Containment of monadic datalog programs
via bounded clique-width*

Mikotaj Bojanczyk, Filip Murlak, and Adam Witkowski

University of Warsaw

Abstract. Containment of monadic datalog programs over data trees
(labelled trees with an equivalence relation) is undecidable. Recently,
decidability was shown for two incomparable fragments: downward pro-
grams, which never move up from visited tree nodes, and linear child-
only programs, which have at most one intensional predicate per rule
and do not use descendant relation. As different as the fragments are,
the decidability proofs hinted at an analogy. As it turns out, the com-
mon denominator is admitting bounded clique-width counter-examples
to containment. This observation immediately leads to stronger decid-
ability results with more elegant proofs, via decidability of monadic sec-
ond order logic over structures of bounded clique-width. An argument
based on two-way alternating tree automata gives a tighter upper bound
for linear child-only programs, closing the complexity gap: the problem
is 2-ExpPTIME-complete. As a step towards these goals, complexity of
containment over arbitrary structures of bounded clique-width is anal-
ysed: satisfiability and containment of monadic programs with stratified
negation is in 3-EXPTIME, and containment of a linear monadic program
in a monadic program is in 2-EXPTIME.

1 Introduction

One of the central questions of database theory is that of query containment:
deciding if the answers to one query are always contained in the answers to an-
other query, regardless of the content of the database. Being a generalization
of satisfiability, containment is undecidable for queries expressed in first order
logic (FO), but it is decidable for more restrictive classes of queries like unions
of conjunctive queries (UCQs) [6], that is, queries expressible in the positive-
existential fragment of FO. A way to go beyond FO without losing decidability,
is to add recursion (equivalently, least fixed point operator) to unions of con-
junctive queries: the resulting language is datalog. In general, containment of
datalog programs is undecidable [I9], but it becomes decidable under restriction
to monadic datalog programs (equivalently, when the use of least fixed point
operator is limited to unary formulae) [7].

In this work we are interested in a particular class of structures, called data
trees, which are trees labelled with a finite alphabet with an additional equiv-
alence relation over nodes (modelling data equality). The main motivation for

* Supported by Poland’s National Science Centre grant UMO-2013/11/D/ST6/03075.

studying data trees is that they are a convenient model for data organized in a
hierarchical structure, for instance, XML documents. When the class of struc-
tures is restricted to data trees, containment is still decidable for UCQs [3], but
it is undecidable for monadic datalog [I]. A line of research focused on XML
applications investigates XPath, an XML query language, which in some vari-
ants allows recursion in the form of Kleene star [I2JI8]. The positive fragment of
XPath can be translated to monadic datalog, but the converse translation is not
possible due to XPath’s limited abilities of testing data equality. In pure dat-
alog setting, two natural fragments were recently shown decidable: downward
programs, which never move up from visited tree nodes (cf. [12]), and linear
child-only programs, which do not use descendant relation and do not branch
(i.e., have at most one intensional predicate per rule) [I7]. Relying on ad-hoc
arguments, [I7] sheds little light on the real reasons behind the decidability,
and may give an impression that decidability of these two seemingly different
fragments of datalog is pure coincidence. This work puts these two results in
context and finds a common denominator, which leads to cleaner arguments,
more general results, and—in some cases—tightened complexity bounds.

We show that the common feature of the two fragments is that they both
admit counter-examples to containment of clique-width [10] linear in the size of
the programs. This almost immediately gives decidability of containment, be-
cause monadic datalog is equivalent to monadic second order logic (MSO) [13],
for which satisfiability is decidable over structures of bounded clique-width [9].
Unlike tree-width [14], clique-width has not been investigated in the context of
datalog. The reason is that, for fixed k, a tree decomposition of width k can
be computed in linear time for graphs of tree-width k [4], but for clique-width
the best currently known polynomial time algorithm computes decompositions of
width 251 —1 for graphs of clique-width & [I6]. Given that algorithms relying on
decompositions are typically exponential in £, this results in a double exponen-
tial constant, which is impractical most of the time. For the purpose of our work,
however, constructing a decomposition for a given structure is not an issue: we
need to test if there exists a decomposition that yields some counter-example. A
closer look at the MSO based approach gives a 3-EXPTIME upper bound; for lin-
ear programs we provide a more economic construction, which gives 2-EXPTIME
upper bound (even for containment in arbitrary monadic programs).

This approach does not guarantee optimal complexity: for downward pro-
grams containment is 2-EXPTIME-complete, and EXPSPACE-complete under re-
striction to linear programs [I7]. But in some cases it actually tightens the
bounds: for linear child-only programs the complexity bounds were 2-EXPTIME-
hard and in 3-EXPTIME, and our method gives a 2-EXPTIME algorithm, thus
closing the complexity gap. Also, the classes of programs for which the algorithms
work are broader; for instance, we can test containment in arbitrary monadic
programs, not just downward, or linear child-only.

The paper is organized as follows. In Section [2] we recall basic definitions. In
Sectionwe focus on datalog over (arbitrary) structures of bounded clique width.
We show that a datalog program with stratified negation can be translated into

a triple exponential tree automaton working over clique-width decompositions;
this implies that satisfiability and containment of such programs over structures
of bounded clique-width is in 3-EXPTIME. For linear monadic programs with-
out negation we provide a construction going via two-way alternating automata
[721], which gives a 2-EXPTIME upper bound for containment (even in arbitrary
monadic programs). In Section [4 we apply these results to the problem of con-
tainment over data trees for downward programs and linear child-only programs.
In Section [5l we conclude with a brief discussion of the obtained results.

2 Preliminaries

Finite structures and clique-width. Let 7 = {Ry,..., Rs} be a relational signa-
ture, i.e., a set of predicate symbols with arities ar(R;). A (finite) T-structure A
is a tuple (4, R%,..., R) consisting of universe A and relations Rf C A»(F:)
(interpretations of the predicates). A k-coloured 7-structure is a pair (A,), con-
sisting of a 7-structure A and a mapping v : A — {1,...,k}, assigning colours
to elements of the universe of A.

Clique width of structures is defined by means of an appropriate notion of
decomposition, traditionally known as k-expression (over 7). It is defined as a
term over the following set of operations (function symbols) Op(r, k):

— new(7) for 1 <i < k, nullary,

— p(i,7) for 1 <i,5 <k, unary,

— R(i1,...,1i,) for predicates R € 7 of arity r and 1 < y,...,i, < k, unary,
— @, binary.

With k-expression e we associate a k-coloured 7-structure [e]:

[new(4)] is a structure with a single element, coloured 4, and empty relations;

— [p(i,5)(e)]] is obtained from [e] by recolouring all elements of colour i to j;

— [R(iy,...,ir)(e)] is obtained from [e] = (A,~) by adding to RIl all tuples
(a1, .. ar) such that a; € A and y(a;) =i; for 1 < j <r;

— [e® e']] is the disjoint union of [e] and [e'].

A k-expression for A is any k-expression e such that [e] = (A,~) for some ~.
The clique-width of A is the least k such that there exists a k-expression for A.

Datalog. We assume some familiarity with datalog and only briefly recall its
syntax and semantics; for more details see [2] or [5].

A datalog program P over a relational signature o, split into extensional
predicates oot and intensional predicates oing, is a finite set of rules of the form
head < body, where head is an atom over oin; and body is a (possibly empty)
conjunction of atoms over o written as a comma-separated list. All variables in
the body that are not used in the head are implicitly quantified existentially.

Program P is evaluated on oe-structure A by generating all atoms over
Oint that can be inferred from A by applying the rules repeatedly, to the point of
saturation. Each inferred atom can be witnessed by a proof tree: an atom inferred

by a rule r from intensional atoms Ay, As, ..., A, (and some extensional atoms)
is witnessed by a proof tree whose root has label r and n children which are the
roots of the proof trees for atoms A; (if r has no intensional predicates in its
body then the root has no children). The program returns set P(A) consisting
of those inferred atoms that match a distinguished goal predicate G.

In programs with stratified negation we assume that signature o is partitioned
into strata oext = 00,01,...,0n-1,0, = {G} for some n € N. For each i > 0,
rules for predicates from stratum o; contain atoms over ogU- - -Uo; and negated
atoms over predicates from ogU---Uo;_1. The partition of o induces a partition
of P into Py,...,P,. The evaluation is done stratum by stratum, that is P; is
run over atoms inferred by strata Pi,...,P;_1, including those coming directly
from the structure.

In this paper we consider only monadic programs, i.e., programs whose inten-
sional predicates are at most unary. A datalog program is linear, if the right-hand
side of each rule contains at most one atom with an intensional predicate (proof
trees for such programs are single branches, and we call them proof words).

For programs P, Q with a common goal predicate GG, we say that program P
is contained in program Q, written as P C Q, if

P(A) C Q(A)

for each oey¢-structure A. Note that if goal predicate G is nullary, this means
that if G € P(t) then G € Q(t); that is, if P says true, so does Q.

Automata. A ranked alphabet I is a set of letters with arities. A tree over ranked
alphabet I' is an ordered tree labelled with elements of I" such that the number
of children of any given node is equal to the arity of its label. Trees over ranked
alphabet I' can be seen as terms over I, and vice versa. A term of the form
f(t1,ta, ... tn), n = ar(f) corresponds to a tree whose root has label f, and
children wvq,...,v, where the subtree rooted at v; corresponds to the term t;.
Thus, k-expressions over 7 are trees over ranked alphabet Op(7, k). An unranked
tree is a tree without any constraints on the number of children.

A two-way alternating tree automaton (2ATA) A = (I,Q,qr,) consists of
a ranked alphabet I, a finite set of states (), an initial state q; € @, and a
transition function

§: Qx I —BCH(Qx1Z)

describing actions of automaton A in state ¢ in a node with label f as a positive
Boolean combination of atomic actions of the form (g, d), where —1 < d < arf.

A run r of A over tree ¢t is an unranked tree labelled with pairs (g, v), where
q is a state of A and v is a node of ¢, satisfying the following condition: if a
node of r with label (g,v) has children with labels (q1,v1),...,(¢n,vn), and v
has label f in t, then there exist dy,...,d, € N such that

— v; is the d;’th child of v in ¢ for all ¢ such that d; > 0;
— v; = v for all 7 such that d; = 0;
— v; is the parent of v in t for all ¢ such that d; = —1; and

— Boolean combination d(q, f) evaluates to true when atomic actions
(q1,d1),-..,(gn,dy) are substituted by true, and other atomic actions are
substituted by false.

Tree t is accepted by automaton A if it admits a finite run. By L(.A) we denote
the language recognized by Aj; that is, the set of trees accepted by A.

A nondeterministic (one-way) tree automaton (NTA) is an alternating two-
way automaton such that each (g, f) is a disjunction of expressions of the from

(QI7 1) A (qQa2) JARERIAN (Qarf7arf)'

3 Evaluating monadic datalog over k-expressions

It is a part of the database theory folklore that every monadic datalog program
can be translated to a formula of monadic second order logic (MSO) [13]. For
concreteness, let us assume the syntax of MSO formulae over signature 7 is

0, =VX @ |AX oA |V = Y] < 9P| p|
| X CY|X =0]singleton(X)| R(X1,...,X,)

for R € 7, r = arR; the semantics is as usual. As is also well known, each MSO
formula (over arbitrary structures) can be translated to an equivalent formula
over k-expressions (see e.g. [I5, Lemma 16]). Finally, each MSO formula over
trees can be translated to an equivalent tree automaton [ITJ20]. Thus, evaluating
a monadic Datalog program over a structure reduces to running an appropriate
nondeterministic automaton over any k-expression for this structure. With a bit
of care we can ensure that the automaton does not grow too fast.

Proposition 1. Let k be a positive integer and P a monadic datalog program
with stratified negation. One can construct (in time polynomial in the size of
the output) a triple exponential NTA Ap recognizing k-expressions e such that
le] = (A,7) and P(A) # 0.

Moreover, if P uses no negation, one can construct (in time polynomial in
the size of the output) a double exponential NTA A_p recognizing k-expressions
e such that [e] = (A,v) and P(A) = 0.

Proof. Program P with p intensional predicates and at most ¢ variables per rule
can be translated to a linear-size MSO formula ¢ of the form

VX1 . VX, 3X e 3K g 00(X1, . Xpyg)

where g is a quantifier-free formula over signature ey, such that A = ¢ if and
only if P(A) # 0 [I3]. For programs with stratified negation we do not need to
introduce arbitrary number of alternations. Without loss of generality we can
assume that intensional predicates are split into positive, used only under even
number of negations, and negative, used only under odd number of negations.
One can obtain a linear-size formula of the form

E|X1 ...E'X@VX@_;,_l VXmHXm+1 EanQOO(XI;aXn)

where, roughly speaking, the first block of quantifiers introduces the negative
predicates, the second deals with closure properties for the negative predicates
and introduces the positive predicates, and the third deals with closure properties
of the positive predicates.

The next step is to translate ¢ to a formula ¢ over the signature of k-
expressions over deyt, such that for every geyi-structure A and every k-expression
e for A, A E ¢ iff e = ¢. We follow the translation from [I5] Lemma 16]. It
relies on the assumption that the universe of structure A is contained in the set
of nodes of k-expression e: each node with label new(7) is identified with the
element of A it represents. The translation does two things. It relativises the
quantifiers to the set of leaves; that is, it replaces ¢y with

n

14 m
/\zeaf(Xi)/\< N\ leaf(Xi) = N\ leaf(Xi)/\ng(Xl,...,Xn)>

i=L+1 i=m—+1

where leaf (X;) is an auxiliary formula saying that each element of X is a leaf.
Then, it replaces each atomic formula R(Xj,,..., X}) in ¢ with formula

wR(le’ s 7Xj7')

saying that there is a node v with label R(iy,...,%,) such that some leaves
z1 € Xj,,..., o, € X, are descendants of v and have colours 7y, ..., %, according
to the current colouring in v. Note that the obtained formula ¢ only uses tree
relations (child and labels) in the auxiliary formulae leaf and ¥g for R € e,
which, incidentally, are not quantifier free. Instead of expressing these formulae
in MSO, we shall keep them as primitives, to be translated directly to automata.

Translation of MSO formulae to automata [ITJ20] is done by induction over
the structure of the formula: for each quantifier free subformula 7(X;,,...,X,,)
of ¢ we construct a deterministic automaton over alphabet {0, 1}" X Op(cext, k)
that accepts tree t if and only if

(t/,U1,...,Ug) 'Z’I](le,...,ij)

where tree ¢’ is obtained from t by projecting the labels to Op(oext, k), and
Ui, ...,Uy are the sets of nodes whose label in ¢ has 1 in coordinates ji, ..., jg,
respectively. For subformulae X; C X, , singleton(X;), X; = 0, and leaf (X;),
there are automata of constant-size state-space (though over exponential alpha-
bet). For (X}, ..., X;,) the automaton has 2*" +1 states: it works bottom-up
maintaining sets I1, ..., I, of colours assigned to elements of X ,..., X; by the
colouring corresponding to the current node; it accepts if at any moment it
finds a node with label R(iy,...,i,) for some i1 € I1,...,4, € I.. The boolean
connectives are realized by an appropriate product construction (negation is
straightforward for deterministic automata). Altogether we end up with a prod-
uct of linearly many deterministic automata of size at most single exponential;
this gives a single exponential deterministic automaton A for the quantifier-free
part of formula ¢. Automaton Ap can be obtained from A by projecting out co-
ordinates m + 1,...,n of the labels, complementing, projecting out coordinates

{+1,...,m, complementing, and projecting out coordinates 1, ..., ¢. Since each
complementation involves exponential blow-up, the resulting automaton is triple
exponential in the size of the program.

Automaton A_p is obtained from the negation of the first MSO formula in
this proof; it requires only one complementation of a nondeterministic automa-
ton, resulting in a double exponential bound. a

As an immediate corollary we get that satisfiability in structures of bounded
clique-width can be tested in 3-EXPTIME for monadic programs with stratified
negation. The following is a special case of this.

Corollary 1. Given monadic programs P,Q and k € N, one can decide in
3-EXPTIME if P(A) C Q(A) for all structures A of clique-width at most k.

If the “smaller” program is linear, we get better complexity. Our main tech-
nical contribution here is a direct translation from linear monadic datalog to
2ATA. Unlike in [7], were 2ATA worked on proof trees and essentially mimicked
behaviour of datalog programs, we work on k-expressions, in which distant leaves
may represent nodes that are in fact close together. The main idea is that each
time the 2ATA sees @, it guesses a way to cut the proof word into subwords to
be realised in the left and right subtree (see appendix for the details).

Theorem 1. For a linear monadic program P and k € N one can construct
(in time polynomial in the size of the output) a single exponential 2ATA A
recognizing k-expressions e such that [e] = (A,v) and P(A) # (.

We shall see later that these bounds are tight in the sense that obtaining a
polynomial bound would violate lower bounds on the containment problem over
data trees discussed in the following section.

The second, and last, step of the construction relies on the following theorem.

Theorem 2 ([7)21]). For a given 2ATA A one can construct (in time polyno-
mial in the size of the output) single exponential NTA B recognizing L(A).

Combining Theorem [} Theorem [2] and the additional claim of Proposition
we obtain the following bounds.

Corollary 2. Given a linear monadic program P, a monadic program Q, and
k € N, one can decide in 2-EXPTIME if P(A) C Q(A) for all structures A of
clique-width at most k.

Proof. If the goal predicate G of P and Q is nullary, the claim follows immedi-
ately: one constructs an NTA Ap recognizing the set of k-expressions e such that
[e] = (A,v) and G € P(A), and an NTA A_ g recognizing the set of k-expressions
e such that [e] = (A,v) and G ¢ P(A), and checks if L(Ap) N L(A-g) # 0.
Assume that G is unary. Extend oey with a fresh unary relation H. Let
Po be obtained from P by adding rule Gy < G(z), H(z) for a fresh nullary
predicate Gy and changing the goal predicate to Gg; similarly construct Qg
from Q. Now, it is enough to check if L(Ap,) N L(A-g,) N L(B) # 0, where B is
an automaton recognizing the set of k-expressions e over signature eyt U {H}
such that [e] = (A,~) and H” is a singleton. O

4 Containment over data trees

We now restrict the class of structures to data trees; that is, (finite) labelled
unranked trees over I' x DVal, where I' is a finite alphabet and DVal is an
infinite set of so-called data values. Datalog programs over data trees refer to
relations: child |, descendant | ™, data value equality ~, and label tests a € I".
That is, a data tree is seen as a relational structure over signature 74y consisting
of binary relations {|,]*,~} and unary relations I".

We are interested in the problem of containment over data trees: we say that
program P is contained in program Q over data trees, written as P Cgy Q, if

P(t) < Q1)

for each data tree t. In this section by containment we always mean containment
over data trees. Thus, the containment problem is: given programs P, Q over
data trees, decide if P Cqy Q.

We propose the following generic approach:

1. show that containment over all data trees is equivalent to containment over
data trees of clique-width at most k;
2. test containment over k-expressions for data-trees.

The second step is easy for arbitrary monadic programs (Section [4.1]). Hence,
given that containment over data trees is undecidable for monadic programs [IJ,
the first step can only be carried out for restricted fragments of monadic data-
log. In what follows we shall consider two such fragments: downward programs
(Section [4.2)), and linear child-only programs (Section [4.3)).

4.1 Containment over data trees of bounded clique-width

In the light of the general results of the previous section, testing containment
over data trees of clique-width at most k is almost straightforward: the only issue
is that not all k-expressions over signature 7y yield data-trees. But those that
do can be recognized by a tree automaton. Since the bound on the clique-width
depends on the size of the program, the construction requires some care.

Lemma 1. For all k, k-expressions for data trees form a regular language. The
size of automaton recognizing those k-expressions is double exponential in k.

Proof. To prove the claim, it suffices to give a double-exponential bottom-up
automaton that given a k-expression for structure A verifies that:

— every element is reachable from root via directed |-path;
the relation | U | 7! is acyclic;

— |t is transitive closure of |;

— ~ is reflexive, symmetric and transitive.

The construction is straightforward. The details are given in the appendix. O

This suffices to solve containment over data trees of bounded clique-width.

Proposition 2. Given monadic programs P,Q and k € N, one can test in
3-EXPTIME whether P(t) C O(t) for every data tree t of clique-width at most k.
If P is linear, the complexity drops to 2-EXPTIME.

Proof. The proofs are just like for Corollary [I] and Corollary [2] except that the
automaton recognizing counter-examples to containment has to be intersected
with the automaton recognizing k-expressions that yield data trees. a

4.2 Downward programs

As we have explained, showing that containment over data trees of two programs
is equivalent to containment over data trees of bounded clique-width immediately
gives decidability of containment in 3-EXPTIME in general, and in 2-EXPTIME
if the “smaller” problem is linear. In this section we apply this method to the
class of downward programs. We do it mainly for illustrative purposes, as it
is known that for downward programs containment is 2-ExXPTIME-complete in
general, and EXPSPACE-complete for linear programs [I7]. But our method also
gives broader results: it uses a relaxed definition of downward programs, and it
works for testing containment in arbitrary monadic programs.
We begin with an observation that has been seminal to this work. Let datacut(t)

be the maximum over all |-edges (u,v) in t of the number of ~-classes repre-
sented in both parts of ¢: the subtree rooted at v, and the rest of the tree.

Lemma 2. FEvery data tree t has clique-width at most 4 - datacut(t) + 5.
Proof. Let k =4 - datacut(t) + 5. We will use colours of the form
{root, notroot} x {0,1, ..., datacut(d)} x {old, new}

plus an additional colour temp. We construct a k-expression inductively for sub-
forests f of t, maintaining the following invariants for the induced colouring

1. all nodes have colours (z, y, old),

2. colours (root, y, z) are reserved for the roots of f,

3. colours (notroot,y, z) are used by other nodes,

4. node has colour (z,0, z) iff it carries a data value never used outside of f.

Colors (z,y, new) are used when combining two parts of the tree with @, to avoid
gluing colours together. Color temp is used for recolouring.

For single-node tree s, we just use (root, 1, old) or (root, 0, old), in accordance
with invariant 4.

Assume we have k-expressions for all immediate subtrees of subtree s, say
e1,...,e¢. We use @ to add them one by one, adding necessary ~-edges. Each
time we add another e;, we first recolour (z,y, old) to (x,y, new) in e; for all
x,y. We add ~-edges as required, and recolour the nodes (using temp) to restore
invariants 1 and 4.

Next, we want to build a k-expression for s. We use @ to add the root,
coloured (root,y, new), where y is chosen depending on ~ relation between
the root and the nodes in the immediate subtrees. We add | edges between
(root,y, new) and (root, y', old) and |1 edges between (root, y, new) and (z’, %/, old)
for all 2/,y', as well as appropriate ~-edges. Next, we recolour (root,y’, old) to
(notroot,y’, old) for all y', and (root, y, new) to (root,y, old). If necessary, we do
additional recolouring to restore invariant 4. ad

A datalog rule is essentially a conjunctive query, so one can associate with
it a relational structure A, in the usual way: the universe is the set var(r) of
variables used in 7, and relations are defined by extensional atoms of r. Recall
that program P is downward if it had no nullary predicates and for each rule
r € P, graph (V, E) with V = var(r) and E = () U (}*)*" was a tree in which
the variable used in the head of r is the root [I7]. Here we use a relaxed variant
of this definition: we lift the restriction that the graph is a tree, but we keep the
requirement that each node is reachable from the variable used in the head.

Theorem 3. Let P be a downward program and Q an arbitrary monadic pro-
gram. If P € Q, then there exists a witness with clique-width at most 4-||P||+5.

Proof. The theorem follows immediately from the following claim (with A set to
the goal predicate G): for each tree ¢t and each atom A(v) inferred by P from ¢,
there exists a data tree t' such that

— datacut(t") < || Pl
— A(rooty) can be inferred by P from t', where root is the root of ¢/,
— there exists a homomorphism from #' to ¢ that maps rooty to v

(in particular, G(root;) ¢ Q(t') unless G(v) € Q(t)).

We prove the claim by induction on the size of proof tree p witnessing A(v). Let r
be the rule in the root of p and let h: A, — ¢ be the associated homomorphism (it
maps the head variable to v). Let t,. be the data tree obtained from ¢, (the subtree
of t rooted at v) by interpreting ~ as the least equivalence relation extending
the image of ~* under h; it has at most |r| non-singleton abstraction classes.
Let Ri(y1),..., Rm(ym) be the intensional atoms in rule r. By the inductive
hypothesis there exist appropriate ti,...,t, for Ri(h(y1)),..., Rm(h(ym)). We
obtain ¢’ by taking disjoint union of ¢, and ¢1,...,t,, with the roots of ¢1,...,t,,
identified with h(y1), ..., "(ym), and closing ~ and | under transitivity. ad

Corollary 3. Containment of a downward program in a monadic program is in
3-EXPTIME, and in 2-EXPTIME if the downward program is also linear.

4.3 Linear child-only programs

In this section we show a more useful application of results from Section [3] Recall
that by child-only programs we mean programs that use only | and ~ relation,
while | T is forbidden. It is known that containment for linear child-only pro-
grams is in 3-EXPTIME and 2-ExpPTIME-hard (for non-linear ones containment

is undecidable) [I7]. Here, we close this complexity gap and also extend the
result to containment of linear child-only programs in arbitrary monadic ones.
Similarly to the downward programs, we show that containment can be verified
over data trees of bounded clique-width.

Theorem 4. For a linear child-only program P and arbitrary monadic program
Q, if P € Q, there exists a witness with clique-width at most 8||P||* + 3||P|| + 2.

Because child-only programs can go up and down in the tree, it is not possible
to bound datacut as we did for downward programs. It is possible, however, to
bound the number of ~-classes represented at the same time in an appropriately
generalized subtree of a node v and in the rest of the tree. The proof of this fact
is not very hard but it requires some technical definitions from [I7] and is given
in the appendix.

Just like for downward programs, the following is a straightforward applica-
tion of Theorems 1] and {f (and 2-EXPTIME-hardness shown in [I7]).

Corollary 4. Containment of a linear child-only program in a monadic program
is 2-EXPTIME-complete.

5 Conclusions

We have shown that over structures of bounded clique-width (arbitrary struc-
tures and data trees), containment of monadic datalog programs is decidable in
3-EXPTIME, and containment of linear monadic programs in monadic programs
is in 2-EXPTIME. Consequently, decidability of containment for a fragment of
monadic datalog reduces to showing that the fragment admits bounded clique-
width counter-examples to containment. Graph decompositions have been used
before for deciding properties of datalog programs: already in early 1990s Cour-
celle noticed a connection between runs of datalog programs and tree decompo-
sitions of structures, and concluded decidability of some properties of programs
expressible in MSO over these decompositions [8]. Over data trees, however,
tree-width is not useful: there is much less freedom in constructing models of a
program, and neither | nor ~ are sparse relations, as is required by bounded
tree-width. Clique-width seems to be exactly the notion that is needed.

We applied this method to generalize previously known decidability results
for downward programs and linear child-only programs: we relaxed the defini-
tion of downward programs and, more importantly, we covered containment in
arbitrary monadic programs. With a bit of extra effort one could further relax
the notion of downward programs to allow disconnected rules. More interestingly,
there is a relatively natural unifying fragment with decidable containment: linear
child-only programs that use freely predicates defined by downward programs.
The method seems flexible enough for further extensions. More generally, one
could try to port the method to formalisms other then monadic datalog, e.g.,
XPath, both for data trees and data graphs.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Serge Abiteboul, Pierre Bourhis, Anca Muscholl, and Zhilin Wu. Recursive queries
on trees and data trees. In ICDT’13, pages 93-104, 2013.

. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Ad-

dison Wesley, 1995.

Henrik Bjorklund, Wim Martens, and Thomas Schwentick. Optimizing conjunctive
queries over trees using schema information. In MFCS’08, pages 132-143, 2008.
Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM J. Comput., 25(6):1305-1317, 1996.

Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic programming and databases.
Springer-Verlag New York, Inc., 1990.

Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In STOC’77, pages 77-90, New York, NY, USA,
1977. ACM.

Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi.
Decidable optimization problems for database logic programs (preliminary report).
In STOC’88, pages 477-490, 1988.

Bruno Courcelle. Recursive queries and context-free graph grammars. Theor.
Comput. Sci., 78(1):217-244, 1991.

. Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable

optimization problems on graphs of bounded clique-width. Theory Comput. Syst.,
33(2):125-150, 2000.

Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs.
Discrete Applied Mathematics, 101(1-3):77-114, 2000.

John Doner. Tree acceptors and some of their applications. J. Comput. Syst. Sci.,
4(5):406-451, 1970.

Diego Figueira. Satisfiability of downward XPath with data equality tests. In
PODS’09, pages 197-206, 2009.

Georg Gottlob and Christoph Koch. Monadic datalog and the expressive power of
languages for web information extraction. J. ACM, 51(1):74-113, 2004.

Georg Gottlob, Reinhard Pichler, and Fang Wei. Monadic datalog over finite
structures of bounded treewidth. ACM Trans. Comput. Log., 12(1):3, 2010.
Martin Grohe and Gyorgy Turan. Learnability and definability in trees and similar
structures. Theory Comput. Syst., 37(1):193-220, 2004.

Petr Hlineny and Sang-il Oum. Finding branch-decompositions and rank-
decompositions. SIAM J. Comput., 38(3):1012-1032, 2008.

Filip Mazowiecki, Filip Murlak, and Adam Witkowski. Monadic datalog and reg-
ular tree pattern queries. In MFCS’1/, pages 426-437, 2014.

Frank Neven and Thomas Schwentick. On the complexity of XPath containment
in the presence of disjunction, DTDs, and variables. Logical Methods in Computer
Science, 2(3), 2006.

Oded Shmueli. Equivalence of datalog queries is undecidable. J. Log. Program.,
15(3):231-241, 1993.

James W. Thatcher and Jesse B. Wright. Generalized finite automata theory with
an application to a decision problem of second-order logic. Mathematical Systems
Theory, 2(1):57-81, 1968.

Moshe Y. Vardi. Reasoning about the past with two-way automata. In JCALP’98,
pages 628-641, 1998.

	Containment of monadic datalog programs via bounded clique-width

