
Between tree patterns and conjunctive queries:
is there tractability beyond acyclicity?

Filip Murlak, Micha l Ogiński, and Marcin Przyby lko

Institute of Informatics, University of Warsaw
fmurlak@mimuw.edu.pl, {M.Oginski,M.Przybylko}@students.mimuw.edu.pl

Abstract. In static analysis of queries over trees in the presence of
schemas, there is an exponential complexity gap between conjunctive
queries (CQs, positive existential first-order formulae without disjunc-
tion) and tree patterns (tree-like acyclic CQs). Motivated by applica-
tions in XML data management, we consider various restrictions of CQs
that bring their complexity down to that of tree patterns. Most impor-
tantly, we show that vertical tree patterns can be costlessly extended with
full horizontal CQs over children. We also consider restricted classes of
schemas and show that under disjunction-free schemas the complexity of
static analysis sometimes drops dramatically.

1 Introduction

Static analysis is a common name used in database theory for problems that
do not deal with data, but only with queries. Such problems are often part of
complex data management tasks, like data integration and data exchange [15,
19]. Most important static analysis problems include satisfiabiliy (Given a query
q, is there a database D such that the returned set of tuples q(D) is nonempty?)
and query containment (Given q1, q2, does q1(D) ⊆ q2(D) hold for each D?). As
for first order logic these problems are undecidable, restricted query languages
are considered. For relational databases, conjunctive queries (CQs, positive ex-
istential formulae without disjunction) and their unions (UCQs) are used most
widely. The reason is a relatively low cost of static analysis [12], and expressive
power meeting most typical needs (select-from-where SQL queries). In contrast,
in XML static analysis, where problems are relativized to XML trees accepted by
a given schema (often modelled as a tree automaton), the complexity of full CQs,
using child and descendant relations, and sibling order, is prohibitively high [8,
9, 16]. As a remedy, more restrictive languages of acyclic CQs and tree patterns
(tree-like acyclic CQs) were introduced. For instance, literature on XML data
exchange and metadata management considers almost exclusively tree patterns
[1–3, 14]. A fine complexity analysis for CQs and UCQs over XML trees would
be useful in designing richer formalisms, based on intermediate classes of queries.

Most research on static analysis for queries over XML trees was done for frag-
ments of XPath 1.0, which is a language allowing only acyclic queries [5, 18, 20,
21, 24, 25], or XPath 2.0, which allows path intersection, but not arbitrary joins

[11, 17]. As has been observed by Gottlob, Koch, and Shulz, each CQ on trees
can be translated to a union of exponentially many polynomial tree patterns
[16]. This gives an upper bound on the complexity of containment exponentially
higher then that for tree patterns: 2ExpTime in general and ExpSpace under
non-recursive schemas (where the depth of trees is bounded by the size of the
schema), while for tree patterns they are ExpTime and PSpace, respectively
[5, 20, 24]. Björklund, Martens, and Schwentick show that the exponential gap
cannot be avoided in general, as even containment of CQs using only child and
descendant relation is 2ExpTime-complete, and ask if there are more manage-
able classes of CQs, other then acyclic CQs [9]. We are most interested in results
of the form: under certain restrictions, the complexity of containment of UCQs
is the same as that of unions of tree patterns. For example, if only child relation
is available, the general case reduces to the acyclic case, as each CQ can be
rewritten as a single tree pattern of linear size (cf. [4]).

We focus on the restrictions most commonly studied in XML data exchange
and metadata management: non-recursive or disjunction-free schemas (cf. nested-
relational DTDs [2, 3, 6]), and limited use of horizontal or vertical relations. We
first prove that, over words, containment of UCQs is PSpace-complete, just like
for unions of tree patterns (Sect. 4). Then we apply these results to trees (Sect. 5)
and show that the complexities match for a fairly general class of “forest-like”
UCQs, combining vertical tree patterns with arbitrary horizontal CQs over chil-
dren. This is further exploited to prove the same for

– UCQs that do not use the descendant relation;
– UCQs specifying labels of all mentioned nodes, under non-recursive DTDs.

Finally in Sect. 6 we show that under disjunction-free schemas the containment
of UCQs without the next-sibling relation is in coNExpTime and PSpace-
hard, and if additionally schemas are non-recursive, it is on the second level of
the polynomial hierarchy; with next-sibling, the complexity does not drop.

We work exclusively with Boolean queries; as explained in [9], this is not a re-
striction. Due to space limitations some arguments are omitted. For more details
see the appendix available at www.mimuw.edu.pl/~fmurlak/papers/patsat.pdf.

2 Preliminaries

XML documents and trees. We model XML documents as unranked labelled
trees. Formally, a tree over a finite labelling alphabet Γ is a relational structure

T = 〈T, ↓, ↓+,→, +→, (aT)a∈Γ 〉, where

– the set T is an unranked tree domain, i.e., a prefix-closed subset of N∗ such
that n · i ∈ T implies n · j ∈ T for all j < i;

– the binary relations ↓ and → are the child relation (n ↓ n · i) and the next-
sibling relation (n · i→ n · (i+ 1));

– ↓+ and
+→ are transitive closures of ↓ and →;

– (aT)a∈Γ is a partition of the domain T into possibly empty sets.

2

We write |T | to denote the number of nodes of tree T . The partition (aT)a∈Γ
defines a labelling of the nodes of T with elements of Γ , denoted by `T .

Automata and DTDs. The principal schema language we use are tree automata,
abstracting Relax NG [22, 23]. We are using a variant in which the state in a
node v depends on the states in the previous sibling and the last child of v. Such
automata are equivalent to standard automata on unranked trees, as explained
in [23]. Formally, an automaton is a tuple A = (Σ,Q, q0, F, δ), where Σ is the
labelling alphabet (the set of element types in our case), Q is the state space
with the initial state q0 and final states F , and δ ⊆ Q × Q × Σ × Q is the
transition relation. A run of A over a tree T is a labelling ρ of the nodes of T
with the states of A such that for each node v with children v ·0, v ·1, . . . , v ·k and
previous sibling w,

(
ρ(w), ρ(v · k), `T (v), ρ(v)

)
∈ δ. If v has no previous sibling,

ρ(w) in the condition above is replaced with q0. Similarly, if v has no children,
ρ(v · k) is replaced with q0. The language of trees recognized by A, denoted by
L(A), consists of all trees admitting an accepting run of A, i.e. a run that assigns
one of the final states to the root.

A simpler schema language is provided by DTDs. A document type definition
(DTD) over a labelling alphabet Γ is a pair D = 〈r, PD〉, where r ∈ Γ is a
distinguished root symbol and PD is a function assigning regular expressions
over Γ − {r} to the elements of Γ , usually written as σ → e, if PD(σ) = e. A
tree T conforms to a DTD D, denoted T |= D, if its root is labelled with r and
for each node s in T the sequence of labels of its children is in the language of
PD(`T (s)). The set of trees conforming to D is denoted by L(D). It is well known
(and easy to see) that there is a PTime translation from DTDs to automata.

We shall often consider non-recursive schemas, DTDs or automata. A DTD
D is non-recursive if in every tree conforming to D each path contains each label
at most once. A schema given by a tree automaton is non-recursive if in each
run (accepting or not) each path contains each state at most once. The height of
trees conforming to non-recursive schemas is bounded by the size of the schema.

CQs and patterns. A conjunctive query (CQ) over alphabet Γ is a formula of
first order logic using only conjunction and existential quantification, over unary

predicates a(x) for a ∈ Γ and binary predicates ↓, ↓+,→, +→ (referred to as child,
descendant, next sibling, and following sibling, respectively). Since we work only
with Boolean queries, to avoid unnecessary clutter we often skip the quantifiers,
assuming that all variables are by default quantified existentially.

An alternative way of looking at CQs is via patterns. A pattern π over Γ can
be presented as π = 〈V,Ec, Ed, En, Ef , `π〉 where `π is a partial function from
V to Γ , and 〈V,Ec ∪ Ed ∪ En ∪ Ef 〉 is a finite graph whose edges are split into
child edges Ec, descendant edges Ed, next-sibling edges En, and following-sibling
edges Ef . By |π| we mean the size of the underlying graph.

We say that a tree T = 〈T, ↓, ↓+,→, +→, (aT)a∈Γ 〉 satisfies a pattern π =
〈V,Ec, Ed, En, Ef , `π〉, denoted T |= π, if there exists a homomorphism h : π →
T , i.e., a function h : V → T such that

3

Fig. 1. Typical patterns. Void and solid heads indicate horizontal and vertical order,
respectively. Dashed lines indicate transitive closure. The leftmost pattern can be ex-
pressed using path intersection operator from XPath 2.0, but the middle one cannot.

– h : 〈V,Ec, Ed, En, Ef 〉 → 〈T, ↓, ↓+,→,
+→〉 is a homomorphism of relational

structures; and
– `T (h(v)) = `π(v) for all v in the domain of `π.

Each pattern can be seen as a CQ, and vice versa. In what follows we use the
terms “pattern” and “CQ” interchangeably. Tree patterns are patterns whose
underlying graph is a directed tree with edges pointing from parents to children.

Containment and satisfiability. We focus on the following satisfiability problem.

Problem: BC-SAT
Input: Boolean combination of patterns ϕ, schema S (automaton or DTD).

Question: Is there a tree T ∈ L(S) such that T |= ϕ?

For σ ⊆ {↓, ↓+,→, +→, } we write BC-SAT(σ) to denote BC-SAT restricted to
patterns which use only the axes listed in σ. If the wildcard symbol, , is not
present in σ, the labelling functions in patterns are required to be total, or in
other words that each variable must occur in an atom of the form a(x) for some

a ∈ Γ . We use the following abbreviations: ⇓ for ↓, ↓+, ; and ⇒ for →, +→, .
Containment for UCQs is inter-reducible with non-satisfiability for Boolean

combinations of the form π ∧ ¬π1 ∧ ¬π2 ∧ · · · ∧ ¬πk. Validity of a query is
equivalent to non-satisfiability of its negation. Most of our lower bounds only
use conjunctions of negations of patterns, thus giving dual lower bounds for
validity (and containment).

3 Basic complexity bounds

In this section we briefly summarize known complexity bounds and establish
some new bounds in the case of non-recursive schemas. The complexity of
BC-SAT for tree patterns follows immediately from the results on XPath sat-
isfiability and containment.

Theorem 1 ([5, 11, 24, 20]). For tree patterns, BC-SAT(⇓,⇒) is ExpTime-
complete and PSpace-complete under non-recursive schemas. The lower bounds
hold even for containment of unions of tree patterns using only ↓.

4

The ExpTime upper bound follows from the translation of downward XPath
to automata [24], later extended to cover horizontal axes in [11] (also implicit
in [20]). The PSpace upper bound follows from [5]. The lower bounds in [5, 24]
rely on the availability of wildcard (or disjunction inside XPath expressions),
but they can be strengthened to queries using only ↓.

As we have mentioned, for CQs the bounds are exponentially worse.

Theorem 2 ([9]). For arbitrary patterns, BC-SAT(⇓,⇒) is 2ExpTime-complete.
The lower bound holds already for validity of a single CQ using only ⇓.

To complete the background for the main results of this paper, described
in Sections 4–6, we now settle the complexity of BC-SAT under non-recursive
schemas. The complexity drops only slightly, but the cost of → begins to show.

Theorem 3. Under non-recursive schemas BC-SAT(⇓) and BC-SAT(⇓, +→) is
NExpTime-complete and BC-SAT(⇓,⇒) is ExpSpace-complete. The lower
bounds hold already for conjunctions of negated patterns.

The ExpSpace upper bound follows immediately by translation to tree pat-
terns. The NExpTime upper bound is obtained via a linearly-branching model
property, which relies on the fact that an unsatisfied pattern without → never
becomes satisfied when a subtree is deleted. The lower bounds use an ingenious
pattern construction from [9].

4 CQs over words

In the classification sketched out in the previous section, horizontal CQs were to
some extent drowned in the overall complexity of patterns. We shall have a closer
look at them now: we restrict our models to words. We show that under this
restriction the complexity of CQs matches that of tree patterns (Theorem 4); in
the next section we show how this can be applied to the tree case.

Our main building block is a procedure Matchπ associated with each pattern
π. The procedure takes as input a word w and checks if w |= π. It reads w letter
by letter, possibly storing some information in the working memory, polynomial
in |π| and independent of w (it can be seen as a DFA, exponential in π). The
procedure looks for the earliest (leftmost) matching of π in w, as defined below.
We note that earliest matchings were previously used in [7] for tree patterns.

We use ≤ and +1 for the standard order and successor on the positions of
words (an initial segment of natural numbers), and define homomorphisms just
like for trees. Whenever we write h : π → w, we implicitly assume that h is a
homomorphism.

Definition 1. Let g, h : π → w be two homomorphisms.

– We write g ≤ h if g(v) ≤ h(v) for each vertex v of π.
– We define min(g, h) : π → w as min(g, h)(v) = min(g(v), h(v)).

Lemma 1. Let w be a word satisfying a ⇒-pattern π.

5

1. For all g, h : π → w, min(g, h) is a homomorphism.
2. There exists hmin : π → w such that hmin ≤ h for all h : π → w.
3. For each set X of vertices of π and each h : π → w there is a ĥ : π → w

extending h|X such that ĥ ≤ h′ for each h′ : π → w extending h|X .

We call the unique hmin from Lemma 1 the earliest matching of π in w.
Matchπ(w) works with components of π, called firm subpatterns, described

in Definition 3.

Definition 2. A →-component of π is a maximal connected subgraph of →-
graph of π. In the graph of →-components of π, denoted Gπ, there is an edge

from a →-component π1 to a →-component π2 if there is a
+→ edge in π from a

vertex of π1 to a vertex of π2.

Definition 3. A pattern π is firm if Gπ is strongly connected. In general, each
strongly connected component X of Gπ defines a firm subpattern of π: the sub-
graph of π induced by the vertices of →-components contained in X. The DAG
of firm subpatterns of π, denoted Fπ, is the standard DAG of strongly connected
components of Gπ.

For example, the pattern in Fig. 2 on page 8 is firm, but has three→-components.
The matching procedure Matchπ(w) works as follows:

– it reads the input word w from left to right trying to match firm subpatterns
of π in the topological order given by Fπ;

– for each firm subpattern it finds the earliest matching that does not violate

the
+→ edges connecting it with previously matched firm subpatterns.

Since we are proceeding in the topological order, each firm subpattern is pro-
cessed after all its predecessors have been matched. Hence, the algorithm always
finds a correct homomorphism or none at all. Completeness of the algorithm fol-
lows from the lemma below by straightforward induction (where Y is the union
of previously matched firm patterns and X is obtained by adding a new one).

Lemma 2. Let h : π → w be the earliest matching and let X be a set of vertices
of π such that no edge enters X from the outside, and the only edges leaving X

are
+→. For each Y ⊆ X, if g : π|X → w is the least homomorphism extending

h|Y to X, then h|X = g.

Now we need to bound the memory used by Matchπ(w). We claim that
the algorithm only needs to remember last |π| symbols read (plus the matching
constructed so far, restricted to this suffix). It is straightforward to check that
each homomorphic image of a firm pattern π0 is a subword of length at most
|π0|. Based on this observation, we prove the claim. For i ≤ |w|, let Πi be the
set of firm subpatterns of π matched by Matchπ(w) after processing the first i
symbols of w. Note that if a position j is not touched by the matching, all firm
subpatterns matched before this position are in Πj . By pigeon-hole principle,
there is a position j between i− |π| and i that is not touched by the matching.

6

By the previous comment, all patterns from Πi \Πi−1 are matched between j
and i. It follows that Matchπ(w) only needs to remember the last |π| symbols.

Using the matching procedure we prove the main result of this section.

Theorem 4. On words BC-SAT(⇒) is PSpace-complete, with hardness already

for conjunctions of negated tree patterns using only→, or CQs using only→, +→.

Proof. To check if a Boolean combination ϕ is satisfiable in a word accepted by
an automaton A, we non-deterministically generate letters of a word w ∈ L(A)
and feed with them Matchπ for each π used in ϕ. We accept if the split into
matched and unmatched patterns satisfies ϕ. To prevent looping, we count the
number of letters and stop when we reach certain threshold, single exponential
in |ϕ|. To establish the threshold, recall that Matchπ can be seen as a DFA,
exponential in |π|. The product automaton corresponding to all running copies
of the matching procedure is single exponential in ϕ. The threshold can be set
to the size of the product automaton. By Savitch theorem we can eliminate
non-determinism from this algorithm.

For the lower bound we give a reduction from the following tiling problem,
which is known to be PSpace-complete: Given a set of tiles T = {t1, t2, . . . , tk},
relations H,V ⊆ T ×T , and a number n in unary, decide if there is a number m
and an m × n matrix (ai,j) with entries from T such that a1,1 = t1, am,n = tk,
(ai,j , ai,j+1) ∈ H for 1 ≤ i ≤ m, 1 ≤ i < n and (ai,j , ai+1,j) ∈ V for 1 ≤ i < m,
1 ≤ i ≤ n. In fact we give the reduction from the following linearised tiling
to which the original problem can be easily reduced: Given T,H, V, n, decide if
there is a sequence of tiles s1s2 . . . s` such that s1 = t1, s` = tk, (si, si+1) ∈ H
for all i ≤ `− 1, and (si, si+n) ∈ V for all i ≤ `− n.

Let an instance of the linearised tiling problem be T,H, V, n. If wildcard is
available, we can assume our alphabet is T ∪ {r} and take the DTD r → t0T

∗tk
and the following combination of patterns:∧
(ti,tj)/∈H

¬∃x∃y (x→ y)∧ ti(x)∧ tj(y)∧
∧

(ti,tj)/∈V

¬∃x∃y (x→n y)∧ ti(x)∧ tj(y) .

Without wildcard we cannot express →n, but we can circumvent this obstacle

using
+→ if we modify our encoding properly. We encode the tile ti as the word

wi = .āaibaj ā/

with ā = aak and i + j + 1 = k. For the DTD we take r → w0W
∗wk, where

W = {wi | i = 1, 2, . . . , k}. The patterns are replaced with

x1
wi−→ x′1 → x2

wj−→ x′2 ,

x1
wi−→ x′1 → x2

w∗−→ x′2 → . . .→ xn
w∗−→ x′n → xn+1

wj−→ x′n+1 ,

where x
wi−→ x′ is a pattern that says that the segment of the word from position

x to x′ is wi and x
w∗−→ y is the following pattern (see also Fig. 2)

(x
.ā−→ x′′) ∧ (x′

ābā−→ y′) ∧ (y′′
ā/−→ y) ∧ (x

+→ x′
+→ x′′) ∧ (y′′

+→ y′
+→ y) . ut

7

Fig. 2. Pattern x
w∗−→ y for k = 2

Thus BC-SAT(⇒) is PSpace-complete if either wildcard or
+→ and arbitrary

joins are allowed. If we forbid wildcards and restrict the use of joins, the com-
plexity drops to NP. Using Matchπ and the following observation, we prove
the upper bound for a relatively large class of patterns, extending tree patterns.

Lemma 3. For all w1, w2, . . . , wn ∈ Γ ∗ there is a linear-size deterministic au-
tomaton recognizing

⋃n
i=1 Γ

∗wiΓ
∗. One can compute it in PTime.

Proof. States of the automaton are prefixes of wi’s. After reading u, the state
is the longest prefix that is a suffix of u. If the prefix is the whole word wi, the
automaton moves to a distinguished accepting state. ut

Theorem 5. For patterns whose firm sub-patterns do not contain
+→, the prob-

lem BC-SAT(→, +→) on words is NP-complete.

Proof. The lower bound is proved in [9]. To get the upper bound, we prove a
polynomial model property. Given that ⇒-patterns can be evaluated in PTime,
the proposition follows.

Let w ∈ L(A) be a word satisfying a Boolean combination ϕ. For each pattern
π in ϕ consider its earliest partial matching, i.e., the partial matching computed
by Matchπ. Clearly, π is satisfied if and only if its earliest partial matching is
total. It suffices to show that the segments of w outside of the partial matches
can be chosen small, without changing the matches.

Suppose that w = u1vu2 and v is not touched by the partial matchings. A
partial matching is earliest if and only if each firm sub-pattern π0 is matched
at its first occurrence after the launching point : the latest position i such that

matching π0 at i (regardless of labels) violates some
+→ edge entering π0. When

shortening v we only need to make sure that we do not introduce an occurrence
of a subpattern between its launching point and its original match in w. For sub-
patterns matched in u1 changing v makes no difference. Suppose π0 is matched
in u2. Where can the launching point of π0 be? If it is enforced by a sub-pattern
matched in u1, it is in u1. If it is enforced by a subpattern matched in u2, it is
either in u2 or within the last |π0| positions of v.

Let π1, π2, . . . , πk be all sub-patterns matched in u2 whose launching points

are in u1. Since they contain no
+→ nor , they can be turned into single words

by merging along the → edges. Let B be the deterministic automaton accepting
words that contain some πi (Lemma 3). Let v = v1v

′v2, where |v1| = |v2| is
equal to the maximal size of a firm subpattern. By standard pumping we can
shorten v′ to at most ‖A‖ · ‖B‖, without introducing new occurrences of πi’s in

8

vu2. Since we are not touching v1, we do not introduce new occurrences of πi’s
in the whole word w. Similarly, since we are not touching v2, the patterns whose
launching points are in v2u2 are not influenced either. ut

5 Back to trees

We now lift the restriction on models and see what happens for trees. We have
already seen that BC-SAT for full CQs is exponentially harder than for tree
patterns: 2ExpTime versus ExpTime, and ExpSpace versus PSpace under
non-recursive schemas (Theorems 1–3). Here we consider several restrictions on
CQs and schemas that lower the complexity of CQs to that of tree patterns.

We show first that, for vertical tree patterns extended with arbitrary hori-
zontal CQs over siblings, our PSpace algorithm for BC-SAT on words can be
incorporated into the procedures for tree patterns without increasing their com-
plexity. (Allowing joins with arbitrary horizontal CQs would immediately violate
the intended tree structure of the vertical part of the pattern.) We say that a
pattern is forest-like if its ⇓-subgraph is a disjoint union of trees and all vertical
edges coming to the same connected⇒-subpattern originate in the same vertex.

Theorem 6. For forest-like patterns, BC-SAT(⇓,⇒) is ExpTime-complete, and
under non-recursive schemas it is PSpace-complete.

Proof. For a forest-like pattern π we shall construct an equivalent deterministic
automatonAπ, whose states and transitions can be generated in PSpace. (Recall
that a tree automaton is (bottom-up) deterministic, if for all q1, q2 ∈ Q and
a ∈ Σ there exists exactly one state q such that (q1, q2, a, q) ∈ δ.) Using this
construction one can reduce BC-SAT(⇓,⇒) to nonemptiness of tree automata in
PSpace. Both upper bounds follow, since nonemptiness of A over trees of depth
d can be tested in space O(d · log ‖A‖), and over arbitrary trees in PTime.

A horizontal component of π is a connected component of the ⇒-subgraph
of π. Let Hπ = 〈Vπ, ↓, ↓+〉 be a graph over horizontal components of π, where
edge π1 ↓ π2 is present if x ↓ y for some x ∈ π1 and y ∈ π2, and π1 ↓+ π2 is
present if x ↓+ y for some x ∈ π1 and y ∈ π2, but there is no edge π1 ↓ π2. Since
π is forest-like, this graph is a forest. The subtree of Hπ rooted at π1 defines a
subpattern of π, denoted by (π1)⇓. We call such subpatterns subtrees of π.

The automaton Aπ, after reading the sequence of children of a node v, passes
to v information about subtrees of π that were matched in the children of v and
those that were matched in the children of some descendant of v. The automaton
accepts, if the information passed from the root says that π was matched. To
compute the information to be passed to v the automaton needs to aggregate
the information passed from v’s grandchildren to their parents. This is done by a
modified version of Match working over an extended alphabet, described below.

A subtree (π1)⇓ of π can be viewed as a horizontal pattern obtained from π1

by including in the label of each vertex x the information about the subtrees of
π to which x is connected by ↓ and ↓+ edges. At each step Match is fed with a
symbol that consists of the label of a tree node u and the information passed to

9

u from its sequence of children. (At the leaf level of T this information is void
and Match works just like for words.) Match is only altered in this way that
a vertex labelled with an extended label σ can be matched in a position labelled
with an extended label τ if the original labels agree and all patterns listed in
σ are also listed in τ (keeping the distinction between patterns connected by ↓
and ↓+). It is straightforward to check that this does not influence correctness
of Match. Observe that the extended alphabet is exponential, but each symbol
can be stored in polynomial memory. Hence, Match still works in memory
polynomial in the size of the pattern.

This procedure can be easily implemented by an exponential deterministic
tree automaton. Within a sequence of children, Aπ behaves like the automaton
implementing Match(π̃), where π̃ is the disjoint union of all subtrees of π.
It reads the extended label from the label of the current child u and the state
coming from the children of u. When the last child is read, the information about
matched subtrees of π is complete and can be passed up, to the parent. ut

From this result we obtain further upper bounds. For purely horizontal patterns,
a standard pumping argument allows us to bound the height of the witnessing
tree by the size of the schema, and with some care the algorithm for non-recursive
schemas can be used even if the original schema is recursive.

Corollary 1. BC-SAT(⇒) is PSpace-complete.

Furthermore, as observed in [16], each pattern using no ↓+ can be turned in
PTime into an equivalent forest-like pattern by simply merging each pair of
vertices that have outgoing ↓ edges to the same connected⇒-subpattern. Hence,
we immediately get the following corollary (hardness from Theorem 1).

Corollary 2. BC-SAT(↓,⇒) is ExpTime-complete and PSpace-complete un-
der non-recursive schemas.

Finally, with a little more effort one can prove that in the presence of a non-
recursive DTD the same holds for patterns that do not use wildcard.

Corollary 3. BC-SAT(↓, ↓+,→, +→) is PSpace-complete under non-rec. DTDs.

The lower bound follows from Theorem 1 and the upper bound relies on the
fact that in the presence of a non-recursive DTD labels come in a fixed order
in the paths. For non-recursive tree automata this is no longer the case. In fact,
under such schemas one can carry over the lower bounds of Theorem 3 to the
case without wildcard.

6 Disjunction-free DTDs

Theorem 3 shows that under non-recursive schemas BC-SAT does not get much
easier. We now introduce another restriction, often used in combination with
non-recursivity in complex data management tasks [2, 3]: we limit the use of

10

disjunction. A DTD is disjunction-free if its regular expressions use only con-
catenation, Kleene star and the operator α≤m = (ε |α |α2 | . . . |αm).

BC-SAT under disjunction-free DTDs is not easier unless → is forbidden.
Indeed, using → we can simulate full DTDs, e.g., a production a → α |β can
be simulated by a →](.α/)∗(.β/)∗], with conjunct ¬∃x∃y

(
](x) →](y)

)
∧

¬∃x ∃y
(
/ (x)→ .(y)

)
added to the combination tested for satisfiability.

If→ is forbidden, the complexity under disjunction-free non-recursive DTDs
drops to low levels of the polynomial hierarchy, compared to NExpTime for
non-recursive DTDs allowing disjunction (Theorem 3).

Theorem 7. Under non-recursive disjunction-free DTDs BC-SAT(⇓, +→) is Σ2P-
complete and NP-complete for tree patterns.

The problem is Σ2P-hard already for Boolean combinations of the form π1∧¬π2

where π1 is a pattern with a single node, but without π1 it is coNP-complete.
If the non-recursivity restriction is lifted the complexity is still (potentially)

below the general 2ExpTime lower bound.

Theorem 8. Under disjunction-free DTDs BC-SAT(⇓, +→) is in NExpTime and
PSpace-complete for tree patterns. The lower bound holds already for contain-
ment of unions of tree patterns using only ↓, .

7 Conclusions

We have shown that under several independent restrictions, CQs have the same
complexity of the satisfiability of Boolean combinations, and the containment
of unions of queries problem, as tree patterns. Most importantly, vertical tree
patterns can be extended with full horizontal CQs over children without in-
creasing the complexity of static analysis tasks. We have also showed that under
non-recursive, disjunction-free schemas the complexity of static analysis for CQs
without the next-sibling relation is in low levels of the polynomial hierarchy. This
could be applied in the analysis of mappings between nested-relational schemas
[2]. (We point out the complexity gap for general disjunction-free schemas as an
elegant theoretical challenge.) We focused on containment of UCQs, since this
is the problem relevant for XML metadata management, but a finer analysis of
the containment for CQs would also be desired (the 2ExpTime-lower bound of
[9] holds already for validity of CQs). Similarly, patterns with data comparisons
might be considered (again, some cases are settled in [9]).

Acknowledgements. This work is part of the Querying and Managing Naviga-
tional Databases project realized within the Homing Plus programme of the
Foundation for Polish Science, co-financed by the European Union from the Re-
gional Development Fund within the Operational Programme Innovative Econ-
omy (“Grants for Innovation”). We thank Claire David for inspiring discussions
and careful reading of a preliminary version of this paper, and the anonymous
referees for helpful comments motivating us to improve the presentation of the
paper.

11

References

1. S. Amano, C. David, L. Libkin, F. Murlak. On the Tradeoff between Mapping and
Querying Power in XML Data Exchange. ICDT 2010: 155–164.

2. S. Amano, L. Libkin, F. Murlak. XML schema mapping. PODS 2009: 33–42.
3. M. Arenas, L. Libkin. XML data exchange: consistency and query answering.

J. ACM 55(2), 2008.
4. M. Benedikt, P. Bourhis, P. Sennelart. Monadic Datalog Containment. ICALP

2012 (to appear).
5. M. Benedikt, W. Fan, F. Geerts. XPath satisfiability in the presence of DTDs.

J. ACM 55(2), 2008.
6. G. J. Bex, F. Neven, J. Van den Bussche. DTDs versus XML Schema: a practical

study. WebDB 2004: 79–84.
7. H. Björklund, W. Gelade, W. Martens. Incremental XPath evaluation. ACM

Trans. Database Syst. 35(4): 29 (2010)
8. H. Björklund, W. Martens, T. Schwentick. Conjunctive query containment over

trees. DBPL 2007: 66–80.
9. H. Björklund, W. Martens, T. Schwentick. Optimizing conjunctive queries over

trees using schema information. MFCS 2008: 132–143.
10. M. Bojańczyk, L. A. Ko lodziejczyk, F. Murlak. Solutions in XML data exchange.

ICDT 2011: 102–113.
11. B. ten Cate, C. Lutz. The Complexity of Query Containment in Expressive Frag-

ments of XPath 2.0. J. ACM 56(6): 1–48.
12. A. K. Chandra, P. M. Merlin. Optimal implementation of conjunctive queries in

relational data bases. STOC 1977: 77–90.
13. C. David. Complexity of data tree patterns over XML documents. MFCS 2008:

278–289.
14. C. David, L. Libkin, F. Murlak. Certain answers for XML queries. PODS 2010:

191–202.
15. R. Fagin, Ph. Kolaitis, R. Miller, L. Popa. Data exchange: semantics and query

answering. Theor. Comp. S. 336 (2005), 89–124.
16. G. Gottlob, C. Koch, K. Schulz. Conjunctive queries over trees. J. ACM 53 (2006),

238–272.
17. J. Hidders. Satisfiability of XPath expressions. DBPL 2003: 21–36.
18. Y. Ishihara, T. Morimoto, S. Shimizu, K. Hashimoto, T. Fujiwara. A Tractable

Subclass of DTDs for XPath Satisfiability with Sibling Axes. DBPL 2009: 68–83.
19. M. Lenzerini. Data integration: a theoretical perspective. PODS 2002: 233–246.
20. M. Marx. XPath with conditional axis relations. EDBT 2004: 477–494.
21. G. Miklau, M. Suciu. Containment and equivalence for a fragment of XPath.

J. ACM 51(1): 2–45, 2004.
22. M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema lan-

guages using formal language theory. ACM Transactions on Internet Technology,
5(4): 1–45, 2005.

23. F. Neven. Automata Theory for XML Researchers. SIGMOD Record 31(3): 39–46
(2002).

24. F. Neven, T. Schwentick. On the complexity of XPath containment in the presence
of disjunction, DTDs, and variables. Logical Meth. in Comp. Sci. 2(3): 1–30, 2006.

25. P. T. Wood. Containment for XPath fragments under DTD constraints. ICDT
2003.

12

A Lower bounds of Theorem 1

A.1 Syntax for tree patterns

Tree patterns can be specified in the following natural syntax [2]:

π ::= σ[λ] patterns
λ ::= ε | π | //π | µ | λ, λ lists

µ ::= π | π → µ | π +→ µ sequences

where σ ∈ Γ ∪ { }. That is, a tree pattern is given by its root node with label
σ and a list of subtrees λ. A subtree can be rooted at a child of the root (corre-
sponding to π in the definition of λ), or its descendant (corresponding to //π).
The subtrees rooted in the children of the root can be additionally connected
into sequences µ by means of the next sibling relation (represented by→) or the

following sibling relation (represented by
+→). The wildcard symbol is used to

denote a vertex without a label. We write σ instead of σ[].

A.2 BC-SAT(↓) for tree patterns is PSpace-hard under non-recursive
DTDs

We reduce the following problem of acceptance by Alternating Turing Machine
(ATM) in polynomial time: Given ATM M and number n in unary, does M
accept empty input in no more than n steps?

An ATM can be presented as a tuple 〈Q,A, q0, δ〉, where the state space Q is
split into universal states Q∀, existential states Q∃, the accepting state qa and
rejecting state qr. The initial state is q0 ∈ Q∃. Alphabet A contains special blank
symbol [and δ ⊂ Q×A×Q×A× {−1, 0, 1} is the transition relation.

Without loss of generality we can assume that both accepting and rejecting
configurations are halting configurations (have no successor configurations) and
that every non-halting configuration has exactly two different successor configu-
rations. Moreover we can assume that M is normalized that is transitions from
universal states affect only the state of the machine (tape is not changed). Since
the computation takes no more than n steps, M uses no more than n memory
cells.

Acceptance for alternating Turing machine is based on computation trees.
An accepting computation tree is finite and has the accepting state qa in each
leaf. We encode each configuration as a sequence of children of the configuration
header node. The configuration header nodes form a binary tree. The root is
labeled with c1. If a configuration header node labelled with ci or di stores a
universal state, then it has two children, ci+1 and di+1. If it stores an existential
node, it has just one child, ci+1. If it stores a final state (accepting or rejecting),
it has no children.

Our reduction will enforce that every tree satisfying the Boolean combination
of patterns encodes an accepting run (computation tree) of the machine. DTD
will provide the skeleton for the encoding and patterns will enforce that the

13

computation is accepting, starts in correct configuration, and that transitions
are consistent with δ.

The root symbol of the DTD is S and the productions are as follows:

S → c1

ci, di → a1, ..., an(qa|qr|Q∃ci+1|Q∀ci+1di+1) for 0 < i < n

cn, dn → a1, ..., an(qa|qr)
ai → Σ

where elements of Σ = A × {>,⊥} encode the content of cells, > indicates
the presence of the head. By Σ̂ we will denote encodings of not empty cells,
i.e., Σ̂ = Σ \ ({[} × {>,⊥}) and C denotes the set of configuration headers
{ci, di

∣∣ i = 1, . . . , n}.
Note that provided schema ensures that in a computation an existential con-

figuration chooses one of possible successors, universal two and that final con-
figurations are halting (ends the computation).

The correctness of the encoding is expressed by patterns as follows. Universal
configuration has two different child configurations (lab ∈ C; q∀ ∈ Q∀; q ∈ Q; 1 ≤
i ≤ n):

¬ lab
[
q∀, ci[q], di[q]

]
After an empty cell there are only empty cells (lab ∈ C, l ∈ Σ̂, h ∈ {>,⊥}, 1 ≤
i < j ≤ n):

¬ lab
[
ai[〈[, h〉], aj [l]

]
There is only one head in each configuration (a, b ∈ A; lab ∈ C; 1 ≤ i < j ≤ n):

¬ lab
[
ai[〈a,>〉], aj [〈b,>〉]

]
The head does not disappear (or does not move further than one position) when
configuration changes (1 < i < n; lab, lab′ ∈ C; a, b, c, d ∈ A):

¬ lab
[
ai[〈a,>〉], lab′[ai−1[〈b,⊥〉], ai[〈c,⊥〉], ai+1[〈d,⊥〉]]

]
and for i = 1 or i = n we drop ai−1[〈b,⊥〉] or ai+1[〈d,⊥〉], respectively.

Memory change involves head (1 ≤ i ≤ n; lab, lab′ ∈ C; a, b ∈ A; h ∈ {⊥,>}):

¬ lab
[
ai[〈a,⊥〉], lab′[ai[〈b, h〉]]

]
for a 6= b .

Transition is consistent with δ (0 ≤ i ≤ n; lab, lab′ ∈ C):

¬ lab
[
q1, ai[l1], lab′

[
q2, ai[l2], ai+d[l3]

]]
for

– l1 = 〈a,>〉, l2 = 〈b,>〉, l3 = l2, d = 0, and 〈q1, a, q2, b, d〉 6∈ δ
– l1 = 〈a,>〉, l2 = 〈b,⊥〉, l3 ∈ A×{>}, d ∈ {−1, 1}, a, b ∈ A, and 〈q1, a, q2, b, d〉 6∈
δ

14

For i = 1 and i = n we drop variable ai−1[. . .] or ai+1[. . .], respectively.
Computation is accepting (no rejecting configurations):

¬ qr,

starts with an empty tape, with the head over the first cell:

¬ S [c1[a1[〈a, h〉]]] for a 6= [or h 6= >

and in initial state:
¬ S [c1[q]] for q 6= q0.

It is easy to check thatM accepts empty input if and only if the conjunction
of the negated patterns above is satisfiable with respect to the given DTD.

A.3 BC-SAT(↓) for tree patterns is ExpTime-hard

We obtain a reduction from the acceptance by an alternating Turing machine in
polynomial space by a simple modification of the reduction given in the previous
subsection. We skip the indices in the configuration headers to get the following
DTD:

S → c

c, d→ a1, ..., an(qa|qr|Q∃c|Q∀cd)

ai → Σ

and allow arbitrarily long computations which use n memory cells. Similar
change in patterns is enough to obtain the desired reduction.

B Proof of Theorem 3

B.1 BC-SAT(⇓,→) is ExpSpace-hard under non-recursive schemas

We give a reduction from the acceptance by Turing machine in exponential
space: given Turing machine M = 〈A,Q, δ, q0, qf 〉 and number n in unary, does
M accept empty input using no more than 2n memory cells? We assume that A
contains the blank symbol [and that there is only one initial state q0 and one
accepting state qf .

The idea is to enforce a tree whose designated sub-trees encode consecutive
configurations of an accepting computation of M . DTD will create the skeleton
to code computation, and patterns will take care of correctness. A configuration
consists of a state (q ∈ Q) of the machine, head position, and tape content.
Single configuration will be encoded in a tree with c-labelled root. Its leaves will
represent tape cells and will have labels from set C = A × (Q ∪ {⊥}). If in a
given configuration the label of a cell-encoding node is of form 〈a, q〉 ∈ A × Q
then the head is over that cell. W.l.o.g. we can assume that every configuration
of M is of length 2n.

15

For given n the skeleton of the computation is fixed by a DTD D of the form:

r → R

R→ †c∗‡
c→ l1r1

li → 0bi 1 ≤ i ≤ n
ri → 1bi 1 ≤ i ≤ n
bi → li+1ri+1 1 ≤ i < n

bn → C

0→ 1

We will say that node is on level i if its label has index i.
To express correctness of the run, we shall need some auxiliary patterns. We

construct them step by step.
The formula is root(x) states that x is one of the roots: either the real one,

labelled with r, or the fake one, labelled with R:

is root(x) = ∃ y : (x ↓2n+2 y) .

The correctness of the formula follows from the fact that the height of each tree
conforming to the DTD D is 2n+3, and a path of length 2n+2 exists only from
the node labelled with r or the one labelled with R.

Next, we write a formula same turni saying that two nodes x, y are on level
i and both are labelled with li or both are labelled with ri. Since we cannot use
disjunction, it requires a trick using the fake root.

same turni(x, y) = ∃x, y, root , xc, yc, xd, yd :

bi(xc) ∧ bi(yc) ∧ 1(xd) ∧ 1(yd) ∧ is root(root) ∧

∧ (x ↓ xc) ∧ (x ↓+ xd) ∧ (y ↓ yc) ∧ (y ↓+ yd) ∧

∧ (root ↓2i+2 xd) ∧ (root ↓2i+2 yd)

We know that root is labelled with r or R. If it is r, then xd and yd must be
children of x and y, respectively. By the definition of the DTD D, x and y must
have label ri. In the second case, root is labelled with R and xd and yd are
grandchildren of x and y, respectively. Then, x and y, both have label li.

Now we can write a formula saying that x, y encode the same cell in two
subsequent configurations. We express this by saying that they can be reached
from their c-labelled ancestors along paths of length 2n+ 1 that take the same
turns, left or right:

same cell(x, y) = ∃xc, x1, .., xn, yc, y1, ..yn :

c(xc) ∧ c(yc) ∧ (xc → yc) ∧ (xc ↓ x1) ∧ (yc ↓ y1) ∧

16

∧
n−1∧
i=1

(xi ↓2 xi+1) ∧ (yi ↓2 yi+1) ∧

∧ (xn ↓2 x) ∧ (yn ↓2 y) ∧

∧
n∧
i=1

same turni(xi, yi)

Second, we need a formula next cellk(x, y) expressing that x and y are neigh-
bouring leaves (x is to the left of y) and have the closest common ancestor on
level k (labelled bk):

next cellk(x, y) = ∃z, xk+1, .., xn, yk+1, .., yn :

n−1∧
i=k+1

(xi ↓2 xi+1 ∧ yi ↓2 yi+1) ∧

∧ (z ↓ xk+1) ∧ (z ↓ yk+1) ∧ (xn ↓2 x) ∧ (yn ↓2 y) ∧

∧ bk(z) ∧ lk+1(xk+1) ∧ rk+1(yk+1) ∧
n∧

i=k+2

(ri(xi) ∧ li(yi))

Now we can express that transition between two consecutive configurations
is compatible with δ. More specifically we exclude every incorrect transition.
To find an error we need 3 neighbouring cells in two consecutive configurations.
When we grasp them, we simply say that their labels encode an incorrect tran-
sition, i.e., that one of the following happened:

– cell content changed without the head being involved,
– the head disappeared,
– the change of head position, state, or cell content is inconsistent with tran-

sition relation δ.

This is expressed as follows:

¬∃x1, x2, x3, y1, y2, y3 :

next cellk(x1, x2) ∧ next cellk′(x2, x3) ∧

∧ next cellk(y1, y2) ∧ next cellk′(y2, y3) ∧

∧ same cell(x1, y1) ∧
3∧
i=1

(ai(xi) ∧ bi(yi)) ,

where a1, a2, a3 and b1, b2, b3 range over triples of labels from C corresponding
to incorrect transitions, and k, k′ ranges over 1, 2, . . . , n− 1.

It remains make sure that the computation begins and ends correctly. The
first configuration should contain empty tape and have the head in the first cell,

17

in the initial state. This is enforced by the conjunction of the following formulae
(〈σ, q〉 ∈ C \ {〈[, q0〉} and 〈σ′, q′〉 ∈ C \ {〈[,⊥〉})):

¬ ∃x, y : first conf (x) ∧ (x ↓+ y) ∧ first cell(x) ∧ 〈σ, q〉(y) ,

¬ ∃x, y, z : first conf (x) ∧ (x ↓+ y) ∧ next cellk(y, z) ∧ 〈σ′, q′〉(z) ,

where k ranges over 1, 2, . . . , n and the auxiliary patterns are defined as follows:

first conf (x) = ∃y : †(y) ∧ (y → x) ,

first cell(x) = ∃y1, . . . , yn :

(
n∧
i=1

li(yi)

)
∧

(
n−1∧
i=1

(yi ↓2 yi+1)

)
∧ (yn ↓2 y) .

To check that the last configuration is accepting we use conjunction of the
following formulae (q ∈ Q \ {qf} and a ∈ A):

¬∃x, y : last conf (x) ∧ (x ↓+ y) ∧ 〈a, q〉(y) ,

where last conf (x) = ∃z : (x→ z) ∧ ‡(z).

Disjunction-free DTDs The DTD used in the reduction only contains dis-
junction in the production bn → C. We can replace this production with bn →
](.c1/)

∗(.c2/)
∗ . . . (.cm/)

∗], where {c1, c2, . . . , cm} = C, and adding conjunct
¬∃x ∃y

(
](x)→](y)

)
∧¬∃x∃y

(
/ (x)→ .(y)

)
to the combination tested for sat-

isfiability. As children of bn nodes are never tested for →, this does not interfere
with other patterns.

Similarly, in the 2ExpTime reduction of [9], the patterns do not use horizon-
tal axes at all, so eliminating disjunction in a similar fashion does not influence
other patterns.

B.2 BC-SAT(⇓, +→) is in NExpTime under non-recursive schemas

We exploit the following simple observation [2, 3].

Lemma 4. Let π be a pattern that does not use →. Assume that T |= π and let
h : π → T be a homomorphism witnessing the satisfiability. If T ′ is obtained from
T by removing a subtree disjoint from h(π); or adding a subtree, then T ′ |= π.

Proof. The proof is straightforward: none of above operations interferes with h
so in the new tree h still proves satisfiability. ut

Using Lemma 4 we show that if a Boolean combination of patterns is satis-
fiable with respect to a schema S, then there is a witnessing tree of exponential
size.

Take any T ∈ L(S) such that T |= ϕ. W.l.o.g. we may assume that ϕ is of

form ϕ = π∧
k∧
i=1

¬πi, for some k ≤ |ϕ|, and S is represented by non-deterministic

18

automaton A. Let h : π → T be a witnessing homomorphism. Consider a node
u in T with children u · 0, . . . , u · m. Let a be the label of u and q the state
mapped by r. Let u0, .., ul be an ascending sub-sequence u’s children, such that
u0 = u0, ul = u ·m and every other node in the sequence either is in h(π) or
is an ancestor of a node in h(π). Then, l ≤ |π| + 2. By Lemma 4 and standard
pumping we can assume that between each two consecutive ui’s there is no more
than ‖A‖ nodes. Hence, u has no more than ‖A‖(|ϕ| + 2) children. Thus there
exists a witnessing tree with polynomial branching. Since the height of trees is
bounded by ‖S‖, we obtain an exponential witness.

The NExpTime upper bound follows immediately. Indeed, each pattern can
be can be translated to an non-deterministic tree automaton of exponential size
[9]. We guess a “valuation” of patterns that satisfies the Boolean combination,
and guess a witnessing tree of exponential size. Then we evaluate the automata
obtained from patterns on the guessed tree checking if the patterns are satisfied
or not satisfied, according to the valuation. (Note that we can run an exponential
non-deterministic automaton over an exponential tree in ExpTime.)

B.3 BC-SAT(⇓) is NExpTime-hard

We reduce the acceptance of non-deterministic Turing machines in exponential
time: Given a non-deterministic Turing Machine M , and an integer n in unary,
decide if M accepts the empty input in exactly 2n steps.

The reduction is very similar to the one used in Section B.1, but since →
is not allowed in patterns, we have to find new way to express that two config-
urations are consecutive. To do this, we replace R → †c∗‡ with a binary tree
with configurations in its leaves. Then we build a formula next conf similar
to next cell . Note that it limits the number of configurations exponentially, as
opposed to potentially super-exponential number of configurations in the DTD
from the reduction in Section B.1.

Like before, C = A× (Q ∪ {⊥}). The DTD is

r → R

R→ l1r1

li → 0bi 1 ≤ i ≤ 2n

ri → 1bi 1 ≤ i ≤ 2n

bi → li+1ri+1 1 ≤ i < 2n

b2n → C

0→ 1

The auxiliary formulae is root(x), same turni(x, y), and next cellk(x, y) re-
quire cosmetic changes related with the fact that trees have now additional 2n
levels, c-nodes are gone, and their role is taken by nodes with labels bn:

is root(x) = ∃ y : (x ↓ 4n+ 1 y)

19

same turni(x, y) = ∃x, y, root , xc, yc, xd, yd :

bi(xc) ∧ bi(yc) ∧ 1(xd) ∧ 1(yd) ∧ is root(root) ∧

∧ (x ↓ xc) ∧ (x ↓+ xd) ∧ (y ↓ yc) ∧ (y ↓+ yd) ∧

∧ (root ↓ 2i+ 1 xd) ∧ (root ↓ 2i+ 1 yd)

next cellk(x, y) = ∃z, xk+1, .., x 2n
, yk+1, .., y 2n

:

2n− 1∧
i=k+1

(xi ↓2 xi+1 ∧ yi ↓2 yi+1) ∧

∧ (z ↓ xk+1) ∧ (z ↓ yk+1) ∧ (x
2n
↓2 x) ∧ (y

2n
↓2 y) ∧

∧ bk(z) ∧ lk+1(xk+1) ∧ rk+1(yk+1) ∧
2n∧

i=k+2

(ri(xi) ∧ li(yi))

The formula same cellk(x, y) uses a subformula next conf k(xc, yc) instead of
xc → yc, to express that xc and yc are roots of subtrees encoding two subsequent
configuration:

same cellk(x, y) = ∃xc, x1, .., xn, yc, y1, ..yn :

bn (xc) ∧ bn (yc) ∧ next conf k(xc, yc) ∧ (xc ↓ x1) ∧ (yc ↓ y1) ∧

∧
n−1∧
i=1

(xi ↓2 xi+1) ∧ (yi ↓2 yi+1) ∧

∧ (xn ↓2 x) ∧ (yn ↓2 y) ∧

∧
n∧
i=1

same turni(xi, yi)

The formula next conf k(x, y) is simply the original version of next cellk(x, y),
as defined in Section B.1.

The patterns enforcing correctness of the run are identical to the ones from
Section B.1, except that the lower indices k, k′ range over n + 1, n + 2, . . . , 2n
(not 1, 2, . . . , n) and the auxiliary formulas first conf , last conf , and first cell
are modified as follows:

first conf (x) = ∃y1, . . . , yn :

(
n∧
i=1

li(yi)

)
∧

(
n−1∧
i=1

(yi ↓2 yi+1)

)
∧ (yn ↓ y) ,

20

last conf (x) = ∃y1, . . . , yn :

(
n∧
i=1

ri(yi)

)
∧

(
n−1∧
i=1

(yi ↓2 yi+1)

)
∧ (yn ↓ y) ,

first cell(x) = ∃y1, . . . , yn :

(
2n∧

i=n+1

li(yi)

)
∧

(
n−1∧
i=1

(yi ↓2 yi+1)

)
∧ (yn ↓2 y) .

C Proofs of lemmas from Section 4

Lemma 1. Let w be a word satisfying a ⇒-pattern π.

1. For all g, h : π → w, min(g, h) is a homomorphism.
2. There exists hmin : π → w such that hmin ≤ h for all h : π → w.
3. For each set X of vertices of π and each h : π → w there is a ĥ : π → w

extending h|X such that ĥ ≤ h′ for each h′ : π → w extending h|X .

Proof. Let f = min(g, h). Since g and h preserve unary relations, so does f . Let
us see f also preserves binary relations. If x→ y for some vertices x, y of π, then
f(y) = min(g(y), h(y)) = min(g(x) + 1, h(x) + 1) = 1 + min(g(x), h(x)) = 1 +

f(x). Suppose x
+→ y. W.l.o.g. g(x) ≤ h(x). Since g and h are homomorphisms,

g(x) < g(y) and h(x) < h(y), and it follows that g(x) < h(y). In consequence,
f(x) = g(x) < min(g(y), h(y)) = f(y). Items (2) and (3) follow immediately. ut

Lemma 2. Let h : π → w be the earliest matching and let X be a set of vertices
of π such that no edge enters X from the outside, and the only edges leaving X

are
+→. For each Y ⊆ X, if g : π|X → w is the least homomorphism extending

h|Y to X, then h|X = g.

Proof. By definition, g ≤ h|X . It remains to prove the converse inequality. Let
g̃ : π → w be a function defined by extending g to π according to h. We shall
prove that g̃ is a homomorphism. From this it follows by minimality of h that
g̃ = h and in consequence g = h|X . Unary relations and binary relations between
pairs of vertices in X or in the complement of X are preserved by g̃, because
they are preserved by g and h. It remains to consider x ∈ X and y /∈ X. By the

hypothesis of the lemma, the only possible relation is x
+→ y. Since g ≤ h|X and

h is a homomorphism, we have g̃(x) = g(x) ≤ h(x) < h(y) = g̃(y). ut

D The greedy matching procedure Matchπ(w)

The procedure Matchπ is given in Algorithm 1. Note that in the main loop
(lines 6–19) new firm subpatterns are added to LAUNCHED. The loop runs
until all of them are processed.

Why remembering last |π| symbols is enough? Consider the moment when
πj is added to LAUNCHED after πi has been matched. We will say that πi was

21

Algorithm 1 Matchπ(w)

compute Fπ = ({π1, . . . , πk},
+→)

MATCHED := ∅
LAUNCHED := set of firm subpatterns of π that have no predecessors in Fπ
read first |π| letters of w into BUFFER
∀i CONSTRAINTSi := ∅

6: for all πi ∈ LAUNCHED do
try to find the earliest matching h : πi → BUFFER satisfying CONSTRAINTSi
if matching h is found then

move πi from LAUNCHED to MATCHED
for all successors πj of πi in Fπ do

for all x
+→ y with x ∈ πi and y ∈ πj do

12: add y > h(x) to CONSTRAINTSj
end for
if all predecessors of πj in Fπ are in MATCHED then

add πj to LAUNCHED
end if

end for
18: end if

end for
if no more letters then

if LAUNCHED = ∅ then accept else reject
else
∀i scale down CONSTRAINTSi by 1 (drop negative ones)

24: move BUFFER one letter to the right; go to 6
end if

22

launched by πj . As there is an
+→ edge from πi to πj , the rightmost position of

πj ’s match must not come before the leftmost position of πi’s match. Suppose
that πi was in LAUNCHED when the loop started. Then it could not be matched
within the previous buffer, which means that its match uses the last letter of
the current buffer. Hence, each match of πj satisfying CONSTRAINTSj fits
within the last |πi| + |πj | ≤ |π| positions of the current buffer. If πi was also
added to LAUNCHED within the current buffer, we can again find its launching
subpattern, and moving backwards this way, we finally reach a firm subpattern
that was in LAUNCHED before the loop started. As each launching pattern must
start before the launched one ends, the whole chain of launching subpatterns
must fit within a suffix of BUFFER of length bounded by the sum of their sizes,
that is by |π|.

E Proof of Theorem 6 (BC-SAT for forest-like patterns)

E.1 PSpace algorithm for non-recursive schemas

The idea is similar to the one for words, where a word was generated non-
deterministically and checked on-line for matches of patterns used in the Boolean
combination. This time we generate nodes of a tree T in the depth-first order and
feed them to copies of TreeMatch(π) for all patterns π used in the combination
ϕ tested for satisfiability (and a tree automaton AS checking conformance to the
schema). The procedure TreeMatch(π) will run a deterministic tree automaton
Aπ equivalent to the pattern π. (Recall that a tree automaton is (bottom-up)
deterministic, if for all q1, q2 ∈ Q and a ∈ Σ there exists exactly one state q
such that (q1, q2, a, q) ∈ δ.) Just like in the word case, Aπ will be exponential
in |π|, but its states and transitions will be constructed on-the-fly in PTime.
The procedure TreeMatch(π) will compute the states of Aπ in the nodes
of the tree in the post-order fashion, i.e., the node will get its state directly
after all its children have had their states assigned. As the tree is given in the
depth-first order, for each node on the path from the root to the current node
TreeMatch(π) needs to remember the state assigned to its sibling immediately
to the left (the initial state in case there is no sibling).

Since the schema S is non-recursive, the height of the generated tree can be
bounded by ‖S‖. By standard pumping we bound the branching by

∏
π in ϕ ‖Aπ‖

(still single exponential in |ϕ|). To avoid looping the generating procedure also
remembers the path from the root to the current node, and for each node on
the path it remembers the number of children of this node already generated,
making sure it does not exceed the exponential bound. By Savitch theorem we
can eliminate non-determinism from this algorithm. It remains to see how to
construct the automaton Aπ.

A horizontal component of π is any connected component of the⇒-subgraph
of π. Let Hπ = 〈Vπ, ↓, ↓+〉 be a graph over horizontal components of π, where
edge π1 ↓ π2 is present if x ↓ y for some x ∈ π1 and y ∈ π2, and π1 ↓+ π2 is
present if x ↓+ y for some x ∈ π1 and y ∈ π2, but there is no edge π1 ↓ π2. Since

23

π is forest-like, this graph is a forest. The subtree of Hπ rooted at π1 defines a
subpattern of π, which we denote (π1)⇓. Subpatterns of π of this form are called
subtrees of π.

The automaton Aπ works as follows. From the sequence of children to their
parent v it passes information about:

– subtrees of π that were matched in the children of v,

– subtrees of π that were matched in the children of some descendant of v.

The automaton accepts, if the information passed from the root says that π was
matched. To compute the information to be passed to a node v the automaton
needs to aggregate the information passed from v’s grandchildren to their re-
spective parents. This is done by a modified version of Match working over an
extended alphabet, described below.

A subtree (π1)⇓ of π can be viewed as a horizontal pattern obtained from π1

by including in the label of each vertex x the information about the subtrees of
π to which x is connected by ↓ and ↓+ edges. At each step Match is fed with a
symbol that consists of the label of a tree node v′ and the information passed to
v′ from its sequence of children. (At the leaf level of T this information is void
and Match works just like for words.) Match is only altered in this way that
a vertex labelled with an extended label σ can be matched in a position labelled
with an extended label τ if the original labels agree and all patterns listed in
σ are also listed in τ (keeping the distinction between patterns connected by ↓
and ↓+). It is straightforward to check that this does not influence correctness
of Match. Observe that the extended alphabet is exponential, but each symbol
can be stored in polynomial memory. Hence, Match still works in memory
polynomial in the size of the pattern, and the automaton implementing it still
has exponentially many states.

The described procedure can be easily implemented by a tree automaton.
Within a sequence of children, Aπ behaves like the automaton implementing
Match(π̃), where π̃ is obtained by taking a disjoint union of all subtrees of π.
It reads the extended label from the label of the current child v′ and the state
coming from the children of v′. When the last child of the sequence is read, the
information about matched subtrees of π is updated and can be passed up, to
the parent.

E.2 ExpTime algorithm for arbitrary schemas

In the previous subsection we proved that for each forest-like pattern π there is
an exponential deterministic automaton Aπ equivalent to π. The automaton can
easily be computed in ExpTime. From this it follows immediately that for each
Boolean combination of patterns ϕ one can compute in ExpTime an equivalent
automaton Aϕ. To test if ϕ is satisfiable with respect to a schema S it suffices
to check if L(Aϕ)∩L(AS) 6= ∅, where AS is a polynomial automaton equivalent
to S. This can be done in time polynomial in ‖Aϕ‖ · ‖AS‖.

24

F Proof of Corollary 3

We prove that BC-SAT(↓, ↓+,→, +→) on non-recursive DTDs is in PSpace by
showing how to convert patterns without wildcard to forest-like patterns.

Consider a pattern π using no wildcard. Without loss of generality we can
assume it is a DAG. If its not a forest-like pattern, there exist vertices x 6= y, x′,
y′ such that x ↓1 x′, y ↓2 y′ for some ↓1, ↓2∈ {↓, ↓+}, and x′, y′ are in the same
connected component of the ⇒-subgraph of π. It necessarily follows that x and
y are on the same branch; the question is: in which order? Under non-recursive
DTDs this can be always determined as follows.

Suppose that the labels of x and y are the same. Since the DTD is non-
recursive, we know that on each path nodes have unique labels. Hence, x and y
are always matched to the same node. We unify them into one node, removing
one redundant edge if x′ = y′. Note, that any binary relation between x and y
in this case means that the patten is not satisfiable.

Suppose that the labels of x and y are different. Again, since the DTD is
non-recursive, the order of labels is determined on each branch: for every two
different labels we can say which one comes first by examining the DTD. W. l. o.
g. x has an “earlier” label. Then we can add to π a ↓+ relation from x to y. Now
vertical relations between x and z became redundant (and should be removed)
or contradictory, in which case the whole pattern is unsatisfiable. Similarly, any
horizontal relation between a pair of nodes other then x′, y′ indicates that the
pattern is not satisfiable.

We repeat these operations until π becomes a forest-like pattern. The number
of steps is linearly limited by the number of vertices in π.

G Proof of Theorem 7

Lemma 5. Under non-recursive disjunction-free DTDs BC-SAT(⇓) is Σp
2 -hard.

Proof. We shall reduce validity of Σ2 quantified Boolean formulae to BC-SAT(⇓)
making sure the DTD is nested-relational. Without loss of generality we can
assume that the formula has the form

ϕ = ∃x1∃x2 . . . ∃xk ∀xk+1∀xk+2∀xn+`D1 ∨D2 ∨ · · · ∨Dm,

where each Di is a conjunction of variables or negations of variables from the
set {x1, x2, . . . , xk+`} using each variable at most once.

We shall modify the reduction in the proof of Theorem ??. We change the
DTD in two ways. First, we replace disjunction xi| x̄i with xi

∗ x̄i
∗ (a pattern

will enforce that at least one is selected). Second, to each production of the form
xi → α we add the list of all these disjuncts Dj that are made false by setting

25

xi to true; dually for x̄i. The resulting DTD D is

r → x1
∗ x̄1

∗,

xi−1 → xi
∗ x̄i
∗ {Dj | Dj contains x̄i−1} for i = 2, 3, . . . , k,

x̄i−1 → xi
∗ x̄i
∗ {Dj | Dj contains xi−1} for i = 2, 3, . . . , k,

xi−1 → xi x̄i {Dj | Dj contains x̄i−1} for i = k + 1, k + 2, . . . , k + `,

x̄i−1 → xi x̄i {Dj | Dj contains xi−1} for i = k + 1, k + 2, . . . , k + `,

xk+` → b ,

x̄k+` → b ,

where {Dj | Dj contains x̄i} is interpreted as the sequence of labels from this
set, ordered by the index.

The pattern π1 = ∃u xk+1(u) expresses the fact that the tree encodes at least
one valuation of the existentially quantified variables of ϕ, and

π2 = ∃u b(u) ∧
m∧
j=1

∃v ∃v′ (v ↓+ u) ∧ (v ↓ v′) ∧Dj(v
′)

states that for some valuation of variables each disjunct is false. Clearly, π1∧¬π2

is satisfiable with respect to D if and only if ϕ is valid. ut

The support of a h, denoted supp(h), is the subtree of T obtained by keeping
only the nodes that can be reached from the image of h by going up, left, and
right.

Lemma 6. Under non-recursive, disjunction-free DTDs BC-SAT(⇓, +→) is in
ΣP

2 and for tree patterns it is in NP.

Proof. We can assume that formula ϕ is of form ϕ = π ∧
k∧
i=1

¬πi (we can first

guess the patterns to be satisfied and the ones to be not satisfied, and combine
the satisfied ones into one). Suppose that a tree T ∈ L(S) satisfies ϕ, and let
h : π → T be a witnessing homomorphism.

Since D is disjunction-free, for each label σ there is a unique minimal tree
D(σ) conforming to D with the root symbol changed to σ. Note that D(σ) is
at most exponential in D. (Otherwise it would be infinite; such labels can be
eliminated by easy preprocessing.) The tree is obtained by replacing all subex-
pressions of the form α∗ and αα with ε.

Using Lemma 4 we can trim T by removing all nodes that are not required
by the DTD and are outside of the strict (root-preserving) subtree of T induced
by the image of h. In the resulting tree each node has polynomialy many children
and for each node v that is a leaf in the support of h, the subtree rooted at v
is D(`T (v)). This allows us to recreate T from support of h. Since the height
of T is limited by ‖S‖, the support of h has polynomial size, but T itself can
be exponentially large and we cannot recreate it in PTime. We can however
retrieve full knowledge about it whenever we need it.

26

We claim that supp(h) and h : π → supp(h) can be used to witness satis-
fiability of ϕ with respect to S. Checking that the support conforms to S and
verifying that h is a homomorphism is straightforward. It remains to see that
the minimal tree extending supp(h) satisfies none of the patterns πi. This can
be done by universally guessing a homomorphism h′ from πi to the minimal tree
extending supp(h) and checking that it is incorrect. Of course it is enough to
guess the support of h′ – a polynomial object.

Tree patterns can be evaluated in PTime. Hence, for a combination of tree
patterns, the witness can be verified in PTime as well, and the whole algorithm
is in NP.

H Proof of Theorem 8

H.1 NExpTime upper bound for CQs

Just like in Section B.2, the NExpTime upper bound follows immediately from
the following lemma.

Lemma 7. If a Boolean combination ϕ of patterns that do not use → is satis-
fiable with respect to a disjunction-free DTD D, there is a witnessing tree of
exponential size.

Proof. Let T be a tree conforming to D and satisfying ϕ. Without loss of gener-
ality we can assume that ϕ is of the form π∧¬π1∧¬π2∧· · ·∧¬πk (we consider a
“valuation” of patterns that satisfies ϕ, and we combine the “true” patterns into
a single pattern). Let h : π → T be a witnessing homomorphism. By Lemma 4
and a standard pumping argument for regular languages we can assume that T
has branching bounded by |π| · ‖D‖.

Just like in the proof of Lemma 6, we can now remove all nodes outside supph
that are not not enforced by the DTD. After we have done that, for each node
v in the support, either all v’s children are in the support or none of them, and
in the second case T .v (the subtree of T rooted at v) is equal to D(`T (v)). In
other words, T is supph extended at each leaf v with D(`T (v)). Let S be the
strict (root-preserving) subtree of T induced by the image of h. It has at most
|π| branches. The support of h is obtained from S by including all siblings. The
size of the support is proportional to the height of S (at most |π|2 · ‖D‖ times
larger). Since each D(σ) is at most exponential, an exponential bound on the
height of S gives an exponential bound on the size of T .

For two nodes u, v of a tree U such that u ↓+ v, let Uu,v denote the context
obtained by removing from U.u the subtree U.v. Let us take u, v ∈ S such that
u ↓+ v and Su,v is has empty intersection with the image of h. It follows that
Su,v is a single path. If we manage to show an exponential bound on the length
of Su,v, we are done.

Let M = 1 + maxi |πi|. Suppose that there are u1 ↓M+1 v1 ↓+ u2 ↓M+1 v2

in Su,v such that (supph)u1,v1 = (supph)u2,v2 . Since the subtrees of T rooted
in the leaves of supph are determined by the leaves’ labels, we conclude that

27

Tu1,v1 = Tu2,v2 . Let T ′ be obtained from T by removing the context Tv1,v2 .
Obviously, T ′ still satisfies π. Let us see that it does not satisfy any of πi’s.
Towards contradiction, assume there is a homomorphism h′ : πi → T ′. Since
the path in T ′ from u1 to v2 (excluding v2) has length M there is a node w
in this path that is not in the image of h′. Let us split the veritces of πi into
the ones mapped to T ′.w, denote them by Down, and the remaining ones, Up.
The only relation possible between vertices coming from two different parts is
x ↓+ y for some x ∈ Up and y ∈ Down. But then we can define a homomorphism
h′′ : π → T , by leaving the image of Up where it is, and moving the image of

Down to Tu2,v2 . Clearly, this does not break the
+→ relations between nodes from

Up and Down, and relations within Up and within Down are not influenced at
all.

The number of different values that (supph)u1,v1 can take is roughly |Γ |M ·|π|·‖D‖
(M · |π| · ‖D‖ is the length of Su1,v1 times branching). By the pigeon-hole prin-
ciple it follows that we can bound the length of Su,v by M · |Γ |M ·|π|·‖D‖. ut

H.2 PSpace upper bound for tree patterns

The argument uses notation and objects defined in the proof of Lemma 7.
Being a fragment of XPath, tree patterns can be translated to alternating

top-down tree automata in PTime [11]. Hence, so can each Boolean combination
ϕ. Let Aϕ be this automaton. Observe that for a disjunction-free DTD D over
Γ , a label σ ∈ Γ , and a state q, one can decide in PSpace if D(σ) is accepted
from q.

The algorithm testing if ϕ is satisfiable with respect to D works as follows.
First it guesses a homomorphic image of π (without paths realising ↓+ or se-

quences of children realising
+→). This is a polynomial object. We can also guess

the siblings of the nodes in the image (still polynomial, by the argument in the
proof of Lemma 7). Now we will be guessing the support of the homomorphism,
level by level, and at the same time we will be guessing an accepting run of
Aϕ on the minimal tree subsuming the support and conforming to the DTD D.
Recall that this tree is obtained from the support by replacing each leaf labelled
with σ by D(σ). Hence, it is enough to guess the run on the support, and in each
leaf v of the support test if Aϕ accepts D(`T (v)) from each state assigned to v.
At each moment we only keep in memory a single level of the support, which
means only polynomially many nodes: recall that the strict subtree induced by
the image of π has polynomially many branches, and in the support we only
extend this tree with siblings, again polynomially many for each node.

The algorithm counts the number of levels guessed so far. If the bound from
Lemma 7 is reached before the automaton accepts, the algorithm aborts.

H.3 Lower bound

Lemma 8. Under disjunction-free DTDs BC-SAT(↓,) for tree patterns is PSpace-
hard, even for a fixed DTD.

28

Proof. We modify the reduction from the linearised tiling problem used in The-
orem 4. Let an instance of the problem be T = {t1, t2, . . . , tk}, H, V, n. Our
alphabet is T and the DTD has productions ti → t∗1t

∗
2 . . . t

∗
k for all i and the root

symbol is t1. Consistency of the encoding is enforced by the following combina-
tion of patterns:

∃x tk(x)∧
∧

(ti,tj)/∈H

¬∃x∃y (x ↓ y)∧ti(x)∧tj(y)∧
∧

(ti,tj)/∈V

¬∃x∃y (x ↓n y)∧ti(x)∧tj(y) .

The combination simply enforces that that all branches of the tree yield consis-
tent sequences of tiles, and that some branch contains tk. Cutting this branch at
the first occurrence of tk we obtain the solution to the linearised tiling problem.
One can modify the reduction described here to use a fixed DTD], 0, 1→]∗0∗1∗

with the root symbol], by encoding the tiles as 0-1 sequences of length dlog |T |e
separated by], and enforcing with patterns that the separators cut each branch
into segments of length dlog |T |e (except maybe the segment after the last],
which might be shorter) and that segments unused in the encoding of tiles do
not occur. ut

The second reduction from Theorem 4 can be altered in a similar way to
obtain PSpace-hardness of BC-SAT(↓, ↓+) under disjunction-free DTDs.

29

