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Introduction

• Random graph theory has gathered a lot of attention due to 
development of scale-free network concept

• A.-L. Barabasi and R.Albert “Emergence of scaling in random 
networks”, Science, no 393, pp. 509-512, October 1999

• R. Albert and A.-L. Barabasi, “Statistical Mechanics of complex 
networks”, Reviews of modern physics,  vol 74, p 47, 2002.

• Many other papers ...
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Scale-free graphs

• For a graph G=(V, E) we define the degree of vertex v as the 
number of vertices adjacent to v with respect to edge set E

• We define in-degree and out-degree in a directed graph 
similarly as the number of incoming and outgoing edges

• For any graph we may analyze its degree distribution which is 
a histogram of vertex degrees

• In a truly random graphs (Erdos-Renyi model) the degree 
distribution follows binomial distribution which approaches 
Poisson distribution for large graphs 

4
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Scale-free graphs

• For a broad class of real-world network the degree 
distribution does not resemble Poisson distribution

• The distribution follows a power law k-γ, thus the system has 
the same statistical properties independent of the scale

• These examples include 

• the World Wide Web and the Internet

• science collaboration network and citation network

• cellular metabolic network  

• many others ...
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Scale-free graphs

• The discovery had put in question the validity of models of 
these networks based on Erdos-Renyi random graphs

• For long it was not obvious what organising principles and 
mechanisms are responsible for such a phenomenon

• A.-L. Barabasi and R. Albert in 1999 had proposed a model that 
led to a construction of a scale-free network, based on two 
principles:

• Preferential attachment

• Model growth

• Both these principles are to some extent present in nervous 
systems...
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Previous results in context of 
Neural Networks

• It was natural to ask whether NN also have scale-free 
property?

• Some of the known neural topologies have been studied in 
context of scale-free property - the result was negative 

C. Koch and G.Laurent “Complexity of Nervous System”, 
Science, vol 284, no. 5411, pp. 96-98, 1999; 

L.A. Amaral, A.Scala, M. Barthelemy and H.E. Stanley “Classes 
of small world networks”, Proc Natl Acad Sci USA, vol 97, no 
21,2000
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Previous results in context of 
Neural Networks

• It was natural to ask whether NN also have scale-free 
property?

• Some of the known neural topologies have been studied in 
context of scale-free property - the result was negative 

C. Koch and G.Laurent “Complexity of Nervous System”, 
Science, vol 284, no. 5411, pp. 96-98, 1999; 

L.A. Amaral, A.Scala, M. Barthelemy and H.E. Stanley “Classes 
of small world networks”, Proc Natl Acad Sci USA, vol 97, no 
21,2000

Why?

7



IEEE-SSCI FOCI 2007 Paper 42,  slide         of  24

Motivation

• The motivation of this research is to link recent results in 
random graph theory to neuroscience

• Perhaps finding certain structures (organizing principles) will 
help us find the complexity level at which the essential 
computation is done

• With relatively good models of single neurons, maybe its 
time to pay more attention to connectivity?

8
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The spike flow concept

• Weighted fully connected graph G

• Weights are drawn independently from normal distribution  
N(0,1) and remain fixed in course of the dynamics

• Each vertex v incorporates a non negative integer which 
refers to a number of potential available in v

• The network is equipped with a Hamiltonian:

 

H(σ̄) :=
1
2

∑

i !=j

wij |σi − σj |

9
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The spike flow concept

• Weighted fully connected graph G

• Weights are drawn independently from normal distribution  
N(0,1) and remain fixed in course of the dynamics

• Each vertex v incorporates a non negative integer which 
refers to a number of potential available in v

• The network is equipped with a Hamiltonian:

 

H(σ̄) :=
1
2

∑

i !=j

wij |σi − σj |

Positive       favours 
agreement of i and j, 

whereas negative     
favours disagreement

wij

wij

9
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Dynamics

• At each step a pair                        of units is chosen 
randomly

• Denote     a configuration resulting from the original 
configuration by decreasing     by one and increasing    
(letting one unit of potential transfer from     to     whenever
 

• If                            the new configuration is accepted, 
otherwise we accept the new configuration with probability:

(σi,σj), i != j

σ̄∗

σi

σj

σi ≥ 0

σi

σj

H(σ̄∗) ≤ H(σ̄)

exp(−β[H(σ̄∗)−H(σ̄)])

10
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Dynamics
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Spike flow model

• Spike flow model is similar to a Boltzmann Machine, it is also 
possible to encode combinatorial problems within this 
framework

• Since weights are chosen from normal distribution, the 
number of negative and positive weights is approximately 
equal

• The energy minimum is therefore highly non trivial

•  Each edge used to exchange potential is labelled, by 

we denote the number of times the edge (i, j) was used

Fi→j

12
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Spike flow model

• Total amount of “potential” is preserved under the dynamics

• All states having a fixed amount of potential are reachable, 
therefore the system forms an irreducible and aperiodic 
Markow chain

• It is easy to see, that system stationary distribution has the 
following form:

13

Pn(σ̄) =

{
exp(−βH(σ̄))P

σ̄′,
P

i σ′
i=n exp(−βH(σ̄′)) , if

∑
i σi = n,

0, otherwise
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Spike flow model

• Note that for T large enough that the system gets close to its 
equilibrium and that each edge is processed a statistically 
significant number of times we have:

• With       standing for expectation operator under 
distribution        and                 for a transition probability 
from i to j given the state     .

• In particular                becomes a deterministic function of 
the network and n for large T.

14

Fi→j/T ≈ 1
N(N − 1)

Enπi→j(σ̄)

En
Pn πi→j(σ̄)

σ̄

Fi→j/T
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Simulation setup

• ~ 2000 nodes

• low temperature regime (mostly energy driven transitions)

• ~ 10*2000*2000 steps

• about 10 runs for every instance to avoid random 
fluctuations

• Initially the potential is distributed uniformly, every node 
holds 5 units of  “potential”

15



IEEE-SSCI FOCI 2007 Paper 42,  slide         of  24

Results - degree distribution
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Results in/out degree
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Results - average potential vs. 
degree

18

10
!4

10
!2

10
0

10
2

10
4

10
0

10
1

10
2

10
3

Average potential

In
 d

e
g
re

e

Student Version of MATLAB

0,0001 0,01 1 100 10 000
10

0

10
1

10
2

10
3

Average potential
O

u
t 
d
e
g
re

e

Student Version of MATLAB



IEEE-SSCI FOCI 2007 Paper 42,  slide         of  24

Results - clustering

• Clustering coefficient:

• Alternative definition:

19

Ci =
2|{ej,k}|
di(di − 1)

Ci =
2λG(i)

di(di − 1)
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Results - clustering
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Results

• The graph structure is clearly scale-free

• This is a result of a preferential attachment - the more 
potential unit gains, the more likely it will 
exchange it with its neighbours

• The model to some extent resembles activity of SNN, 
perhaps on the level of neuronal groups, not on the level of 
single neurons*

• The model doesn’t grow, but there are multiple edges, which 
prevent the model from saturation

21
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Conclusions

• A simple model unifying scale-free graph theory and neural 
networks has been introduced

• The model bears a lot of common features with Boltzmann 
Machine, 

• The differences include unbounded state space, and a fact 
that at each step exactly two units are affected  

• Numerical simulations support the expectation of a scale-
free nature of the graph

22
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Further research

• The preferential attachment in spike flow model results 
from a state memory (amount of potential), of a single 
unit. We claim that single neurons do not posses 
enough of such “memory”, which explains empirical 
results on C. elegans worm. 

• * Some interesting results were obtained for Spiking Neural 
Network, see our paper “Emergence of Scale-Free Graphs in 
Dynamical Spiking Neural Networks”, Accepted to 2007 
International Joint Conference on Neural Networks, 
Orlando 2007 

• Spike flow model itself may be used to encode 
combinatorial problems

23
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