only programs
(in 3-EXPTIME and 2-EXPTIME-hard), but is undecidable for non-linear child-only pro-
grams. As we have mentioned, the 3-EXPTIME upper bound can be actually lowered to
2-EXPTIME, using techniques based on clique-width [Bojańczyk et al. 2015].

We also investigated connections between monadic datalog and extensions of regular
tree pattern queries, discovering natural translations between the two formalisms;
translations to RTPQs involve exponential blow-up, but translations to datalog are
polynomial. Thus, results on datalog give direct corollaries about corresponding classes
of RTPQs. In particular, the result on linear D-Datalog(↓, ↓+) gives an EXPSPACE upper
bound for containment of RTPQ(↓, ↓+) queries, which solves an open problem from
[Abiteboul et al. 2011].

Like all our lower bounds, the ones for Datalog(↓) work for containment in UCQs, but
only as long as we work with Boolean queries: they do not carry over to unary queries.
For example, over unranked trees, containment of unary linear Datalog(↓) programs in
unary UCQ(↓) queries has been recently shown to be EXPSPACE-complete [Mazowiecki
et al. 2015], while for Boolean queries we have 2-EXPTIME lower bound.

There is also room for improvement in the intersection of the two fragments: for
linear D-Datalog(↓) we have only PSPACE-hardness and EXPSPACE upper bound.

We have worked exclusively with connected programs. Is this restriction necessary?
Our algorithm for linear Datalog(↓) over unranked trees can be extended to cover non-
connected programs, but it further complicates the already involved argument; the
same extension is effortless in the alternative approach of [Bojańczyk et al. 2015]. For
the remaining algorithms this question is open.

We have also ignored the sibling order. When sibling order is available in the form of
the next-sibling and the following-sibling predicate, we can encode words horizontally
as children of the root, which gives undecidability even for linear programs that do not
use child nor descendant. If we allow only one of these predicates, we can use the neg-
ative program to say that each tree node has at most k children. Hence, undecidability
carries over from ranked trees and words to unranked trees, leaving only the case of
linear programs without descendant, which might be decidable. Also, the decidability
results for child-only fragment on ranked trees could be extended to programs using
additionally next-sibling because equality tests would remain local. Another direction
to follow is datalog with non-strict order (the following-sibling-or-self predicate), which
cannot limit the number of children.
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