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Abstract

The task of XML data exchange is to restructure a document conforming to a source schema under
a target schema according to certain mapping rules. The rules are typically expressed as source-to-
target dependencies using various kinds of patterns, involving horizontal and vertical navigation,
as well as data comparisons. The target schema imposes complex conditions on the structure of
solutions, possibly inconsistent with the mapping rules. In consequence, for some source documents
there may be no solutions.

We investigate three problems: deciding if all documents of the source schema can be mapped
to a document of the target schema (absolute consistency), deciding if a given document of the
source schema can be mapped (solution existence), and constructing a solution for a given source
document (solution building).

We show that the complexity of absolute consistency is rather high in general, but within the
polynomial hierarchy for bounded depth schemas. The combined complexity of solution existence
and solution building behaves similarly, but the data complexity turns out to be very low.

In addition to this we show that even for much more expressive mapping rules, based on MSO
definable queries, absolute consistency is decidable and data complexity of solution existence is
polynomial.

Keywords: XML data exchange, regular queries, patterns, absolute consistency, solution
building, solution existence

1. Introduction

One of the main challenges of modern data management is dealing with heterogeneous data.
A typical scenario is that of data exchange, where one needs to restructure data stored in a source
database under a target database schema, following a specification. The specification is given by
a so-called schema mapping, a collection of logical formulas describing dependencies between the
source schema and the target schema. The produced instance of data is called a solution for the
source data with respect to the schema mapping.

Studies on relational data exchange and schema mappings were initiated several years ago
[12, 13], and since then they have been a major topic (see recent surveys [5, 6, 16]).

In the XML context, the target schema, a DTD or XML Schema, imposes complex conditions
on the structure of the solution. One of the consequences is that in practice schema mappings are
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often over-specified, in the sense that for some source instances there is no solution satisfying the
specification and conforming to the target schema. One needs to be able to check if a mapping
admits a solution or not.

Nowadays, schema mapping design is usually assisted by specialized software [17]. The ability
to issue warnings that a mapping does not admit solutions for some source documents would be a
most welcome feature, especially if the warning could also point out the source of the problem.

When a mapping is already there, one has to materialize the appropriate solution for the given
source data. This requires checking if a solution exists, and constructing it.

We concentrate on three problems related to solutions:

• Absolute consistency. Is there a solution for every possible source document?

• Solution existence. Is there a solution for a given source document?

• Solution building. Find a solution for a given source document.

So far, absolute consistency was only investigated for very simple mappings, based on so-called
tree patterns using only the child and descendant relations [1]. Solution building was investigated
for even simpler mappings allowing only a restricted class of DTDs [3]. More practical mapping
languages involve sibling order and data comparisons. For such mappings only the consistency
problem was considered, i.e., whether some source document has a solution [1, 3]. Consistency of
mappings, though interesting theoretically, seems to have less practical importance as it gives no
information on how the mapping will perform on a given source document.

We work with mappings using general XML schemas, formalized as tree automata, DAG-shaped
patterns using horizontal and vertical navigation, as well as data comparisons. We also consider a
restricted case: bounded-depth mappings, where schemas only admit trees of bounded height. As
most real-life schemas have small depth, this case is particularly important in practice.

Our main findings for pattern-based mappings can be summarized as follows:

• Absolute consistency is Π2EXP-complete1 in general, and Π4P-complete in the bounded
depth case.

• Data complexity of solution existence is in LOGSPACE, while combined complexity is NEXP-
complete in general, and Σ3P-complete for the bounded depth case.

• Solution building can be done in EXPSPACE in general, in EXP in the bounded depth case,
and in P if the mapping is fixed.

The high combined complexity of the general case is disturbing, but the practically relevant
bounded-depth case brings it down to low levels of the polynomial hierarchy, and the polynomial
data complexity of solution existence and solution building gives real hope for applications.

We then go on to generalize these results even further. We show that for mappings based
on queries definable in MSO, absolute consistency remains decidable, and the data complexity of
solution existence is still polynomial.

The paper is organized as follows. After recalling the basic notions (Sect. 2), we study the
solution building problem (Sect. 3) and the solution existence problem (Sect. 4) for pattern-based
mappings. Then we apply the developed tools again to the absolute consistency problem (Sect. 5).

1Π2EXP is the second level of the exponential hierarchy.
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We conclude the first part of the paper with a complexity analysis of the three problems for
bounded-depth mappings (Sect. 6). The second part extends the setting to mappings based on
regular (MSO definable) queries. Section 7 contains the definitions and the proof strategy, while
the proof itself is given in Sections 8 and 9. We finish with some suggestions for future work
(Sect. 10).

2. Preliminaries

Data trees and multicontexts. The abstraction of XML documents we use is data trees: unranked
labelled trees storing in each node a data value, i.e., an element of a countable infinite data domain
D. For concreteness, we will assume that D contains the set of natural numbers N. Formally, a
data tree over a finite labelling alphabet Γ is a structure 〈T, ↓, ↓∗,→,→∗, `T , ρT 〉, where

• the set T is an unranked tree domain, i.e., a prefix-closed subset of N∗ such that n · i ∈ T
implies n · j ∈ T for all j < i;

• the binary relations ↓ and→ are the child relation (n ↓ n · i) and the next-sibling relation
(n · i→n · (i+ 1));

• ↓∗ and→∗ are the transitive closures of ↓ and→;

• the function `T is a labelling from T to Γ;

• ρT is a function from T to D. We say that a node s ∈ T stores the value d when ρT (s) = d.

Most often, when the interpretations of ↓,→, `T , and ρT are understood, we write just T to refer
to a data tree. We use the terms “tree” and “data tree” interchangeably.2 We write |T | to denote
the number of nodes of T . We write T.v for the subtree of T rooted at v.

A forest is a sequence of trees. We write F +G for the concatenation of forests F and G.
A multicontext C over an alphabet Γ is a tree over Γ ∪ {◦} such that ◦-labelled nodes have at

most one child. The nodes labeled with ◦ are called ports. A context is a multicontext with a single
port, which is additionally required to be a leaf. A leaf port u can be substituted with a forest F ,
which means that in the sequence of the children of u’s parent, u is replaced by the roots of F . An
internal port u can be substituted with a context C ′ with one port u′: first the subtree rooted at
u’s only child is substituted at u′, then the obtained tree is substituted at u. Formally, the ports
of a multicontext store data values just like ordinary nodes, but these data values play no role and
we will leave them unspecified.

For a context C and a forest F we write C · F to denote the tree obtained by substituting
the unique port of C with F . If we use a context D instead of the forest F , the result of the
substitution is a context as well.

DTDs and automata. The principal schema language we use are tree automata, abstracting Relax
NG [18, 19].

A nondeterministic word automaton can be presented as a tuple B = 〈Γ, Q, qI , δ, F 〉, where Γ
is a finite input alphabet, Q is a finite set of states, qI ∈ Q is the initial state, F ⊆ Q is the set of
final states, and δ ⊆ Q × Γ × Q is the transition relation. A run on a word σ1σ2 · · ·σn ∈ Γ∗ is a

2A different abstraction allows several attributes in each node, each attribute storing a data value [1, 3]. Attributes
can be modelled easily with additional children, without influencing the complexity of the problems we consider.
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sequence q1q2 · · · qn+1 ∈ Q∗ where q1 is the initial state qI , and (qi, σi, qi+1) ∈ δ for i = 1, 2, . . . , n.
A run is accepting if it ends in a final state, qn+1 ∈ F . A word is accepted if there is an accepting
run for it. The set of accepted words is denoted by L(B).

A nondeterministic tree automaton can be presented as a tuple A = 〈Γ, Q, δ, F 〉 where Γ is the
input alphabet, Q is a finite set of states, F ⊆ Q is the set of final states, and δ is a function
Q× Γ→ 2Q

∗
such that δ(p, σ) is a regular language over Q for every p ∈ Q, σ ∈ Γ. A run of A on

a data tree T is a labelling λ : T → Q such that for every v ∈ T with n children,

λ(v0)λ(v1) · · ·λ(v(n− 1)) ∈ δ(λ(v), `T (v)) .

If v is a leaf, the condition reduces to ε ∈ δ(λ(v), `T (v)), which explains the lack of initial states.
A run λ is accepting if the root is labelled with a final state, λ(ε) ∈ F . A data tree T is accepted
by A if there is an accepting run for it. The set of trees accepted by A is denoted by L(A).

Throughout the paper we assume that all states are reachable, i.e., for each state p ∈ Q there
is a tree which evaluates to p. This can be guaranteed by polynomial-time preprocessing.

In decision problems involving tree automata we assume that the regular languages δ(p, σ)
are given by nondeterministic word automata Bp,σ, and write ||A|| for the size of A including the
automata Bp,σ. In this case, an extended run of A on T is a run λ together with a labelling κ of
T such that whenever `T (v) = σ and λ(v) = p, and v’s children are v1, v2, . . . , vk, it holds that
qp,σI , κ(v1), κ(v2), . . . , κ(vk) is an accepting run of Bp,σ on λ(v1), λ(v2), . . . , λ(vk). The κ-label of
the root is irrelevant, it can be any state of any Bp,σ.

A simpler schema language is provided by DTDs. A document type definition (DTD) over a
labelling alphabet Γ is a pair D = 〈r, PD〉, where

• r ∈ Γ is a distinguished root symbol;

• PD is a function assigning regular expressions over Γ− {r} to the elements of Γ, usually
written as σ→e, if PD(σ) = e.

A data tree T conforms to a DTD D, denoted T |= D, if its root is labelled with r and for each
node s ∈ T the sequence of labels of children of s is in the language of PD(`T (s)). The set of data
trees conforming to D is denoted L(D).

Both DTDs and tree automata define languages of data trees. A DTD D = 〈r, PD〉 over Γ can
be viewed as a tree automaton AD = 〈Γ,Γ, δ, {r}〉, with δ(σ, σ) = PD(σ) and δ(σ, τ) = ∅ for σ 6= τ .
We can think of DTDs as restricted tree automata.

Patterns. Patterns were originally invented as convenient syntax for conjunctive queries on trees
[7, 8, 14]. While most schema mapping research has concentrated on tree-shaped patterns, definable
with an XPath-like syntax [1, 3], the full expressive power of conjunctive queries is only guaranteed
by DAG-shaped patterns [7, 8]. Indeed, a tree shaped pattern cannot express “there is a path from
a to b via c and d”, but a DAG-shaped pattern or a conjunctive query can (see the middle pattern
in Fig. 1). We base our mappings on DAG-shaped patterns, extending the setting used previously.

A pattern π over Γ can be presented as

π = 〈V,Ec, Ed, En, Ef , `π, ξπ〉

where 〈V,Ec ∪Ed ∪En ∪Ef 〉 is a finite DAG whose edges are split into child edges Ec, descendant
edges Ed, next sibling edges En, and following sibling edges Ef , `π is a partial function from V to
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Figure 1: Typical patterns

Γ, and ξπ is a partial function from V to the set of variables. The range of ξπ, denoted Rg ξπ, is
the set of variables used by π. By ||π|| we mean the size of the underlying DAG.

A data tree 〈T, ↓, ↓∗,→,→∗, `T , ρT 〉 satisfies a pattern π = 〈V,Ec, Ed, En, Ef , `π, ξπ〉 under a
valuation θ : Rg ξπ → D, denoted T |= πθ, if there exists a homomorphism

h : 〈V,Ec, Ed, En, Ef , `π, ξπ ◦ θ〉 → 〈T, ↓, ↓∗,→,→∗, `T , ρT 〉 ,

i.e., a function h : V → T such that

• h : 〈V,Ec, Ed, En, Ef 〉 → 〈T, ↓, ↓∗,→,→∗〉 is a homomorphism of relational structures;

• `T (h(v)) = `π(v) for all v ∈ Dom `π; and

• ρT (h(u)) = θ(ξπ(u)) for all u ∈ Dom ξπ.

We write π(x̄) to express that Rg ξπ ⊆ x̄. For π(x̄), instead of πθ we usually write π(ā), where
ā = θ(x̄). We say that T satisfies π, denoted T |= π, if T |= πθ for some θ.

Note that we use the usual non-injective semantics, where different vertices of the pattern can
be witnessed by the same tree node, as opposed to injective semantics, where each vertex is mapped
to a different tree node [11]. Under the adopted semantics patterns are closed under conjunction:
π1 ∧ π2 can be expressed by the disjoint union of π1 and π2.

Without loss of generality we assume throughout the paper that siblings have a common parent,
i.e., whenever two vertices of a pattern are connected by a next-sibling or a following sibling edge,
there is a vertex connected to both of them by a child edge.

Examples of patterns are given in Fig. 1. Solid and dashed arrows represent Ec and Ed respec-
tively. Figure 2 shows examples of homomorphisms witnessing that the left pattern is satisfied for
x = y = 1, z = 2 and the right one is satisfied for x = 3, y = 4, z = 0. Note that in the left
pattern, x and y always take the same value (not only in this tree).

For a class of patterns whose underlying graphs are tree-like we use the following syntax [1]:

π ::= σ(x)[λ] | σ[λ] patterns
λ ::= ε | π | //π | µ | λ, λ lists
µ ::= π | π→µ | π→∗µ sequences

where σ ∈ Γ ∪ { }. That is, a pattern is given by its root node with label σ and variable x (or no
variable), and a list of subtrees λ. A subtree can be rooted at a child of the root (corresponding
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Figure 2: Homomorphisms witness satisfaction

to π in the definition of λ), or its descendant (corresponding to //π). The subtrees rooted in the
children of the root can be additionally connected into sequences µ by means of the next sibling
relation (represented by→) or the following sibling relation (represented by→∗). The wildcard
symbol is used to denote a vertex without a label. We also write σ for σ[ ], σ/π for σ[π], σ//π for
σ[//π], σ[λ,

∧k
i=1 πi, λ

′] for σ[λ, π1, π2, . . . , πk, λ
′], and similarly for σ(x).

We also use this syntax to describe data trees. In this case we skip the horizontal ordering
and write r

[
a(1), b(1), a(2)

]
for a tree whose root is labelled with r and has three children, the

leftmost labelled with a and storing the data value 1, etc. Note that the data value in the root is
left unspecified. This will usually be the case, as the root is rarely used to store meaningful data.

Pattern-based mappings. A (pattern-based) schema mapping M = 〈Ss,St,Σ〉 consists of a source
schema Ss, a target schema St, and a set Σ of source-to-target dependencies (shortly, dependencies)
that relate source and target instances. The source and target schemas are given as tree automata
or as DTDs. Dependencies are expressions of the form:

π(x̄), η(x̄) −→ π′(x̄, ȳ), η′(x̄, ȳ),

where π, π′ are patterns, and η, η′ are conjunctions of equalities and inequalities among x̄ and x̄, ȳ
respectively. We assume the usual safety condition: each variable used in η is also used in π.

A pair of trees (T, T ′) satisfies the dependency above if whenever T |= π(ā) and η(ā) holds,
there is b̄ such that T ′ |= π′(ā, b̄) and η′(ā, b̄) holds. Given a source T ∈ L(Ss), a target T ′ ∈ L(St)
is called a solution for T underM if (T, T ′) satisfies all the dependencies in Σ. We letM(T ) stand
for the set of all solutions for T .

Suppose that the source schema is given as a DTD r → a∗b∗, and the target schema is r → a b∗.
A mapping might be given, e.g, by a single dependency

r
[
a(x1)→b→∗ (x2)

]
, x1 6= x2 −→ r

[
a(x1)→∗ b(x2)

]
.

Under this mapping every source tree has a solution. On the other hand, if we replace the source
DTD with r → (a+ b)∗, some source trees will have no solutions.

In the complexity analysis of computational problems we use various restrictions on mappings.
These include imposing tree-structure on patterns (instead of DAG structure), forbidding some
axes in patterns, forbidding equality or inequality in dependencies, and restricting schemas to
DTDs.
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Evaluation and satisfiability. The evaluation problem is: given a pattern π(x̄), a tuple ā, and a tree
T , decide if T |= π(ā). The data complexity of this problem is folklore, the combined complexity
was established in [14].

Proposition 2.1. The data complexity of evaluating patterns is in LOGSPACE and the combined
complexity is NP-complete.

Proof. A pattern is an FO query using relations →∗, ↓∗, which can be computed in LOGSPACE
(for ↓∗ move against the arrows). In consequence, a fixed pattern can be evaluated in LOGSPACE.
The upper bound for combined complexity is obtained by guessing a witnessing homomorphism
and verifying it. The lower bounds for various sets of axes can be found in [14].

A pattern π is satisfiable with respect to an automaton A if there is a tree T ∈ L(A) such
that T |= π. The satisfiability problem is: given a pattern π and an automaton A, decide if π is
satisfiable with respect to A. This problem was shown to be NP-complete for many variants of
patterns [2, 4, 8, 15]. As we need the details of the NP-algorithm in some arguments, we sketch it
here briefly.

Let h be a homomorphism from π to T . The support of h, denoted supph, is the subtree of T
obtained by removing all nodes that cannot be reached from Rg h by going up, left, and right.

Lemma 2.2. For each pattern π satisfiable wrt an automaton A, there exists T ∈ L(A) and a
homomorphism h : π → T with |supph| ≤ 12||π|| · ||A||2.

Proof. Take a tree T ∈ L(A) satisfying π and let h be a homomorphism from π to T . Divide the
nodes of supph into four categories: the nodes from the image of h are red, the nodes that are not
red and have more than one child that is an ancestor of a red node (or is red itself) are green, the
others are yellow if they are ancestors of red nodes, and blue otherwise. Let Nred, Ngreen, Nyellow,
and Nblue be the numbers of red, green, yellow, and blue nodes.

By definition, Nred ≤ ||π||. Also Ngreen ≤ ||π||: when going bottom-up, each green node decreases
the number of subtrees containing a red node by at least one, and since in the root we arrive with
one subtree containing a red node, Ngreen ≤ Nred. By a pumping argument we may assume that all
yellow ↓-paths and all blue →-paths in supph are not longer than ||A||. The number of (maximal)
yellow ↓-paths is at most Nred + Ngreen. Hence there are at most 2||π|| · ||A|| yellow nodes. Since
all blue nodes are siblings of nodes of other colours, the number of (maximal) blue →-paths is at
most 2(Nred +Ngreen +Nyellow) ≤ 4||π|| · (||A||+ 1) and so Nblue ≤ 4||π|| · (||A||+ 1)||A||. Altogether
we have at most 2||π||(||A||+ 1)(2||A||+ 1) ≤ 12||π|| · ||A||2 nodes.

Proposition 2.3. The satisfiability of patterns is in NP.

Proof. By Lemma 2.2, we can guess a homomorphism into a polynomial tree T together with
an “almost” run on T : in every leaf we additionally guess a sequence of states to which the
missing subtrees should evaluate (by the pumping lemma, the sequence can be linear in the size
of the automaton). Since all states are reachable, T can be extended to a tree accepted by the
automaton. Checking correctness of the “almost” run, and of the homomorphism is polynomial in
the size of the pattern and the tree T , hence it is polynomial.
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3. Building solutions

Outline. Building a solution for a given source tree T with respect to a mappingM can be seen as a
constructive version of the satisfiability problem. Consider a mappingM with a single dependency
π(x̄) → π′(x̄, ȳ). For a given source tree T , we need to build a target tree T ′ such that for every
ā satisfying T |= π(ā) there exists b̄ satisfying T ′ |= π′(ā, b̄). In other words, T ′ should satisfy the
conjunction of ∃ȳ π′(ā, ȳ) over all ā, which can be seen as a single pattern π′′, polynomial in the
size of T . The solution we are looking for is any tree satisfying π′′ and conforming to the target
schema. Unfortunately, building such a tree for an arbitrary given pattern π′′ is intractable, unless
NP = P. Indeed, constructing such a tree is clearly at least as hard as deciding if it exists, and it
is easy to check the latter problem is NP-hard even for a fixed schema.

In what follows, we exploit the fact that the pattern π′′ is not an arbitrary pattern, but a
conjunction of polynomially many fixed size patterns. For a single pattern π′(ā, ȳ) of fixed size, we
can easily construct a suitable target tree—a partial solution for ā—in P using exhaustive search.
The difficult part is to combine all partial solutions into one tree.

What we need is the ability to build a π′-union of target trees T1, T2, . . . , Tn, i.e., a tree T , such
that whenever Ti |= π′(ā, b̄) for some i, then T |= π′(ā, b̄). Without a target schema a π′-union
can be obtained by combining T1, T2, . . . , Tn under a fresh root node. In the presence of a target
schema, however, a π′-union need not exist. For instance, consider the schema r → a b∗, two trees
r[a(1), b(2)] and r[a(3), b(4)], and π′(x1, x2) = r [a(x1)→∗ (x2)], saying “there is an a-node storing
x1 with a following sibling storing x2”. The first tree satisfies π′(1, 2), and the second satisfies
π′(3, 4), but clearly no tree conforming to the schema can satisfy both π′(1, 2) and π′(3, 4).

We resolve this difficulty by partitioning the set of target trees into subsets closed under π′-
union. For instance, the set of all trees conforming to r → a b∗ can be partitioned into sets Ld,
d ∈ D, consisting of all trees storing d in the a-node. It is easy to see that each Ld is closed under
π′-union: for T1, T2, . . . , Tn, the union tree simply needs to include all the b-nodes of T1, T2, . . . , Tn.

The elements of the partition will be represented by finite (exponential-size) descriptions called
kinds. Note that the a-node in the example above is the critical area of each tree: one can easily
collect b-nodes from two trees in one tree, but there is always only one a-node. This leads to
the main idea behind kinds: distinguishing the critical and the non-critical areas of trees. A kind
should specify the critical areas entirely, including data values. The non-critical areas will be just
“holes” in the tree, associated with the parts of the schema that can be repeated.

The solution building algorithm will first choose an appropriate target kind, then provide partial
solutions of this kind for each tuple ā, and finally merge the partial solutions into one tree.

Kinds. An A-decorated multicontext C is a multicontext whose every port is one of the following:

• p-port, a leaf port decorated with a state p of A,

• p, p′-port, an internal port with a single child, decorated with states p, p′ of A,

• q, q′-port, a leaf port decorated with states q, q′ of one of A’s horizontal automata.

We refer to the three kinds of ports above as tree, context and forest ports.
By L(C) we denote the set of trees that agree with C, i.e, can be obtained from C by compatible

substitutions:

• a forest is compatible with a p-port if it is a tree, and admits a run of A evaluating to p;
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• a context D is compatible with a p, p′-port if it admits a run of A in which the port of D is
assumed to evaluate to p and the whole context evaluates to p′ (formally, we add a transition
δ(p, ◦) = ε to A);

• a forest F = S1, S2, . . . , Sm is compatible with a q, q′-port if Si admits a run of A evaluating
to pi such that there is a run of the corresponding horizontal automaton over p1p2 . . . pm
starting in q and ending in q′.

For each T ∈ L(C) there exists a witnessing substitution: a sequence of forests or contexts Tu, with
u ranging over the ports of C, such that substituting each u in C with Tu we obtain T .

An accepting run of A over an A-decorated multicontext must satisfy the usual conditions for
ordinary nodes, and the following rules for the ports:

• each p-port is evaluated to p,

• the only child of each p, p′-port u is evaluated to p, and u evaluates to p′,

• if u is a q, q′-port, the horizontal automaton arrives at u in state q and leaves in state q′.

More precisely, we assume that each port u is labelled with a unique label ◦u and we consider an
accepting run of the automaton A extended with the following transition rules for each u:

δ(p, ◦u) = ε if u is a p-port,
δ(p′, ◦u) = p if u is a p, p′-port,
δ(pu, ◦u) = ε and q, pu → q′ if u is a q, q′-port,

where pu is a fresh state. Thus, if a tree T is obtained from C by substituting compatible forests
or contexts, an accepting run of A over T can be obtained by combining an accepting run over
C with runs witnessing compatibility. In consequence, if C admits an accepting run of A, then
L(C) ⊆ L(A).

In order to implement the algorithm outlined in the beginning of this section we need small
objects witnessing that a pattern is satisfied in a tree agreeing with a decorated multicontext. An
argument similar to the proof of Lemma 2.2 leads to the following bound.

Lemma 3.1. For an A-decorated multicontext C, a pattern π, and a tuple ā, satisfiability of π(ā)
in a tree agreeing with C can be witnessed by an object polynomial in the size of π, the height and
branching of C, and the size of A.

Proof. We need to check if the ports of C can be filled in such a way that π(ā) is satisfied in the
resulting tree. The contexts/forests needed might be large, but just like in the proof of Lemma 2.2
all we need is a support for the homomorphism from π(ā) to the tree. It is easy to see that the
total size of the support in the substituted parts can be bounded polynomially. In particular, the
number of ports involved in the realisation of π(ā) is polynomial, and for the remaining ones the
support is empty. A homomorphism from π(ā) into C extended with the support can also be stored
in polynomial memory. Verifying the witness can be done in P.

We are now ready to introduce the notion of kind. The only restriction that needs to be
imposed on decorated multicontexts is that the ports should be associated to parts of the schema
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that can be repeated. This is guaranteed by taking the decorating states from appropriate strongly
connected components of the automaton, as defined below.

With a tree automaton A = (Γ, Q, δ, F ) we associate a graph GA = (Q,E), where (p, p′) ∈ E iff
Q∗pQ∗∩ δ(p′, σ) is nonempty for some σ ∈ Γ. We speak of strongly connected components (SCCs)
of A meaning SCCs of GA. We say that an SCC is non-trivial if it contains an edge (it might have
only one vertex though). A non-trivial SCC X is branching if there exist p, p1, p2 ∈ X such that
Q∗p1Q

∗p2Q
∗ ∩ δ(p, σ) is nonempty for some σ. If this is not the case, X is non-branching. We also

work with SCCs of word automata, defined in the natural way.
An A-kind K is an A-decorated multicontext admitting an accepting run of A, and such that

each port u satisfies the following conditions:

• if u is a p-port, then p is contained in a branching SCC of A;

• if u is a p, p′-port, then p, p′ are in the same non-branching SCC of A;

• if u is a q, q′-port, then q, q′ are in the same SCC of one of A’s horizontal automata.

Let us come back to the example discussed in the beginning of this section. The language Ld
can be represented by the kind r

[
a(d), ◦

]
, where the port is a forest port decorated with states q, q,

and q is the non-initial state of the two-state automaton recognizing a b∗ (transitions are qI , a→ q
and q, b → q, the only final state is q). Note that technically speaking, the horizontal automaton
reads states of the vertical automaton rather than node labels, but since the schema is originally
given as a DTD, the state in each node coincides with the label. Note also that the empty forest
is compatible with this port.

Recall that our aim is to show that each regular language can be covered by exponential-size
kinds, each defining a language closed under π′-unions. Obviously, the choice of kinds has to take
π′ into account: the languages Ld are closed under union for π′(x1, x2) saying “there is an a-node
storing x1 with a following sibling storing x2”, but not for π′′(x1, x2) saying “there is an a-node
storing x1 whose next sibling stores x2”. For π′′ one should use kinds r

[
a(d), b(d′), ◦

]
and r

[
a(d)

]
,

where d, d′ range over D. Intuitively, to ensure closure under π′-union, we need to specify large
enough areas of the tree around the ports. This is formalized by the notion of margin.

Margins. For m ∈ N, we say that K has margins of size m if there exists an accepting extended
run λ, κ over K such that for each port u

• if u is a p-port with p in an SCC X, there is a ↓-path v−m, v−m+1, . . . , v0 such that the only
port on the path is v0 = u and λ(vj) ∈ X for all −m ≤ j < 0,

• if u is a p, p′-port with p, p′ in an SCC X, there is a ↓-path v−m, v−m+1, . . . , vm such that the
only port on the path is v0 = u and λ(vj) ∈ X for all −m ≤ j < 0 and all 0 < j ≤ m,

• if u is a q, q′-port with q, q′ in an SCC X of some horizontal automaton, there is a sequence
of consecutive siblings v−m, v−m+1, . . . , vm such that the only port in the sequence is v0 = u
and the segment of the (horizontal) run corresponding to the sequence stays in X.

For k ≤ m, T ∈ L(K), and a witnessing substitution Tu, u ranging over ports in K, we define T ku
as the extension of Tu by k nodes along the margins (see Fig. 3). More precisely, using the notation
above:

• if u is a p-port, let T ku = T.ṽ−k,
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{ {

(a) X is an SCC of a horizontal automaton

{

{

(b) X is a non-branching SCC of A

Figure 3: Extension of Tu by k nodes along the margins around a port u associated with an SCC X.

• if u is a p, p′-port, T ku is the context obtained from T.ṽ−k by replacing T.ṽk with a port,

• if u is a q, q′-port, let T ku =
∑−1

i=−k T.ṽi + Tu +
∑k

i=1 T.ṽi,

where ṽ denotes the node in T corresponding to v. In particular, T 0
u = Tu.

We show that margins of size ||π|| guarantee closure under π-union, and each tree is covered by
an exponential-size kind with such margins. Proving the first property requires more tools and we
postpone it for a while. The second property is given by the lemma below.

Lemma 3.2. For all A, T ∈ L(A) and m ∈ N there is an A-kind K with margins of size m, height
and branching at most (2m+ 1)||A||, such that T ∈ L(K).

Proof. Fix an extended accepting run λ, κ of A on T . Prune T introducing ports as stubs according
to the following rules.

First process the SCCs of the horizontal automata. Each SCC X in which the run stays for at
least 2m + 1 steps becomes a q, q′-port with q, q′ determined by κ, and the first and last m steps
of the run spent in X become the margins around this node. The subtrees rooted at the margin
nodes are kept, but the subtrees rooted at the remaining nodes in the middle are lost together with
their roots.

Next, deal with the SCCs of A. Each maximal path P on which the automaton stays in a
branching SCC X is cut off at depth m+ 1; under the freshly obtained leaf put a p-port, where p
is the state in the root of the removed subtree.

For non-branching X only consider paths of length at least 2m+ 1. Replace the subtree rooted
at the (m+ 1)st node of the path with a p, p′-port for suitable p, p′, and under it put the subtree
originally rooted at the mth node of the path, counting from the bottom.

Note that if a run stays in some component for at most 2m steps (m for branching SCCs), then
no port is introduced. In particular, for some small trees T , the resulting kind may be T itself (no
ports).
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Let K be the resulting kind. By construction T ∈ L(K). Each sequence of children in T can
be split into segments according to the SCCs of the horizontal automata. Since no run enters the
same SCC twice, we have at most as many segments as SCCs (not more then ||A||). After T has
been pruned, each segment is shortened to at most 2m+ 1 nodes. Hence, the branching of K can
be bounded by (2m+ 1)||A||. A similar argument shows that each branch of K has length at most
(2m+ 1)||A||.

Safe extensions. The purpose of margins is to isolate the substituted forests/contexts from each
other, and from the fixed part beyond the margins. In this way realizations of π can be rearranged
after the substituted forests/contexts are extended to accommodate additional instances of π,
provided that the extensions follow certain rules.

Let K be a kind with margins of size m and let T ∈ L(K) with a witnessing substitution Tu.
An m-safe extension of the substitution Tu is any substitution T ′u obtained by replacing each Tu
with some compatible

• forest of the form I + Tmu + I ′, if u is a forest port;

• tree of the form I · Tmu , if u is a tree port;

• context of the form I · Tmu · I ′, if u is a context port.

A tree T ′ ∈ L(K) is an m-safe extension of T ∈ L(K) if it results from a substitution T ′u that is
an m-safe extension of some witnessing substitution Tu.

Lemma 3.3. Fix a pattern π, a natural number m ≥ ||π||, a kind K with margins of size m, and
a tree T ∈ L(K). For each m-safe extension T ′ of T

T ′ |= π(ā) whenever T |= π(ā) .

Proof. Fix a witnessing substitution Tu, a tuple ā such that T |= π(ā) and a witnessing homomor-
phism h : π → T . We define a partition V of Vπ, the set of π’s vertices, such that a homomorphism
h′ : π → T ′ can be defined independently on each part as long as some simple rules are satisfied.

The areas potentially affected by the extension are the Tu’s. With each port u such that Tu
is not disjoint from the image of h, we associate a set Zu satisfying Tu ⊆ Zu ⊆ Tmu , in which
the homomorphism can be modified independently of the rest of the tree. There are three cases,
depending on the type of u.

• If u is a forest port, then Tmu = M +Tu +N and since the image of h has cardinality at most
||π|| and is not disjoint from Tu, by the pigeon-hole principle there exist roots v in M and v′

in N outside of the image of h. (If there is choice, choose the ones closest to Tu). Let Zu be
the forest of trees rooted at the sequence of siblings between v and v′ (excluding v and v′).

• If u is a tree port, then Tmu = M · Tu and there exists a node v in M on the path from the
root to the port, closest to Tu, that is not in the image of h. Let Zu = T.v.

• If u is a context port, then Tmu = M · Tu ·N , and one can find v on the path from the root
to the port in M and v′ on the path from the root to the port in N , closest to Tu, that are
not in the image of h. Let Zu = T.v − T.v′.

The sets Zu need not be disjoint, but we can pick a pairwise disjoint subfamily Z covering all the
sets Tu that intersect the image of h. To prove this, we first show by case analysis that for each
u′, u′′ either Tu′ ⊆ Zu′′ , or Tu′′ ⊆ Zu′ , or Zu′ and Zu′′ are disjoint. In fact, in all cases except the
last one, Zu′ and Zu′′ either are disjoint or one is contained in the other.
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• For two forest ports, we are dealing with two forests whose roots are children of some nodes w
and w′. If such forests are not disjoint, and neither is contained in a subtree of the other, then
they share one of the roots. But this is impossible: two sibling ports are always separated
by a margin, which must contain a node that is not in the image of h; the associated forests
are disjoint because they were chosen minimal.

• For a tree port and a forest port (or a tree port), the corresponding sets are: a subtree, and
a subforest whose roots are siblings. Such sets are always either disjoint, or one is contained
in the other.

• For a context port and a tree port, whose corresponding sets are not disjoint and neither is
contained in the other, the root of the tree must be contained in the path between the root
and the port of the context. But this would mean that the margin paths of the two ports
are not disjoint, which implies that the SCCs associated with the ports are the same. This
leads to a contradiction, as one was assumed branching and the other non-branching.

• For two context ports, if the contexts are not disjoint and neither is contained in the other,
the root of one of them lies on the path between the root and the port of the other. Like
above, in this case both ports are associated with the same SCC. Moreover, since the SCC is
non-branching, the two ports are on the same branch of K (otherwise, the two margin paths
would branch). It follows that the ports are separated by a node that is not in the image of
h, which guarantees disjointness of the associated contexts.

• Finally, for a context port u′ and a forest port u′′, we are dealing with a context T.v − T.v′,
and a forest whose roots are children of a single node w. If such sets are not disjoint and
neither is contained in the other, the node w must lie on the path between v and v′ (excluding
v′). The margin path around u′ in K cannot contain other ports, which means that the set
Tu′′ is disjoint from this path. As v′ lies on this path, Tu′′ does not contain v′. It follows that
Tu′′ ⊆ Zu′ .

To construct Z start with Z = ∅ and for each port u such that Tu is not disjoint from the image of
h, make sure that Tu is covered: let Z(u) =

{
Z ∈ Z : Z ∩ Zu 6= ∅}; if Tu ⊆ Z for some Z ∈ Z(u),

then Tu is already covered and we can proceed to the next port; otherwise, by the observation
above, Tu′ ⊆ Zu for all u′ such that Zu′ ∈ Z(u), and we replace Z with

(
Z − Z(u)

)
∪ {Zu}. Let

V = {h−1(Z) : Z ∈ Z} ∪ {Vπ − h−1(
⋃
Z)} and denote Vu = h−1(Zu).

Since h−1(
⋃
Z) covers all vertices of π mapped to

⋃
u Tu, for x ∈ Vπ − h−1(

⋃
Z), h(x) = w is

a vertex from the fixed area of T , and hence has its counterpart w′ in T ′. Let h′(x) = w′. Now let
us see how to define h′ on Vu ∈ V. Since T ′ is a safe extension of T , the forest/context substituted
at u in T ′ contains a copy of Zu, which in turn contains h(Vu). We define h′ on Vu by transfering
h from Zu to its copy in T ′. To prove that this gives a homomorphism we need to check that no
relation between vertices of π is violated. We are going to show that each relation between x ∈ Vu
and y /∈ Vu must be witnessed by a path visiting a critical node in the fixed part of T induced by
K, and that in T ′ the witnessing paths to the critical nodes exist as well. Since the critical nodes
are in the fixed part, the relations between them are the same in T and in T ′ and the correctness
of h′ follows.

Suppose first that u is a forest port. If (y, x) ∈ Ec, then h(y) = w, the parent of v and v′. The
case (x, y) ∈ Ec is not possible at all. Similarly, (x, y) /∈ En, (y, x) /∈ En, (x, y) /∈ Ed, and edges
Ed(y, x), Ef (x, y), Ef (y, x) can only be witnessed by paths visiting w, v′, and v respectively. Note
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that w, v, v′ are vertices of K and have their counterparts in T ′. After transfering the image of Vu
to the copy of Zu contained in T ′u as a subforest, the child and descendant relation with w and the
following-sibling relation with v, v′ are preserved.

If u is a tree port, the only possible edge between x ∈ Vu and y /∈ Vu is Ed(y, x), and the
witnessing path must visit v. Hence, the image of Vu can be transfered to the copy of Zu contained
in T ′u, without violating the existence of witnessing paths.

Finally, if u is a context port, let Vbelow, Vu, Vabove be a partition of π’s vertices into those
mapped to T.v′, Zu = T.v − T.v′, and elsewhere. The only possible edges between x ∈ Vu,
y ∈ Vabove, and y′ ∈ Vbelow, are Ed(y, x), Ed(x, y′), or Ed(y, y′) with the witnessing paths visiting
v, v′, or both of these, respectively. Consequently, we can transfer the image of Vu to the copy of
Zu contained in T ′u, preserving the existence of the witnessing paths.

Algorithms. Using Lemma 3.3 we obtain closure under π-unions in a relatively easy way and to
prove the main theorem we implement the recipe outlined in the beginning of this section.

Lemma 3.4. Given an automaton A, a natural number m, an A-kind K with margins of size
m, and trees T1, T2, . . . , Tn ∈ L(K) with witnessing substitutions (T1)u, (T2)u, . . . , (Tn)u, one can
construct a tree T ∈ L(K) that is a π-union of T1, T2, . . . , Tn for every pattern π with ||π|| ≤ m.
The construction can be carried out in time polynomial in |K|

∑n
i=1 |Ti| + |K|(n + 1)2p(||A||), for

some polynomial p.

Proof. The idea is to build a tree T that is an m-safe extension of each Ti. At each port u in
K we substitute the concatenation of (T1)mu , (T2)mu , . . . , (Tn)mu , together with some extra padding
ensuring compatibility. We describe the algorithm in detail for n = 2. Let λ, κ be a run over K
witnessing the margins of size m. For i = 1, 2 fix an extended run λi, κi compatible with λ, κ,
witnessing that Ti ∈ L(K).

Suppose that u is a q, q′-port with q, q′ in an SCC X. Since κi in the roots of (Ti)mu stays in the
component X, we can construct forests I, I ′, I ′′ such that I+(T1)mu +I ′+(T2)mu +I ′′ is compatible
with u, giving an m-safe extension of T1 and of T2.

Let us now assume that u is a p-port with p in a branching SCC X. Then the state of λi in
the root of (Ti)u is p and the state of λi in the root of (Ti)mu is some pi ∈ X. Since X is branching,
there exists a multicontext I with two ports, u1 and u2, admitting a run of A in which the root
evaluates to p if the ports are evaluated to p1, p2 respectively. Let I((T1)mu , (T2)mu ) be the tree
obtained by substituting ui with (Ti)mu . By construction, I((T1)mu , (T2)mu ) admits a run evaluating
it to p, and can be substituted at u giving a safe extension of T1 and T2.

The last case is a p, p′-port u with p, p′ in a non-branching SCC X. Like before, we can construct
contexts I, I ′, I ′′ such that I · (T1)mu · I ′ · (T2)mu · I ′′ is compatible with u and gives a safe extension
of T1 and T2.

Let T be the tree resulting from the substitutions above. By construction T is a safe extension
of Ti for each i, and by Lemma 3.3 it is a π-union for each π of size at most m.

The sizes of forests or contexts I, I ′, I ′′ used in the construction can easily be bounded by an
exponential of ||A|| (independent of T1, T2). Hence, the size of T is at most |K|(|T1|+|T2|+3c), where
c = 2p(||A||) for some polynomial p. It is essential that the extensions are performed simultaneously.
To see this, note that the margin contexts of some ports can contain other ports and their margins
(e.g., usually, multiple p-ports have their margin contexts rooted at the same node). Performing
the extensions one by one for these ports could lead to an exponential blow-up, as certain parts of
the tree might be duplicated in every extension.
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Similarly, merging n trees one by one using the above procedure would result in an exponential-
size tree. Instead we merge them all in one go by concatenating the forests or contexts replacing u
in all n trees. In this way we obtain a tree of size at most |K|

(
|T1|+ |T2|+ . . .+ |Tn|+(n+1)c

)
.

Theorem 3.5. For a mapping M and a source tree T one can build a solution (or determine that
it does not exist) in EXPSPACE in general, and in P if the mapping is fixed.

Proof. Let m be the maximum over the sizes of the target side patterns in M, and let A be the
automaton underlying the target schema. By Lemma 3.2, if there is a solution to T , it agrees with
an A-kind K with margins of size m, and height and branching at most (2m + 1)||A||. Note that
this gives an upper bound on the size of K at most single exponential in ||M|| and independent
of T . Checking if K is an A-kind with margins of size m amounts to finding an accepting run
witnessing the margins. The size of the run is linear in |K| and its correctness can be checked in
time polynomial in |K| and ||A||. The kind only needs to use data values from T and nulls from a
set {⊥1,⊥2, . . . ,⊥|K|} independent of T (single exponential in ||M||). Each null can appear more
than once in K. It is intended to represent “data distinct from whatever appears in the source
tree”. (Formally, we partition D into two infinite sets, Ds containing data values that are allowed
in the source and Dt containing the data values allowed only on the target side.) By checking the
kinds one by one, we reduce the problem to finding a solution agreeing with a given kind K.

For each dependency π(x̄), η(x̄) −→ π′(x̄, ȳ), η′(x̄, ȳ) in M and each tuple ā such that η(ā)
holds and T |= π(ā), we need to find a tree S ∈ L(K) and a tuple b̄ satisfying η′(ā, b̄) such that
S |= π′(ā, b̄). The size of S does not depend on T . Indeed, a pumping argument similar to the one
in Lemma 2.2 shows that each part of S substituting a port of K can have size single exponential
in ||M|| and independent of T . In consequence, we can find S by exhaustive search.

If for some ā the search fails, there is no solution to T agreeing with K. If all partial solutions
have been found, we can merge them into a single full solution in EXP, by Lemma 3.4.

For a fixed mapping, the number of possible kinds is polynomial in |T | and their size is bounded
by a constant. For each kind finding and merging partial solutions takes polynomial time. Hence,
the whole procedure is in P.

4. Solution existence

The solution built by the algorithm described in Sect. 3 is polynomial-size if the mapping is
fixed and exponential-size in general. These bounds are tight: the smallest tree conforming to the
target schema might need to be exponential, and a simple copying rule r// (x) −→ r// (x) makes
the solution at least as large as the source tree. This however does not give matching lower bounds
for the combined complexity of solution building.

To understand the complexity of the solution building problem better, we consider solution
existence, a decision version of the problem.

Problem: SolEx
Input: mapping M, source tree T

Question: Is M(T ) nonempty?

Clearly, finding a solution is at least as hard as deciding if it exists. The following theorem implies
that an algorithm for solution building with exponential combined complexity is unlikely to exist.
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Theorem 4.1. SolEx is NEXP-complete. The problem is NEXP-hard even for mappings using
only the child axis, wildcard, equality, and non-recursive DTDs without disjunction.

Proof. To get the upper bound proceed just like in the proof of Theorem 3.5, only instead of
examining every possible kind K, choose it nondeterministically together with a witnessing run.
Then, for each dependency π(x̄), η(x̄) −→ π′(x̄, ȳ), η′(x̄, ȳ) in M and each tuple ā satisfying η(ā)
such that T |= π(ā), we need to check if there exists T ′ ∈ L(K) and a tuple b̄ satisfying η′(ā, b̄)
such that T ′ |= π′(ā, b̄). By Lemma 3.1 this can be done nondeterministically in polynomial time.

To get the lower bound we give a reduction from the following NEXP-complete problem: given
a nondeterministic Turing machine M and n ∈ N, does M accept the empty word in at most 2n

steps? The idea of the reduction is to encode the run of the machine in the target tree. The run
will be encoded as a sequence of 2n configurations of length 2n. The machine M is stored in the
source tree, except the (specially preprocessed) transition relation, which is encoded in the target
tree. The source tree is also used to address the configurations and their cells.

Let M have the tape alphabet A with the blank symbol [ ∈ A and the states q0, q1, . . . , qf .
W.l.o.g. we assume that qf is the only final accepting state. The extended transition relation of M ,
denoted δ̂, describes possible transitions in a window of three consecutive tape cells. Formally, δ̂ ⊆
({q0, q1, . . . , qf ,⊥}×Â)6, where Â is the set of decorated tape symbols, defined as Â = {s, s., s/ : s ∈
A}. The symbol ⊥ means “the head is elsewhere”, . marks the beginning of the tape, / marks
the end of the tape (at position 2n), and (p1, σ1, p2, σ2, . . . , p6, σ6)∈ δ̂ iff at most one of p1, p2, p3 is
not equal to ⊥, and p4σ4p5σ5p6σ6 is obtained from p1σ1p2σ2p3σ3 by performing a transition of M .
Note that p1 = p2 = p3 = ⊥ and p4 6= ⊥ is possible as long as σ4 is not marked with .. Note that
δ̂ can be computed in P. The constant d used in the target DTD is equal to |δ̂|.

The source DTD is given as

r → zero one q0 q1 · · · qf ⊥ τ1 τ2 · · · τm
zero, one→ bit

where Â = {τ1, τ2, . . . , τm}. The target DTD is given as

r → a1 b1 tr1 tr2 · · · trd
aj , bj → aj+1 bj+1

a2n, b2n → cell
tri → st1 sym1 st2 sym2 · · · st6 sym6

cell→ c1 c2 · · · c2n st sym

for i = 1, 2, . . . , d, j = 1, 2, . . . , 2n − 1, and d = |δ̂|. The subtrees rooted at cell nodes store in
binary a configuration number and a cell number, as well as a state and a decorated tape symbol.
The subtrees rooted at tri nodes store δ̂.

The source tree T is any tree conforming to the source schema storing a different data value in
each node. The children of the root store data values encoding the states and tape symbols used in
δ̂. To ensure that δ̂ is stored properly on the target side, for each (qi1 , τj1 , qi2 , τj2 , . . . , qi6 , τj6) ∈ δ̂
add a dependency

r[qi1(u1), τj1(v1), qi2(u2), τj2(v2), . . . , qi6(u6), τj6(v6)] −→ r/Tr (ū, v̄) ,
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where Tr(ū, v̄) stands for [
∧6
i=1 sti(ui) ∧ symi(vi)]. Note that d different dependencies are intro-

duced, so each tr node in the target tree contains a tuple from δ̂.
The data values stored in T in the two bit nodes are used to address the configurations and

their cells. This is done by means of three auxiliary patterns, First(x̄), Last(x̄), and Succ(x̄, ȳ)
with x̄ = x1, x2, . . . , xn, ȳ = y1, y2, . . . , yn, which roughly speaking implement a binary counter
over n bits. In the auxiliary patterns we use disjunction, but since we are only going to apply them
on the source side of dependencies, disjunction can be easily eliminated at the cost of multiplying
dependencies. Let

First(x̄) = zero
[
bit(x1), bit(x2), . . . , bit(xn)

]
,

Last(x̄) = one
[
bit(x1), bit(x2), . . . , bit(xn)

]
,

Succ(x̄, ȳ) =
n∨
i=1

(
i−1∧
j=1

[
bit(xj), bit(yj)

]
, zero/bit(xi) ∧ one/bit(yi),

n∧
j=i+1

one/bit(xj) ∧ zero/bit(yj)

)
.

Using the auxiliary patterns we ensure that the target tree encodes an accepting run of M . In
the first configuration the tape is empty and the head state q0 is over the first cell,

r[First(x̄),First(ȳ), q0(u), [.(v)] −→ r//Cell(x̄, ȳ, u, v) ,
r[First(x̄),Succ(z̄1, ȳ),Succ(ȳ, z̄2),⊥(u), [(v)] −→ r//Cell(x̄, ȳ, u, v) ,

r[First(x̄),Last(ȳ),⊥(u), [/(v)] −→ r//Cell(x̄, ȳ, u, v) ,

where Cell(x̄, ȳ, u, v) stands for cell [
∧n

i=1 ci(xi) ∧ cn+i(yi), st(u), sym(v)]. Note that the valuations
of ȳ correspond to all numbers from 0 to 2n − 1, and thus the content of each cell of the tape is
specified.

The correctness of transitions is ensured by

r
[
Succ(x̄0, x̄1), Succ(ȳ1, ȳ2),Succ(ȳ2, ȳ3)

]
−→ r

[
Tr(ū, v̄),

∧
i,j

//Cell(x̄i, ȳj , u3i+j , v3i+j)
]
.

Again, x̄0, x̄1 range over k, k + 1 with 0 ≤ k < 2n − 1, and y1, y2, y3 range over `, `+ 1, `+ 2 with
0 ≤ ` < 2n − 2, so the evolution of each three consecutive cells is checked for every step.

Finally, the machine needs to reach the accepting state (w.l.o.g. we assume that the accepting
state is looping),

r/qf (u) −→ r//Cell(x̄, ȳ, u, v) .

Note that each occurrence of // above can be replaced with a sequence of and / symbols of suitable
length.

It is straightforward to verify that M has an accepting computation of length at most 2n if and
only if T has a solution with respect to the mapping defined above.

In the reduction above, equalities can be eliminated from the target side by introducing a pattern
Succ3(x̄, ȳ, z̄), which expresses that x̄, ȳ, z̄ represent three subsequent values of the counter. We
use this idea later in the proof of Theorem 5.3.

Finally, let us examine the data complexity of solution existence, i.e., the complexity of the
following problem:
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Problem: SolEx(M)
Input: Source tree T

Question: Is M(T ) nonempty?

where the mapping M is fixed.

Theorem 4.2. SolEx(M) is in LOGSPACE.

Proof. The target kind K that was nondeterministically chosen in the proof of Theorem 4.1 is now
constant size and takes data values from a set A of linear size. In consequence, it can be stored in
logarithmic space. Instead of guessing it, we can iterate over all possibilities. It remains to check
in LOGSPACE if there is a solution of a given kind K.

By Lemma 3.4 it is enough to check if for each dependency π(x̄), η(x̄)→ π′(x̄, ȳ), η′(x̄, ȳ) inM
and each ā satisfying η(ā) such that T |= π(ā) there is a tuple b̄ satisfying η′(ā, b̄) and a tree T ′

of the kind K such that T ′ |= π′(ā, b̄). Again, we can iterate over all dependencies and tuples ā,
b̄ with entries from A. For a fixed dependency and fixed ā, b̄, by Proposition 2.1, T |= π(ā) can
be checked in LOGSPACE and the remaining tests can be carried out in constant time, modulo
suitable encoding of data values in K, ā, and b̄, which can be prepared in LOGSPACE.

5. Absolute consistency

As we mentioned in the introduction, a schema mapping M = 〈Ss,St,Σ〉 is called absolutely
consistent if every source tree has a solution, i.e.,M(T ) 6= ∅ for every T ∈ L(Ss). We are interested
in the following decision problem:

Problem: AbCons
Input: Mapping M = 〈Ss,St,Σ〉

Question: Is M absolutely consistent?

Assume for a while that the mapping M contains a single dependency π(x̄) → π′(x̄, ȳ). The
logical structure of the condition we need to check is: for every source tree T there exists a target
tree T ′ such that for every ā satisfying T |= π(ā) there exists b̄ satisfying T ′ |= π′(ā, b̄). To turn this
into an algorithm we would need to show a bound on the size of trees that need to be considered.

Instead, we will try to change the order of quantifiers to the following: “whenever π(ā) is
satisfiable in a source tree, there exists b̄ such that π′(ā, b̄) is satisfiable in a target tree”. The
modified condition can be checked easily in Π2P. Indeed, what really matters is the equality type
of ā and b̄, so it is enough to chose their entries from a fixed set of linear size. Furthermore, one
does not need to guess the source and target trees explicitly, it is enough to witness their existence.
By Lemma 2.2, there exists a polynomial witness.

To justify the reordering of the quantifiers, we would need to know that the set of target trees
is closed under π′-unions. As we have learned in Sect. 3, this need not be true in general, but is
guaranteed within the set of trees agreeing with some kind. A single kind usually cannot provide
solutions to all source trees. For instance, if M = ({r → a∗b∗}, {r → a b∗}, {π(x)→ π′(x)}) with
π(x) = π′(x) saying “there is an a-node storing x whose next sibling is a b-node”, and the target
kind fixes the value in the a node to some d, a solution exists only for source trees that store the
same d in the last a-node. Thus, source documents have to be partitioned into subsets admitting
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solutions of a single kind. It turns out that elements of this partition can be defined with kinds as
well, because each set of source documents closed under π-unions admits solutions of a single kind.

Based on this we reformulate the absolute consistency condition as “for every source kind K
there exists a target kind K ′ such that whenever π(ā) is satisfiable in a tree of kind K, there exists b̄
such that π′(ā, b̄) is satisfiable in a tree of kind K ′”, which ultimately leads to a Π2EXP-algorithm.

Theorem 5.1. AbCons is in Π2EXP.

Proof. We present the algorithm as a two-round game between two players, ∀ and ∃. In each round,
∀ moves first. Moves are made by the choice of an object of size exponential in ||M|| during the
first round, and polynomial in ||M|| during the second round. The winning condition, a polynomial
time property of the chosen objects, is defined so that ∃ wins exactly ifM is absolutely consistent.
In the first round, ∀ states what kind of tree is a counterexample to absolute consistency, while
∃ chooses the kind of tree that gives solutions to the purported counterexamples. In the second
round, ∀ picks a tree of the declared kind and a tuple of data values witnessing that the solutions
fail, and ∃ tries to respond with a tree and a tuple that would prove ∀ wrong.

Let the source and target schemas be given by the automata As, At, and let m be the maximum
over the sizes of all patterns used in M.

In the first round ∀ plays an As-kind K∀ with margins of size m, and height and branching
bounded by (2m + 1)||As||, together with a witnessing run. The data values used in K are to
represent an equality type, so it is enough to choose them from {1, 2, . . . , |K∀|}. The response K∃
of ∃ is similar except that As is replaced by At, and some of the nodes can store nulls taken from
a fixed set {⊥1,⊥2, . . . ,⊥|K∃|}.

In the second round, ∀ chooses a dependency π(x̄), η(x̄) −→ π′(x̄, ȳ), η′(x̄, ȳ) and a tuple ā
(without nulls) satisfying η(ā) together with a polynomial object witnessing that π(ā) can be
realized in a tree agreeing with K∀ (Lemma 3.1). ∃ then responds with a tuple b̄ (possibly including
nulls) satisfying η′(ā, b̄) and a polynomial witness that π′(ā, b̄) can be realized in a tree agreeing
with K∃.

A player loses if he fails to make a move complying with the rules. If all moves are made, ∃
wins.

It remains to show that ∃ has a winning strategy if and only if M is absolutely consistent.
If M is not absolutely consistent, ∀’s strategy in the first round is to choose a data tree T for

which no solution exists and play K∀ such that T ∈ L(K∀) (see Lemma 3.2).
If M is absolutely consistent, ∃’s strategy in the first round is to choose K∃ so that for every

tree agreeing with K∀ there exists a solution agreeing with K∃. If such a K∃ cannot be produced,
then there exists a tree agreeing with K∀ for which there is no solution at all, contradicting absolute
consistency. To see this, reason as follows. For each possible response K to K∀, let TK be a tree
agreeing with K∀ for which there is no solution agreeing with K. By Lemma 3.4 there is a tree
T ∈ L(K∀) such that T |= π(ā) whenever one of the TK ’s satisfies π(ā) for every source side pattern
π. Since every T ′ ∈ L(At) agrees with one of the K’s (Lemma 3.2), there is no solution for T .

In the second round, if M is not absolutely consistent, there is some T agreeing with K∀ for
which there is no solution. ∀’s strategy now is to choose a dependency δ, say πδ(x̄), ηδ(x̄) −→
π′δ(x̄, ȳ), η′δ(x̄, ȳ), and a tuple ā satisfying ηδ(ā) such that T |= πδ(ā), but there is no b̄ satisfying
η′δ(ā, b̄) such that π′δ(ā, b̄) can be realized in a tree agreeing with K∃. Some suitable δ and ā exist,
as otherwise a solution for T could be obtained as follows. Assume that for each δ and ā as above
there is a tree Tδ,ā in L(K∃) such that Tδ,ā |= π′δ(ā, b̄) for some b̄ satisfying η′δ(ā, b̄). Then by
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Lemma 3.4 there is a tree T ′ ∈ L(K∃) that is a π′′-union of Tδ,ā’s for every target side pattern π′′.
Clearly, T ′ is a solution for T .

If M is absolutely consistent, then whatever δ and ā was played, π′δ(ā, b̄) can be realized in a
tree from L(K∃) for some b̄ satisfying η′δ(ā, b̄). ∃’s strategy is to choose suitable b̄ and a witness.

To give a lower bound for the complexity of AbCons let us consider the following problem:

Problem: 2n-universality
Input: Nondeterministic Turing machine M , number n in unary

Question: Does M accept every word of length 2n in at most 2n steps?

The problem is obviously in Π2EXP. It can be also shown that it is hard for this class.

Lemma 5.2. 2n-universality is Π2EXP-complete.

Proof. Take a Π2EXP language L. There is a nondeterministic machine M and k ≤ l such that
x ∈ L iff for all y such that |y| ≤ 2|x|

k
, M accepts (x, y) (M always stops after at most 2|x|

l

steps). Let Mx,k write x on the tape, mark the first 2|x|
k

positions of the input as relevant, and
simulate M on x and the relevant part of the input. Since k ≤ l, the machine stops after at most
2C|x|

l
steps for some C independent of x. Hence, x ∈ L iff (Mx,k, 1C|x|

l
) is a positive instance of

2n-universality.

We give a reduction from 2n-universality to AbCons for a very restricted class of mappings.

Theorem 5.3. AbCons is Π2EXP-hard even for mappings using only child axis, wildcard, equal-
ity, and non-recursive DTDs.

Proof. This reduction is very similar to the one in the proof of Theorem 4.1. The possible source
trees will encode the input words, and the solutions will encode accepting runs as sequences of
configurations. The main difficulty is that we need to copy the exponential input word to the
target tree by means of polynomially many dependencies. For this purpose we use a modified
mechanism of addressing the configurations and their cells, based on a linear order of length 2n

explicitly stored in the source tree. Note that this could not be done in Theorem 4.1, as the source
tree was part of the input and thus had to be polynomial. Instead, the order was simulated with
n-bit sequences representing in binary the elements of the order.

Let an instance of 2n-universality be n ∈ N and a Turing machine M with the tape alphabet
A and the blank symbol [ ∈ A, the state space q0, q1, . . . , qf and the extended transition relation
δ̂ (see the proof of Theorem 4.1 for details). W.l.o.g. we assume that qf is the only final accepting
state.

The source DTD is given as

r → ord q0 q1 . . . qf ⊥ τ1 τ2 · · · τm
ord→ a1 b1

ai, bi → ai+1 bi+1

an, bn → c

c→ t1 | t2 | · · · | tk
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where t1, t2, . . . , tk are the tape symbols except [, and τ1, τ2, . . . , τm are the decorated tape sym-
bols, i.e., elements of Â = {s, s., s/

∣∣ s ∈ A}, i = 1, 2, . . . , n − 1 and the labels q0, q1, . . . , qf ,⊥,
τ1, τ2, . . . , τm, c have a single attribute. The target DTD is given as

r → a1 b1 tr1 tr2 · · · trd
aj , bj → aj+1 bj+1

a2n, b2n → cell
tri → st1 sym1 st2 sym2 · · · st6 sym6

cell→ confnum cellnum st sym

where i = 1, 2, . . . , d, j = 1, 2, . . . , 2n− 1. Under the tri nodes we store δ̂, the extended transition
relation of M , and d = |δ̂|. Under the cell nodes we store a configuration number, a cell number,
a state, and a decorated tape symbol.

Assume for a while that we only need to handle source trees in which all data values are distinct.
Correctness of the encoding of δ̂ is ensured with dependencies

r[qi1(u1), τj1(v1), qi2(u2), τj2(v2), . . . , qi6(u6), τj6(v6)] −→ r/Tr (ū, v̄) ,

for each (qi1 , τj1 , qi2 , τj2 , . . . , qi6 , τj6) ∈ δ̂, with Tr(ū, v̄) standing for [
∧6
i=1 sti(ui) ∧ symi(vi)].

The addressing mechanism is based on the data values stored in the c-nodes, encoding a linear
order of length 2n. With every c-node v we associate the sequence of a’s and b’s on the path
leading from the root to v. This sequence is interpreted as a binary number (a read as 0, b read as
1), which is the position of v in the order. The auxiliary patterns take the following form:

First(x) = ord/a1/a2/ · · · /an/c(x) ,
Last(x) = ord/b1/b2/ · · · /bn/c(x) ,

Succ(x, y) =
n∨
i=1

//
[
ai/bi+1/bi+2/ · · · /bn/c(x), bi/ai+1/ai+2/ · · · /an/c(y)

]
,

Succ3(x, y, z) =
n−1∨
i=1

//
[
ai/bi+1/bi+2/ · · · /bn−1

[
an/c(x), bn/c(y)

]
, bi/ai+1/ai+2/ · · · /an/c(z)

]
∨

∨
n−1∨
i=1

//
[
ai/bi+1/bi+2/ · · · /bn/c(x), bi/ai+1/ai+2/ · · · /an−1

[
an/c(y), bn/c(z)

]]
.

We use the pattern Succ3(x, y, z) instead of Succ(x, y),Succ(y, z) to eliminate equality from the
source side. Each occurrence of // above can be replaced with a sequence / / . . . / / of corre-
sponding length (at most 2n + 1). Disjunction can be eliminated since we only use the auxiliary
patterns on the source side. All this increases the size of the output at most by a linear factor.

To build the first configuration we copy the input word encoded in the labels of the c-nodes’
children with the head over the first cell, in the state q0:

r
[
First(x),First(y)/s, q0(u), s.(v)

]
−→ r//Cell(x, y, u, v) ,

r
[
First(x),Succ3(z1, y, z2)/s,⊥(u), s(v)

]
−→ r//Cell(x, y, u, v) ,

r
[
First(x),Last(y)/s,⊥(u), s/(v)

]
−→ r//Cell(x, y, u, v) ,
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where s ranges over A − {[}, Cell(x, y, u, v) stands for cell [confnum(x), cellnum(y), st(u), sym(v)],
and by Succ3(z1, y, z2)/s we mean Succ3(z1, y, z2) with c(y) replaced with c(y)/s.

To make sure we encode a correct accepting run, we add

r
[
Succ(x0, x1), Succ3(y1, y2, y3)

]
−→ r

[
/Tr(ū, v̄),

∧
i,j

//Cell(xi, yj , u3i+j , v3i+j)
]
,

r/qf (u) −→ r//Cell(x, y, u, v) .

We claim that the mapping we have just defined is absolutely consistent iff the answer to
2n-universality is “yes”. Assume that the mapping is absolutely consistent. Every input word
w can be encoded in a source tree using distinct data values. An inductive argument shows that a
solution to such a tree encodes an accepting run of M on w. Conversely, if the answer is “yes”, for
each source tree S using distinct data values, a solution is obtained from the run of M on the word
encoded in the sequence of ti-leaves of S. What if S uses some data values more than once? For
a function h : D → D and a tree U , let h(U) be the tree obtained from U by replacing each data
value a with h(a). Now, let S′ be a tree with the structure identical as S, but using distinct data
values, and let h be a function on data values such that h(S′) = S. By the previously considered
case, there is a solution T ′ for S′. Since our mapping does not use inequality on the target side,
nor equality on the source side, h(T ′) is a solution for h(S′) = S.

In the reduction above we can remove disjunction from the DTDs at the cost of allowing inequality
or next-sibling axis on the source side. Without disjunction, inequality and sibling order one can
prove NEXP-hardness [1].

6. Bounded depth mappings

We have seen that absolute consistency is highly untractable even for patterns using only
vertical axes and non-recursive DTDs with very simple productions. In this section we show that
the complexity can be lowered substantially if the height of trees is bounded by a constant. We
say that a mapping M has depth at most d if the source and target schema only admit trees of
height at most d.

Proposition 6.1. AbCons for mappings of bounded depth is in Π4P.

Proof. We claim that the general algorithm presented in Theorem 5.1 has the desired complexity
for mappings of bounded depth.

Assume that an automaton A only accepts trees of height at most d and let K be an A-kind.
Obviously K’s height is at most d. Moreover, K contains no vertical ports, as otherwise arbitrarily
high trees would agree with K.

It follows that, for a bounded depth mapping, the kinds played in the first round have polyno-
mial branching and bounded depth, which means they are polynomial. In the second round, the
objects played are polynomial in the size of those from the first round. As the verification of the
moves is polynomial, this gives a Π4P-algorithm.

A small modification of our techniques makes it possible to prove Proposition 6.1 for a more
general definition of boundedness: M has depth at most d if every pattern it uses can only be
realized within the initial d levels of every tree conforming to the schema. This includes mappings
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based on patterns starting at the root that use neither descendant nor child-paths of length greater
than d.

We next show that absolute consistency is Π4P-hard even for schema mappings of depth 1.

Proposition 6.2. AbCons is Π4P-hard for bounded-depth mappings, even for depth 1 mappings
using only child and next-sibling axes, and equality.

Proof. We provide a reduction from Tautology for Π4 quantified propositional formulas. Let

ϕ = ∀x1, x2, . . . , xn ∃y1, y2, . . . , yn ∀u1, u2, . . . , un ∃v1, v2, . . . , vn

m∧
i=1

Xi ∨ Yi ∨ Zi

with Xi, Yi, Zi ∈ {xj , yj , uj , vj , x̄j , ȳj , ūj , v̄j
∣∣ j = 1, . . . , n}. The source schema Ss is given as

r → (a1|a′1)(a2|a′2) . . . (an|a′n)ee ,

and the target schema St is given as

r → eeea1a1a2a2 . . . ananb1b1b2b2 . . . bnbn(g1g2g3)7 .

The source tree encodes a valuation of x1, x2, . . . , xn: ai means that xi is true, a′i means it is false.
In e-positions we store values representing true and false. On the target side, we want to keep a
copy of the valuation of xi’s and a guessed valuation of yi’s, except this time we use a different
coding. The first position labelled with ai stores the value of xi, true or false, and the following
position stores the value of the negation of xi. Similarly, bi’s store values of yi. We also want
two copies of true and a copy of false in the target tree, arranged so as to enable nondeterministic
choice between a pair (true, false) or (false, true), as well as all triples with at least one entry true,
which will help us to check that each clause of ϕ is satisfied.

Let us now describe the dependencies. First we make sure that values representing true and
false are copied properly,

r
[
e(x)→e(y)

]
−→ r

[
e(x)→e(y)→e(x)

]
,

for each i translate the ai/a′i coding of values of xi into true/false coding,

r
[
ai, e(t)→e(f)

]
−→ r

[
ai(t)→ai(f)

]
,

r
[
a′i, e(t)→e(f)

]
−→ r

[
ai(f)→ai(t)

]
,

and enforce in the target tree all triples with at least one entry true,

r
[
e(t)→e(f)

]
−→ r

[
g1(f)→g2(f)→g3(t), g1(f)→g2(t)→g3(f), . . . , g1(t)→g2(t)→g3(t)

]
.

Next, we guess a value of yi for each i,

r
[
e(t)→e(f)

]
−→ r

[
bi(t), bi(f)

]
,

and ensure that it makes the internal Π2 part of ϕ true:

r

[ n∧
i=1

e(ui)
]
−→ r

[ n∧
i=1

e(ui)→e(ūi),
n∧
i=1

e(vi)→e(v̄i),
n∧
i=1

ai(xi)→ai(x̄i),
n∧
i=1

bi(yi)→bi(ȳi),

m∧
j=1

g1(Xj)→g2(Yj)→g3(Zj)
]
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(the literals Xj , Yj , Zj are taken from ϕ).
The obtained mapping is absolutely consistent iff ϕ is a tautology. Indeed, if the mapping is

absolutely consistent, it has a solution for each source tree that uses two different data values in
the e-positions. By construction, such trees have solutions iff ϕ is a tautology. If the data values
in the e-positions are equal, the dependencies are satisfied trivially.

In the reduction above, disjunction can be eliminated from the source schema at a cost of allowing
data comparisons on the source side. To achieve this, replace (ai|a′i) with aiai, and encode the
truth value as (in)equality of the two data values.

We finish this section with a proposition determining the complexity of the solutions existence
problem and the solution building problem for bounded-depth mappings.

Proposition 6.3. For bounded-depth mappings, solution building is in EXP and SolEx is Σ3P-
complete.

Proof. The complexity analysis in Proposition 6.1 shows that the target kinds tested in the algo-
rithm from Theorem 3.5 are polynomial-size. Hence, the algorithm runs in EXP.

A Σ3P algorithm for SolEx is similar to the absolute consistency algorithm from Theorem 5.1,
except that the first move of ∀ is skipped and the role of K∀ is played by the given source tree
T . Correctness of the modified algorithm follows from the correctness of the original one, and the
complexity analysis carries over from Proposition 6.1.

For the lower bound for SolEx we modify the reduction from Proposition 6.2 to obtain a
reduction from Tautology for Σ3 quantified propositional formulas. Take a formula

ϕ = ∃y1, y2, . . . , yn ∀u1, u2, . . . , un ∃v1, v2, . . . , vn

m∧
i=1

Xi ∨ Yi ∨ Zi

with Xi, Yi, Zi ∈ {yj , uj , vj , ȳj , ūj , v̄j
∣∣ j = 1, . . . , n}. The corresponding mapping is obtained by

removing each reference to ai and a′i from the mapping in the proof of Proposition 6.2. Thus,
the source schema is just r → ee and the target schema is r → eeeb1b1b2b2 . . . bnbn(g1g2g3)7. The
second and third dependencies are removed, and in the last dependency we remove the subpatterns
ai(xi)→ ai(x̄i). The resulting mapping has a solution for the tree r

[
e(1), e(0)

]
if and only if the

formula ϕ holds true.

Note that the solution building algorithm can be implemented in polynomial working space (ex-
cluding the space taken by the output).

7. Regular schema mappings

In the previous sections, we used patterns to describe π and π′ in the dependencies. In this
section, we study a more general form of schema mappings, where instead of a pattern just talking
about labels and the child and descendant relations, there a formula monadic second-order logic
(MSO). We prove that for this richer language, all the problems are still decidable. We only estab-
lish decidability. The questions of complexity, which we do not address here, are most interesting
when the queries are given not by MSO formulas, but by automata. If the input contains MSO
formulas, then any algorithm will be necessarily be nonelementary, because satisfiability for MSO
formulas is nonelementary.
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The general setup is similar to the one in the previous sections. A single source-to-target
dependency is also an implication of the form

π(x̄), η(x̄) −→ π′(x̄, ȳ), η′(x̄, ȳ).

The formulas η and η′ are boolean combinations of equality constraints on their arguments (this is
slightly more general than before, since previously we had conjunctions of equalities and inequali-
ties). The main generalization concerns π and π′. Previously, the tuples of data values selected by
π and π′ came from patterns. In this section, we allow a richer syntax for π and π′, where formulas
of MSO are used. Below, in Section 7.1, we give a precise definition of the problem, and introduce
some of the notation that we use. Then, in Section 7.2, we describe our proof strategy. The proof
itself is in Sections 8 and 9.

7.1. Some notation and the problem statement
We are now interested in a more general form of dependencies, where formulas of MSO are

used to select tuples of nodes, instead of tree patterns. For such formulas, we use the name node-
selecting queries; a tree pattern can be thought of as a special case of a node-selecting query. We
begin by presenting a different notation, where queries are modelled as functions from trees to sets
of tuples.

A syntax for queries and tuples. Suppose that X is a set of variables. An X-tuple from a set A is
an element of AX . We are mainly interested in X-tuples of nodes, or in X-tuples of data values.
We will use the letter u to denote X-tuples. If Y ⊆ X, and u is an X-tuple, then we write u|Y for
the Y -tuple obtained from u by only keeping coordinates from Y . We lift this notation to sets in
the natural manner: for a set of tuples U , we define U |Y to be the set {u|Y : u ∈ U}.

To avoid confusion, we distinguish between two kinds of queries:

• A node-selecting query with variables X maps a data tree to a set of X-tuples of nodes:

T ∈ datatrees 7→ α(T ) ⊆ nodes(T )X

• A data-selecting query with variables X maps a data tree to a set of X-tuples of data values.

T ∈ datatrees 7→ π(T ) ⊆ DX

For queries, be they node-selecting or data-selecting, we use operators of relational algebra:

(α ∨ β)(T ) def= α(T ) ∪ β(T ) (α ∧ β)(T ) def= α(T ) ∩ β(T ) (α× β)(T ) def= α(T )× β(T )

We use letters α and β to denote node-selecting queries, and the letter π to denote data-selecting
queries.

Node-selecting queries. A node-selecting query is called regular if it can be described using a regular
tree language. The idea is to annotate a tree with a tuple of nodes, and then use a regular tree
language to see if that tuple belongs to the output of the query on that tree. For a tree T and an
X-tuple of nodes u, we define a tree T ⊗ u as follows. The nodes of T ⊗ u are the same as the
nodes of T . The label of a node x consists of: the label of x in T , and then a bit-vector in 2X that
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says which coordinates of the tuple u are equal to x. A node-selecting query with variables X is
called regular if there is some regular tree language L such that

α(T ) = {u : u is an X-tuple of nodes in T such that T ⊗ u ∈ L} for every tree T .

An equivalent formalism for defining regular node-selecting queries would be to use formulas of
monadic second-order logic with free first-order variables. The formalism is equivalent in the
following sense: a node-selecting query α with variables X is regular if and only if there is an MSO
formula ϕ with free first-order variables X, such that

u ∈ α(T ) iff T, u |= ϕ holds for every tree T and X-tuple u of nodes in T .

Observe that regular node-selecting queries ignore the data values in an input data tree, and
only read the labeling with the finite alphabet. That is why we will sometimes feed a node-selecting
query with a tree over a finite alphabet, without the data values.

Data-selecting queries. We study two kinds of data-selecting queries, as described below.

• A boolean combination η of equalities on variables X can be seen as a data-selecting query
with variables X in the following way: the query ignores its input data tree, and it outputs
the (possibly infinite) set of X-tuples of data values that satisfy the equalities and inequalities
from η. For example, the formula x = y ∧ y 6= z can be seen as a data-selecting query which
maps every data tree to the set of {x, y, z}-tuples u of data values where coordinates x and
y are equal, but unequal to coodinate z.

• There is a natural transformation from node-selecting queries to data-selecting queries, de-
fined as follows. For an X-tuple of nodes u in a data tree T , define an X-tuple of data values
û by

û(x) = the data value in node u(x) of T .

The tuple û depends on both u and T . If α is a node-selecting query with variables X, then
we define α̂ to be the following data-selecting query with variables X

α̂(T ) = {û : u ∈ α(T )}.

We will be interested in the case when the node-selecting query α is regular.

Regular schema mappings. We are now ready to define regular XML schema mappings, and state
their decision problems. A regular schema mapping M is a tuple 〈Ss,St,Σ〉, where Ss is a source
schema, St is a target schema, and Σ is a set of dependencies of the form

α, η −→ α′, η′ (1)

where

• α and α′ are regular node-selecting queries with variables X and X ′, respectively; and

• η and η′ are boolean combinations of equalities over variables X and X ′, respectively.

26



Since we will only care about decidability, and not complexity, it is not important how the node-
selecting queries α and α′ are represented. For the sake of concreteness, suppose that they are
represented by MSO formulas. A pair of trees (T, T ′) satisfies the dependency (1) if

for every u ∈ α̂(T ) ∩ η(T ) there is some u′ ∈ α̂′(T ′) ∩ η′(T ′) such that u = u′|X.

Given a data tree T in the source schema Ss, we say that a data tree T ′ in the target schema St
is a solution to T if the pair (T, T ′) satisfies every dependency in Σ.

We would like to emphasize that the MSO formulas α, α′ do not depend on the data values in
the trees T and T ′. The data values are only inspected by η and η′ in a very restrictive way: by
boolean combinations of equalities. If we allowed predicates for data values in MSO logic, then the
problem would become undecidable.

The main result of Sections 7, 8 and 9 is that the decision problems considered in the previous
sections are also decidable in the more general setting of regular schema mappings.

Theorem 7.1. For regular schema mappings AbCons is decidable, SolEx is decidable, and
SolEx(M) is in P.

In Section 7.2 we describe the proof strategy for Theorem 7.1. We begin, however, with an
example that illustrates the absolute consistency problem for regular source-to-target dependencies.
Let α be a regular node-selecting query with variables X. We define a regular schema mapping
Mα. The source and target schemas are positively trivial, i.e. they select all documents. The
schema contains only one dependency:

α>, η> −→ α, η>

where the queries α> and η> are also positively trivial, i.e. they are defined by

α>(T ) = nodes(T )X η>(T ) = DX .

We will show that already for this very simple regular schema mapping, solving absolute consis-
tency is equivalent to a nontrivial problem about regular node-selecting queries, which we call the
unbounded disjointness problem. In the definition of the unbounded disjointness problem, we say
that a set U of X-tuples is completely disjoint if every node appears in at most one tuple in at
most one coordinate. In other words,

∀u, u′ ∈ U ∀x, x′ ∈ X u 6= u′ ∨ x 6= x′ ⇒ u(x) 6= u′(x′).

A node-selecting query is called unboundedly disjoint if for every n ∈ N there is some input tree
Tn such that α(Tn) contains at least n completely disjoint tuples. The unbounded disjointness
problem is the following decision problem.

Problem: Unbounded disjointness
Input: A regular node-selecting query α, with variables X.

Question: Is α unboundedly disjoint?

It is not difficult to see that a regular node-selecting query α is unboundedly disjoint if and
only if the schema mapping Mα is absolutely consistent. It follows that the absolute consistency
problem is at least as difficult as the unbounded disjointedness problem for regular node-selecting
queries. Solving the latter problem is actually one of the steps on our way to deciding the absolute
consistency problem. This step is presented in Section 9.
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7.2. Proof strategy
In this section we describe our strategy for proving Theorem 7.1.

Eliminating schemas and multiple dependencies. We begin by showing that without loss of general-
ity, we can assume that the schema mapping given in Theorem 7.1 has no source or target schemas,
and it has just one dependency. Consider a schema mapping 〈Ss,St,Σ〉, where Σ contains the n
dependencies below

α1, η1 −→ α′1, η
′
1 . . . αn, ηn −→ α′n, η

′
n.

For i ∈ {1, . . . , n} let the source and target variables of the i-th dependency be Xi and X ′i.
Assume also that X ′1, . . . , X

′
n are all disjoint. Without loss of generality, we assume that for each

i, the constraints ηi and η′i are satisfiable. Our goal is to combine schemas Ss and St, and all the
dependencies, into a single dependency.

A boolean regular query is defined to be a query with an empty set of variables. A boolean
query corresponds to a regular language, which consists of those trees where the query selects the
empty tuple. The source schema can be modeled as a boolean query αs, and the target schema
can be modeled as a boolean query αt.

One can combine queries using the cartesian product. For instance, αs ×
∏
i∈{1,...,n} αi is a

query, with variables
⋃
i∈{1,...,n}Xi, such that:

• in trees violating the source schema, the query selects no tuples

• in trees satisfying the source schema, the query selects tuples that are combined from all
tuples selected by the queries {αi}i∈I .

A first idea would be to replace the whole schema mapping by a single source-to-target dependency

αs ×
∏

i∈{1,...,n}

αi,
∏

i∈{1,...,n}

ηi −→ αt ×
∏

i∈{1,...,n}

α′i,
∏

i∈{1,...,n}

η′i.

The problem is that this dependency is vacuously true whenever the source data tree is such that
at least one of the queries {αi} selects no tuples. That is why we need a slightly more refined
approach.

For I ⊆ {1, . . . , n}, consider the following source-to-target dependency, call it dI :

αs ×
∏
i∈I

αi,
∏
i∈I

ηi −→ αt ×
∏
i∈I

α′i,
∏
i∈I

η′i.

The following lemma shows that testing a schema mapping for absolute consistency reduces,
as a decision problem, to multiple instances of testing a single source-to-target dependency for
absolute consistency. Likewise for the two variants of solution existence, except after the reduction
we care for nontrivial solutions.

Lemma 7.2. Let the schema mapping, and the dependencies dI be as defined above.

1. Let T be a data tree which satisfies the source schema, and let I be the set of i ∈ {1, . . . , n}
such that αi selects at least one tuple in T . Then T has a solution with respect to the schema
mapping if and only if T has a solution with respect to dI .
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2. The schema mapping is absolutely consistent if and only for every I ⊆ {1, . . . , n}, the depen-
dency dI is absolutely consistent.

Proof. The first item is straightforward, and the second item follows from the first.

From now on, we assume that the schema mapping consists of a single source-to-target depen-
dency, and has no schemas.

Potential. The key notion in our proof of Theorem 7.1 is called a potential. For a data-selecting
query π with variables X, we define its potential to be

[[π]] def= {π(T ) : T is a data tree},

which is a family of subsets of DX . We define a preorder ≤∀∃ on families of subsets of DX as follows

P ≤∀∃ Q if for every P ∈ P there exists some Q ∈ Q with P ⊆ Q.

Observe that the relation ≤∀∃ is a preorder. A dependency as in (1) is absolutely consistent if and
only if the following in equality holds for potentials

[[α̂ ∧ η]] ≤∀∃ [[α̂′ ∧ η′]]|X. (2)

(The above says that for every data tree T , there exists a data tree T ′ such that the output (α̂∧η)(T )
is included in the output of (α̂′ ∧ η′)(T ′), after projecting the latter output to coordinates from X.
This is precisely the definition of absolute consistency.) For a data tree T , there exists a solution
if and only if

{(α̂ ∧ η)(T )} ≤∀∃ [[α̂′ ∧ η′]]|X. (3)

Our approach to both the absolute consistency and the solution existence problem is as follows.
First, we define potential expressions, which are a formalism for describing potentials. We show
that the preorder ≤∀∃ is decidable for potentials presented by potential expressions. Finally, we
prove that the potentials which appear on both sides of the inequalities (2) and (3) can be expressed
using potential expressions.

Potential expressions. Fix a finite set X of variables and a finite set C of constant names. A
potential expression with variables X and constants C is a boolean combination of equalities over
variables and constants. An example of a potential expression over variables {x, y, z} and constants
{c} is

x = c ∧ y = z.

To evaluate a potential expression, we need a finite set D ⊆ D of data values, and a C-tuple u of
data values from D. We then define

[[e]]D,u ⊆ DX

to be the set of X-tuples of data values D that satisfy the expression e, assuming that the constants
are evaluated according to u. We define the potential of a potential expression to be the set

[[e]] def= {[[e]]D,u : D is a finite subset of D, and u is a C-tuple from D}

of possible values of the expression e, ranging over all choices of D and u.
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Proof strategy. We now describe our proof strategy for Theorem 7.1. Let ≡∀∃ denote the equiva-
lence relation induced by the preorder ≤∀∃ on potentials. The main part of the proof is the following
proposition, which says that the potential of a regular data-selecting query can be represented using
potential expressions.

Proposition 7.3. For every, even non-regular, node-selecting query α there is a finite set {ei}i∈I
of potential expressions such that

[[α̂]] ≡∀∃
⋃
i∈I

[[ei]].

If the query α is regular, then the set {ei}i∈I can be computed.

The proof of Proposition 7.3 is long, and will be presented in Sections 8 and 9. We first show
how the proposition implies Theorem 7.1.

Consider the following corollary to Proposition 7.3.

Corollary 7.4. Let α be a regular node-selecting query, and η a boolean combination of equalities
over the variables of α. One can compute a finite set {ei}i∈I of potential expressions such that

[[α̂ ∧ η]] ≡∀∃
⋃
i∈I

[[ei]].

Proof. Because η talks about equalities and inequalities of data values, and potential expressions
can do this.

We begin with deciding absolute consistency. By Lemma 7.2, we only need to solve absolute
consistency for a single source-to-target dependency

α, η −→ α′, η′,

without considering source and target schemas. Let the source and target variables in the depen-
dency be X and X ′. As we have observed previously, absolute consistency of the dependency is
equivalent to the following inequality

[[α̂ ∧ η]] ≤∀∃ [[α̂′ ∧ η′]]|X.

Apply Corollary 7.4 to both sides of the inequality, yielding sets of potential expressions such that

[[α̂ ∧ η]] ≡∀∃
⋃
i∈I

[[ei]] and [[α̂′ ∧ η′]] ≡∀∃
⋃
i∈I′

[[e′i]].

By restricting the variables of potential expressions e′i to X, we get a finite set of potential ex-
pressions representing [[α̂′ ∧ η′]]|X. Theorem 7.1 then follows from the following lemma, which says
that inequality can be computed for finite sets of potential expressions.

Lemma 7.5. For finite sets {ei}i∈I and {fj}j∈J of potential expressions, one can decide if⋃
i∈I

[[ei]] ≤∀∃
⋃
j∈J

[[fj ]]
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Proof. It is enough to solve the problem for {ei}i∈I = {e}, where e is a potential expression with
variables X and constants C. Extending the sets of constants if necessary, we can assume that all
the fj ’s have the same set of constants C ′. We can also assume that all potential expressions are
positive boolean combinations of equalities and inequalitites. For a C-tuple u and an X-tuple v we
will say that v, u satisfy (violate) e, if v satisfies (violates) e with constants interpreted according
to u.

We claim that [[e]] ≤∀∃
⋃
j∈J [[fj ]] can be equivalently expressed as follows: for each C-tuple u

there exists j and a C ′-tuple u′ using only values from u and nulls, such that for each X-tuple v if
v, u satisfies e, then v, u′ satisfies fj . It is clear that for u, u′, and v only the equality/inequality
pattern matters, so their entries can be taken from a set of bounded size, and the property can be
checked algorithmically.

The reformulated condition is clearly sufficient. Let us see it is also necessary. By contrapo-
sition, assume that there is no appropriate j and u′ for a C-tuple u. Let D ⊆ D be a finite set
containing all the entries of u, plus |X|+ |C ′| fresh values. We will show that [[e]]D,u 6⊆ [[fj ]]D′,w for
all j, w,D′. Let u′ be obtained by replacing in w all values not in u with distinct nulls, and let v
be such that v, u satisfy e but v, u′ violate fj . Let E ⊆ D be the set of values used in w but not in
u. Since D was chosen large enough, we can find an X-tuple v′ from D − E such that the entries
of v, u and v′, u have identical equality/inequality pattern. Clearly, v′ ∈ [[e]]D,u. In order to prove
v′ 6∈ [[fj ]]D′,w, note that the entries of v, u′ and v′, w have the same equality/inequality pattern (the
values from E play the role of nulls), so v′, w violate fj .

We now consider the solution existence problem. Let T be a data tree. Define I as in Lemma 7.2.
By the Lemma 7.2, T has a solution with respect to the whole schema mapping if and only if T
has a solution with respect to the single dependency dI . By (3), this question boils down to testing
inequality between two potentials. For the potential on the right hand side, we use Corollary 7.4,
just as we did for the absolute consistency problem. In order to finish the proof of Theorem 7.1, it
remains to show the following lemma, which is shown the same way as Lemma 7.5

Lemma 7.6. For a finite set of tuples U ⊆ DX , and a finite set of potential expressions {ei}i∈I ,
one can decide if

{U} ≤∀∃
⋃
i∈I

[[ei]]|X.

If the expressions {ei}i∈I are fixed, and only U is the input, the algorithm runs in polynomial time.

8. Potentials for regular data-selecting queries

The goal of this section is to prove Proposition 7.3, which says that for every node-selecting
query α there is a finite set {ei}i∈I of potential expressions such that

[[α̂]] ≡∀∃
⋃
i∈I

[[ei]],

and that this set can be computed when α is regular. We do the proof for the case when α is
regular, in which case we also need to compute the potential expressions {ei}i∈I . The case when
α is not regular follows the same lines, except that all the decidability and regularity issues are
ignored.

Our strategy is to show that every regular node-selecting query can be expressed in a normal
form (Section 8.1), and then to write potential expressions for queries in normal form (Section 8.2).
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8.1. A normal form for queries
In this section we prove a normal form for queries. The result is stated in Proposition 8.1.

Embellishments. We write var(α) for the variables of a query. A function f : Y → X can be used
to convert an X-tuple u into a Y -tuple u ◦ f :

(u ◦ f)(y) = u(f(y)).

This conversion can be lifted to a node-selecting query with variables X, by

(α ◦ f)(T ) = {u ◦ f : u ∈ α(T )}.

Let Φ be a set of queries. We allow queries in Φ to have different sets of variables, and possibly
different arities (numbers of variables). An embellishment with basis Φ is a query of the form∨

i∈I
(βi × γ) ◦ fi,

such that for every i ∈ I

• βi is a query from Φ;

• γ is a singleton query, which means that it selects exactly one tuple in every tree3;

• fi is a function fi : var(α)→ var(βi) ∪ var(γ).

We say a query α has basis Φ if it can be presented as some embellishment with basis Φ. The query
has a regular basis Φ if the queries βi and γ are regular. We say that a basis Φ is unboundedly
disjoint if the product query

∏
β∈Φ β is unboundedly disjoint. Equivalently, this means that for

every k ∈ N, there is some tree where each query β ∈ Φ selects at least k completely disjoint tuples.
We adopt the convention that the product of an empty set of queries is a boolean query which

says “yes” (outputs the empty tuple) in every tree. We also adopt the convention that a boolean
query is unboundedly disjoint if and only if it is satisfiable. In particular, an empty basis is
unboundedly disjoint.

We define an equivalence relation on finite sets of queries by saying that Φ is equivalent to Φ′ if
one can go from Φ to Φ′ by a finite number of steps of the form: replace a query by another query
with the same number of variables. We next define a partial order on the equivalence classes of
this relation as follows. Let [Φ] ≺ [Ψ] if one can reach Φ from a query equivalent to Ψ by a positive
finite number of steps of the form: replace a query with n variables by a finite (possibly empty)
set of queries with at most n − 1 variables. This partial order is well founded, but for every Φ
containing a query with at least 2 variables, there are arbitrarily long decreasing chains that start
in [Φ]. We will abuse notation and write Φ ≺ Ψ for [Φ] ≺ [Ψ].

We are now ready to state the result on normal forms.

Proposition 8.1. Let Φ be a set of regular queries. For every regular query α with regular basis
Φ one can compute regular queries {αi}i∈I with disjoint domains such that

α =
∨
i∈I

αi

and every αi has an unboundedly disjoint regular basis.

3The idea is that γ selects some “important nodes” in the input tree, such as the root or the leftmost leaf.
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The reason that Φ is in the statement of the proposition is that it (or rather its equivalence
class) serves as an induction parameter, with respect to the order ≺. Observe that every regular
query α has some regular basis, e.g., {α}, so Proposition 8.1 implies that every regular query can
be decomposed as a disjoint union of queries with unboundedly disjoint regular bases. The rest
of Section 8.1 is devoted to proving Proposition 8.1. Before presenting the proof, we state three
auxiliary results, Lemmas 8.2, 8.3 and 8.4.

Lemma 8.2. If a regular query β is not unboundedly disjoint, one can compute a regular basis Φ
for β such that Φ ≺ {β}.

Proof. We say that a set C of nodes covers a set U of tuples of nodes if every tuple from U contains
a node from C on at least one coordinate. It is not difficult to see that for every k ∈ N, every tree
T , and every set U of X-tuples of nodes, one of the two conditions below must hold:

• There are at least k completely disjoint tuples in U ; or

• There is a set C of at most k · |X| nodes that covers U .

Since we assume that β is not unboundedly disjoint, it follows that there is some k ∈ N such that
in every tree T , the output β(T ) has a cover of size at most k.

For k ∈ N, consider a query βk with variables {x1, . . . , xk}, which selects a k-tuple of nodes
in a tree T if and only if the nodes from the tuple cover the set of tuples β(T ). Since β is not
unboundedly disjoint, there is some k ∈ N such that βk selects at least one tuple in every tree.
By testing the queries β1, β2, . . ., we can find this k. Let γk be the query which selects in T
only the first tuple from βk(T ) in some MSO-definable linear order on k-tuples of nodes, e.g., the
lexicographic lifting of the preorder node traversal. By definition, the query γk is a singleton query.
In every tree T , every tuple from β(T ) contains at least one coordinate from γk. It follows that
every tuple selected by β can be constructed by replacing at least one of its coordinates, call it x,
by one of the coordinates, call it y, of the unique tuple selected by γk. For a coordinate x ∈ var(β)
and y ∈ var(γk), define βx,y(T ) to be the set of tuples u with variables var(β) − {x}, such that
β(T ) contains the tuple obtained from u by adding a new coordinate x, storing coordinate y of the
unique tuple selected by γk. It is not difficult to see that βx,y is a regular query. By definition,
each tuple in β(T ) can be obtained by adding nodes from γk(T ) to a tuple from βx,y for some x, y.
It follows that the set of queries

Φ = {βx,y : x ∈ var(β), y ∈ var(γk)}

is a regular basis for β. Because each query in Φ has fewer variables than β, it follows that
Φ ≺ {β}.

Lemma 8.3. If a basis Φ is not unboundedly disjoint, one can compute a regular partition {Li}i∈I
of all trees such that for each i ∈ I, there is β ∈ Φ such that β ∧ Li is not unboundedly disjoint.

Proof. If Φ is not unboundedly disjoint, then this means that there is some k ∈ N such that in
every tree, some query β ∈ Φ selects at most k completely disjoint tuples. Let Lβ,k be the set of
trees where the query β selects at most k completely disjoint tuples. It is easy to see that this is
a regular tree language, by assumption on the basis being regular. For k = 1, 2, . . . we test if the
regular language ⋃

β∈Φ

Lβ,k
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covers all trees, by doing a universality test for its automaton. Eventually we reach some k
where this happens. Finally, we can make the languages disjoint, e.g., by using an ordering Φ =
{β1, . . . , βn} and defining

Li
def= Lβi,k −

⋃
j∈{1,...,i−1}

Lβj ,k for i ∈ {1, . . . , n}.

Lemma 8.4. If α has basis Φ, and β ∈ Φ has basis Ψ, then α also has basis Φ− {β} ∪Ψ.

Proof. By substitution.

Proof of Proposition 8.1. The induction base is when Φ is empty. By our convention, this basis is
unboundedly disjoint.

Consider now the induction step. Suppose that α is a query with basis Φ. We use the decision
procedure for the unbounded disjointness problem (given in Sect. 9) to decide if Φ is unboundedly
disjoint. If Φ is unboundedly disjoint, then we are done. Otherwise, apply Lemma 8.3 to Φ,
yielding languages {Li}i∈I . Define αi to be α ∧ Li. Clearly the queries {αi}i∈I have disjoint
domains, because the languages {Li}i∈I are disjoint. It is easy to see that the set

Φi = {β ∧ Li : β ∈ Φ}

is a basis for αi. By Lemma 8.3, we know that there is some βi ∈ Φ such that βi ∧ Li is not
unboundedly disjoint. By Lemma 8.2, the query βi ∧ Li has a basis, call it Ψi, such that Ψi ≺
{βi ∧ Li}. By Lemma 8.4, the query αi has basis

Φi − {βi ∧ Li} ∪Ψi.

The basis above is smaller, in the order ≺, than the basis Φi, which is in turn smaller or equivalent
to Φ. We can therefore apply the induction assumption to the query αi.

8.2. Proof of Proposition 7.3
We now complete the proof of Proposition 7.3, which says that for every regular node-selecting

query α, one can compute a finite set {ei}i∈I of potential expressions such that

[[α̂]] ≡∀∃
⋃
i∈I

[[ei]].

Consider a regular node-selecting query α. Apply Proposition 8.1 to α, yielding a decomposition
α =

∨
i∈I αi. Since the queries {αi}i∈I have disjoint domains, it follows that

[[α̂]] =
⋃
i∈I

[[α̂i]].

Suppose that for each query αi we have a potential expression ei such that [[α̂i]] = [[ei]]. The result
follows, since ≡∀∃ is a congruence with respect to union:

P ≡∀∃ P ′ ∧ Q ≡∀∃ Q′ implies P ∪Q ≡∀∃ P ′ ∪Q for all families of sets P,P ′,Q,Q′.
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Therefore, it remains to provide the potential expressions ei for each αi. This we do now. By
construction, the query αi has an unboundedly disjoint basis, call it Φ. Let the embellishment with
basis Φ be

αi =
∨
j∈Ji

(βij × γi) ◦ fij .

We define a potential expression ei with variables var(αi) and constants var(γi). For each j ∈ Ji,
define an expression

eij
def=

∧
z∈var(βij)

∧
x,y∈f−1

ij (z)

x = y ∧
∧

c∈var(γi)

∧
x∈f−1

ij (c)

x = c

The following lemma completes the proof.

Lemma 8.5. [[α̂i]] ≡∀∃ [[
∨
j∈Ji

eij ]].

Proof. We only show the more interesting inequality

[[α̂i]] ≥∀∃ [[
∨
j∈Ji

eij ]].

Choose some element of the set on the right side, which itself is a set of data tuples of the form
[[ei]]D,c for some finite set D of data values, and some valuation of constants c : var(γi)→ D. We
will construct a data tree T such that

α̂i(T ) ⊇ [[ei]]D,c (4)

holds.
By the assumption that the basis {βij}j∈Ji is disjointly unbounded, we know that there is some

tree (without data) S, such that for each j ∈ Ji, the set βij(S) contains many completely disjoint
tuples (the exact number of tuples needed could be determined from the argument below).

We will add data to this tree, creating a data tree T such that (4) holds. Consider the unique
tuple selected by the singleton query γj in S. Choose the data values of the nodes in this unique
tuple according to the valuation c : var(γi) → D. If the number of completely disjoint tuples
selected by the queries βij in S is sufficiently large, then we know that for each j there is a set

Uj ⊆ βij(S)

of at least |Dvar(βij)| completely disjoint tuples. Without loss of generality, we can assume that
the union of the sets Uj is also completely disjoint, i.e., no node appears in a tuple from Uj and
Uj′ for j 6= j′. Because of the size of the sets Uj , we can choose a labeling of the tree S with data
values, so that for each j ∈ Ji,

Dvar(βij) ⊆ {û : u ∈ Uj}.

(Recall that û is the tuple of data values labeling the tuple of nodes u.) Let T be the data tree
obtained from S by adding the data values in the manner described above. We will show (4).
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To prove (4), we will show that for every j ∈ Ji,

[[eij ]]D,c ⊆ α̂i(T ).

Let then d be a tuple of data values in the set [[eij ]]D,u. Coordinates of this tuple are indexed by
var(αi). Recall the function

fij : var(αi)→ var(βij) ∪ var(γi).

We may assume without loss of generality that the image of the function fij contains all of var(βij);
otherwise some coordinates in the output of βij would not contribute anything to the output of
αi, and therefore these coordinates could be projected away. By recalling the potential expression
eij , we observe two things about the tuple d.

1. Suppose that x ∈ var(γi). Then on all coordinates from f−1
ij (x), the tuple d stores the data

value c(x).
2. Suppose that x ∈ var(βij). Then on all coordinates from f−1

ij (x), the tuple d stores the same
data value, call it dx.

Define a tuple of data values e : var(βij)→ D by e(x) = dx. Like for any tuple indexed by var(βij),
this tuple is equal to û for some node tuple u ∈ Uj . Therefore, item 2. above can be restated as “on
all coordinates from f−1

ij (x), the tuple d stores the data value e(x)”. By definition of the query αi,
we know that there is some tuple of nodes in αi(T ), which is obtained from u by the embellishment
fij . It is not difficult to check that the data values stored in that tuple are exactly the tuple d.

9. The unbounded disjointness problem

In this section we prove decidability for the unbounded disjointness problem for regular queries,
as defined in Section 7.1.

Theorem 9.1. It is decidable if a regular query is unboundedly disjoint.

The rest of this section is devoted to showing the above theorem.

Forest algebra. To prove Theorem 9.1, we use methods of forest algebra. In particular, we use a
different definition of a context than previously: a context is a forest (and not necessarily a tree,
as before) where exactly one of the leaves is a port. The idea behind forest algebra is to study the
relationships between forests and contexts, with respect to the seven operations defined below:

1. a constant4 which represents the empty forest with no trees;
2. a constant which represents the identity context with a single node which is a port.
3. a binary operation which concatenates two forests F1 + F2 yielding a forest;
4. a binary operation which concatenates a forest to a context F + C yielding a context;
5. a binary operation which concatenates a context to a forest C + F yielding a context;
6. a binary operation which substitutes one context in another C1 · C2, yielding a context;
7. a binary operation which substitutes a forest in a context C · F , yielding a forest.

4A constant is an operation of arity 0.
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Let Γ be a finite alphabet. A forest algebra congruence over Γ consists of:

• an equivalence relation ∼H for forests over Γ;

• an equivalence relation ∼V for contexts over Γ;

such that the two equivalences are a congruence with respect to all operations of forest algebra.
A forest algebra congruence recognizes a forest language over Γ, which covers the special case of a
tree language, if the language is a union of equivalence classes of the congruence. In [10] it is shown
that a tree language over Γ is regular if and only if it is recognized by a forest algebra congruence
with finitely many equivalence classes in both ∼H and ∼V .

Suppose that α is a regular query with variables X, for which we want to decide unbounded
disjointness. Fix α for the rest of this section. We use the term partial X-tuple for an X-tuple where
some of the coordinates are not defined. The domain of a partial X-tuple is the set of coordinates
where the tuple is defined. Recall the definition of F ⊗ u, which was introduced together with
regular node-selecting queries. This definition also makes sense when u is a partial X-tuple.

Let Γ be the input alphabet for the trees considered by α. By definition of regular node-selecting
queries, the tree language

L = {T ⊗ u : u ∈ α(T )},
is a regular language of unranked trees over the alphabet Γ × 2X . Suppose that the language L
is recognized by a forest algebra congruence (∼H ,∼V ). Let H be the equivalence classes in ∼H ,
likewise for V . We denote elements of H by g, h and elements of V by v, w. We write [F ] for the
equivalence class of a forest F , and likewise [C] for the equivalence class of a context C. Because the
equivalence relations ∼H and ∼V are congruences, one can apply the operations of forest algebra
to equivalence classes. For instance, for v ∈ V and h ∈ H there is a unique element v · h such that
v · h = [C · F ] holds for every context C and forest F with [C] = v and [F ] = h.

We can treat h ∈ H as a query, call it h̄, which maps a forest F over alphabet Γ to the set

h̄(F ) = {u : u is a partial X-tuple of nodes in F with [F ⊗ u] = h}.
Likewise, we can treat v ∈ V as a query v̄ which maps a context to a set of partial X-tuples inside
the context (the tuples are not allowed to use the port node). We say that h ∈ H is accepting if it
is a subset of L, as an equivalence class. It is not difficult to see that

α =
∨

h is accepting

h̄.

It follows that α is unboundedly disjoint if and only if for some accepting h ∈ H, the query h̄ is
unboundedly disjoint. Therefore, in order to prove Theorem 9.1, it remains to determine for which
h ∈ H the query h̄ is unboundedly disjoint. This is the subject of the rest of this section.

An element h ∈ H is called productive if there is some v ∈ V such that vh is accepting. Likewise,
v ∈ V is called productive if vh is productive for some h ∈ H. The idea is that productive elements
are those that can appear in some tree from L. For every productive h ∈ H there is some set of
variables var(h) ⊆ X such that for every forest F , all tuples in h̄(F ) have domain var(h). This is
because otherwise, α could select a tuple where either not all variables from X are used, or some
variable is used twice. Likewise for every productive v ∈ V one can define var(v).

Let v ∈ V . We define erase(v) to be the set of elements w ∈ V such that for some context C
and some var(v)-tuple u of nodes in C, we have

[C ⊗ u] = v and [C ⊗ ∅] = w. (5)
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v ∈ V var(v) = ∅
v ∈ V∞

(base)

v ∈ V∞ h ∈ H∞ var(v) ∩ var(h) = ∅
vh ∈ H∞

(subst)

v ∈ V∞ w ∈ V∞ var(v) ∩ var(w) = ∅
vw ∈ V∞

(compose)

v ∈ V vw = v = wv for some w ∈ erase(v)
v ∈ V∞

(idem)

Table 1: The proof rules.

9.1. A proof system
In this section we define a sound and complete proof system, which finds the unboundedly

disjoint elements of H and V . The proof system is illustrated in Table 1. It generates two sets

H∞ ⊆ H and V∞ ⊆ V.

Proposition 9.2. The system in Table 1 is sound and complete in the following sense:

• Sound: if h ∈ H∞ then h̄ is unboundedly disjoint, and likewise for V∞.

• Complete: if h̄ is unboundedly disjoint then h ∈ H∞, and likewise for V∞.

Proposition 9.2 yields Theorem 9.1. This is because, using a fixpoint algorithm, we can compute
the sets H∞ and V∞ derived by the proof system. The algorithm runs in polynomial time, assuming
that the query is represented as a forest algebra. Actually, we believe that the algorithm might also
be polynomial even when the input is represented by a nondeterministic automaton on unranked
trees; we intend to study this possibility in the future.

We begin with the simpler soundness proof.

Lemma 9.3. The proof system from Table 1 is sound.

Proof. The rule (base) is sound because of our convention that boolean queries are unboundedly
disjoint. The rule (subst) is sound because for every context C and forest F ,

disjoint(v̄h(CT )) ≥ min(disjoint(v̄(C)),disjoint(h̄(T ))).

A similar argument shows that the rule (compose) is sound.
The most interesting rule is (idem). Suppose that v ∈ V and w ∈ erase(v) satisfy the assumption

of the rule (idem). We will show that disjoint(v̄) =∞. Consider a context C with a tuple u such
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that condition (5) in the definition of erase(v) is satisfied. For n ∈ N, consider the context Cn. For
every i ∈ {1, . . . , n},[

(C ⊗ ∅)i−1 · (C ⊗ u) · (C ⊗ ∅)n−i
]

= wi−1 · v · wn−i,

which is equal to v by the assumptions of the rule (idem). Therefore, there are at least n disjoint
tuples in v̄(Cn). It follows that v̄ is unboundedly disjoint.

The rest of Section 9 is devoted to showing that the proof system from Table 1 is complete.
The completeness proof is in Section 9.3. We begin by stating some lemmas in Section 9.2.

9.2. Two applications of the Ramsey theorem
In this section, we present two results that are used in the completeness proof, namely Lem-

mas 9.5 and 9.7. Both of these results are similar in that they find some regular behavior in a set
of completely disjoint tuples; in both cases the regular behavior is established using the Ramsey
theorem, as stated below.

Theorem 9.4 (Ramsey Theorem). Let A be a finite set of colors. For every k ∈ N there is some
n ∈ N with the following property. For every coloring

f : {(i, j) : 1 ≤ i < j ≤ n} → A

there is a subset I ⊆ {1, . . . , n} of cardinality at least k and a color a ∈ A such that f(i, j) = a for
all i < j from I.

If a forest F is decomposed into several parts, such as C · F ′, then we can talk of nodes (or
tuples of nodes) as being in the C part or the F ′ part. We say tuples u1, . . . , un in a tree F are
segregated if there is a decomposition F = C1 · · ·Cn · F ′ such that for every i ∈ {1, . . . , n}, the
tuple ui is in the Ci part. Observe that because contexts can have their port in the root, it is
possible that there are n siblings such that each one of them is in a different Ci part.

Lemma 9.5. There is some m ∈ N such that for every productive h ∈ H, if h̄ can select at least
m segregated tuples in some forest, then h ∈ H∞.

Proof. Let h ∈ H. Suppose that h̄ selects at least m segregated tuples in some forest F . By
definition of segregated tuples, this means that F can be decomposed as

F = C1 · C2 · · ·Cm · F ′

such that for every i ∈ {1, . . . ,m}, there is at least one tuple ui ∈ h̄(T ) that is in the Ci part.
For i ∈ {1, . . . ,m}, define vi ∈ V to be the equivalence class of the context Ci with the tuple ui
distinguished, and wi ∈ V to be the equivalence class of the context Ci with no tuple distinguished.
By definition, we have wi ∈ erase(vi). Also, we write w[i..j) for wi · · ·wj−1, and similarly for w(i..j]
and w(i..j), with square brackets standing for closed intervals and round brackets standing for open
intervals. Finally, define g to be the equivalence class of the forest F ′ with no tuple distinguished.
In terms of forest algebra, the assumption on F having m segregated tuples is stated as follows:

w[1..i) · vi · w(i..m] · g = h for all i ∈ {1, . . . ,m}.
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Recall that each w[i..j) is an element of the finite set V . If m is sufficiently large, then we can
apply the Ramsey theorem to the coloring {i < j} 7→ w[i..j), and find a subset I ⊆ {1, . . . ,m}
with at least four elements such that w[i..j) is always the same, call it w ∈ V , for every choice of
i < j ∈ I. Choose four elements i1 < i2 < i3 < i4 ∈ I. Observe that w must be an idempotent,
because

w = w[i1..i3) = w[i1..i2) · w[i2..i3) = w · w.

By definition, every wi satisfies var(wi) = ∅. It follows that var(w) = ∅. Define

v′ = w[i1..i2) · vi2 · w(i2..i3) · w(i3..i4] = w · vi2 · w(i2..i3) · w

Observe that w is both a prefix and a suffix of v′. By idempotency of w, we see that

wv′ = v′ = v′w.

By construction w = www ∈ erase(v′). Therefore, rule (idem) says that v′ ∈ V∞. Because

h = w[1..i1) · v′ · w(i4..m] · g

we can use the rule (compose) twice and then the rule (subst) to conclude that h ∈ H∞.

We now present the second application of the Ramsey theorem, Lemma 9.7, which says that
if there are many disjoint tuples in a forest, then many of them must be distributed regularly.
A descendant antichain is defined to be a set of nodes that are unrelated to each other by the
descendant relation. Before proving the lemma, we state a simple fact, proved for instance in [9].

Fact 9.6. Let m ∈ N. There is k ∈ N such that every descendant antichain of at least k nodes
contains a segregated subset of at least m nodes.

Figure 4: The two cases in Lemma 9.7. The variables are Y = {♣,♦,♥,♠}. In the picture on the right, which
illustrates case 2 of the lemma, Z = {♣,♦}.
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Lemma 9.7. For every m ∈ N there is some n ∈ N such that if F is a forest, and W is a set of n
completely disjoint Y -tuples in F , then there are tuples u1, . . . , um ∈W such that either:

1. The tuples are segregated; or
2. There is a decomposition F = C · F ′ and a subset ∅ ( Z ( Y such that :

• For every coordinate z ∈ Z, the nodes u1(z), . . . , um(z) are in the C part.
• For every coordinate z ∈ Y − Z, the nodes u1(z), . . . , um(z) are in the F ′ part.

The two cases are illustrated in Figure 4.

Proof. We prove the lemma for the case of binary trees, where each node has at most two children.
The unranked case is then deduced by encoding an unranked tree in a binary tree.

For a tuple of nodes u, define ∧u to be the unique node that is ancestor of all nodes in u, and
which is deepest in the tree for this property. For an X-tuple of nodes u, define its spatial matrix
to be the function

space(u) : X2 → {ancestor,descendant, equal, none},

which says how each pair of nodes in the tuple is related in the tree.
For each tuple u ∈ W , define û be the tuple obtained from u by adding the node ∧u. Apply

Fact 9.6 to m, yielding some k. Without loss of generality assume also that k > 2|Y | ·m. By the
Ramsey theorem, if W contains enough tuples, then there are tuples u1, . . . , uk ∈W such that the
following regularity condition holds:

the matrix space(ûi, ûj) does not depend on the choice of i < j ∈ {1, . . . , k}.

In the above, we apply space to the concatenation of two tuples ûi and ûj . By the regularity
condition, one of the following cases must hold:

1. The nodes ∧u1, . . . ,∧uk are a descendant antichain;
2. The nodes ∧u1, . . . ,∧uk are linearly ordered by the descendant relation;
3. The nodes ∧u1, . . . ,∧uk are all equal.

We study these cases separately.

1. If the nodes ∧u1, . . . ,∧uk are a descendant antichain, then Fact 9.6 shows that at least m
tuples from u1, . . . , uk are segregated, as required by condition 1 in the statement of the
lemma.

2. Suppose that the nodes ∧u1, . . . ,∧uk are linearly ordered by the descendant relation, say in
the order of increasing depth. By the regularity condition, for every variable y ∈ Y , one of
the following cases must hold:
(a) For every i < j ∈ {1, . . . , k}, node ui(y) is a descendant of ∧uj . This means that all the

nodes u1(y), . . . , uk(y) are descendants of ∧uk.
(b) For every i < j ∈ {1, . . . , k}, node ui(y) is not a descendant of ∧uj . This means that

for each i ∈ {1, . . . , k − 1}, the node ui(y) is a descendant of ∧ui, but not of ∧ui+1.
Observe that condition (a) cannot hold for all coordinates y ∈ Y , because otherwise ∧uk
would be an ancestor of every node in the tuples u1, . . . , uk, contradicting the definition of
∧u1, . . . ,∧uk−1. Let Z ⊆ Y be the set of coordinates y for which condition (b) holds. The
set Z is nonempty as we have just observed. If Z = Y , then we have k − 1 ≥ m segregated
tuples, as required by condition 1 in the statement of the lemma. If Z ( Y , then we see
that condition 2 from the statement of the lemma holds, with the decomposition F = C · F ′
partitioning the nodes of F into non-descendants of ∧uk and descendants of ∧uk.
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3. Suppose that the nodes ∧u1, . . . ,∧uk are all the same node, call it x. This is the only case
where we use the assumption that the tree is binary. None of the tuples u1, . . . , uk can contain
the node x, since by the regularity condition all tuples would contain x, contradicting the
assumption on complete disjointness. By definition of ∧ui, for each i ∈ {1, . . . , k}, some but
not all nodes in the tuple ui are in the left subtree of x, and the remaining nodes are in the
right subtree of x. Partition the tree F into C · F ′, where F ′ is the subtree of the left child
of x. By the pigeon-hole principle and our choice of k, there must be some ∅ ( Z ( Y ,
such that for at least m tuples, the coordinates from Z are in the F ′ part, and the remaining
coordinates are in the C part. This establishes condition 2 in the statement of the lemma.

9.3. Completeness
We now prove completeness of the system in Table 1. The proof is by induction on the number

of variables. Formally, we prove the following statement by induction on the size of a set Y ⊆ X
of variables:

(*) For every productive h ∈ H, if h̄ is unboundedly disjoint and var(h) ⊆ Y , then h ∈ H∞.
Likewise for v ∈ V .

The induction base of Y = ∅ is immediate, thanks to the rule (base).
We now focus on the induction step. Suppose that we have proved the statement for all sets

smaller than Y , and we want to prove it for Y . Let m0 be the maximal number of disjoint tuples
that can be selected by a σ̄ such that σ ∈ H ∪ V is not unboundedly disjoint. Let m be a number
that is bigger than the constant from Lemma 9.5, and which is also at least |H| · |V | times bigger
than m0. Apply Lemma 9.7 to m, yielding some n. We will prove that if h̄ selects at least n
completely disjoint tuples in some forest F , then the proof system yields h ∈ H∞.

Suppose that F is a forest where h̄(F ) contains at least n disjoint tuples. Apply Lemma 9.7,
yielding a set of tuples u1, . . . , um ∈ h̄(T ). Consider the two cases from the lemma:

1. If the tuples are segregated, then h ∈ H∞ follows from Lemma 9.5.
2. Let F = C · F ′ and Z be as in Lemma 9.7. By the lemma, for each i ∈ {1, . . . ,m},

F ⊗ ui = (C ⊗ ui1) · (F ′ ⊗ ui2),

where ui1 is a Z-tuple and ui2 is a (Y − Z)-tuple. Define

vi = [C ⊗ ui1] hi = [F ′ ⊗ ui2].

By construction, these elements satisfy h = vihi. By the pigeon-hole principle, there must be
some (h∗, v∗) ∈ H×V such that (h∗, v∗) = (hi, vi) holds for at least m0 values of i. By choice
of m0, both h̄∗ and v̄∗ are unboundedly disjoint. Because the variables of these queries are
Z and Y − Z, both proper subsets of Y , we can use the induction assumption to show that
the proof system derives v∗ ∈ V∞ and h∗ ∈ H∞. Using the rule (subst), we derive

h = v∗h∗ ∈ H∞

This completes the proof of Proposition 9.2, which completes the proof of Theorem 9.1.
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Mappings AbCons SolEx SolEx(M)

bounded-depth Π4P Σ3P in LOGSPACE
pattern-based Π2EXP NEXP in LOGSPACE
regular decidable decidable in P

Mappings Solution building

fixed in P
bounded-depth in EXP
pattern-based in EXPSPACE

Figure 5: Summary of complexity results

10. Future work

A summary of complexity results is shown in Fig. 5. Notably lacking are lower bounds for
regular mappings. As we have mentioned, more specialized techniques are likely to bring algorithms
with better complexity.

An open direction of more theoretical interest is to explore the limits of decidability. Which
kinds of logic in dependencies guarantee decidability of absolute consistency? Or even more gen-
erally, which kinds of dependencies? We believe that our notion of potential can be helpful.

A fundamental concept in data exchange is a universal solution, i.e., a solution that can be
mapped homomorphically into every other solution. Universal variants of the problems we have
considered are worth exploring. On the other hand, homomorphisms of ordered trees are injective,
which makes a universal solution a rare bird. Developing relaxed versions of universal solutions
seems an interesting research topic.
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