Use of patterns in *n*-tuple combinatorial generation

Dominik Zalewski

Faculty of Mathematics and Computer Science UAM Otwarte Wykłady dla Doktorantów

25-26 May 2007

Agenda

Applications

- Peer-to-peer networks
- Calendaring
- 2 Combinatorial generation
 - Model
 - Data structures
 - Algorithms

- Theoretical analysis
- Experimental results

	0000000000000	000000	
Bibliografia			

- D. E. Knuth, *The art of computer programming: Volume 4*, Addison Wesley, 2005.
- D. L. Kreher and D. R. Stinson, *Combinatorial algorithms: Generation, enumeration and search*, CRC press LTC, Boca Raton, Florida, 1998.
- Dmitri Loguinov, Juan Casas, and Xiaoming Wang, Graph-theoretic analysis of structured peer-to-peer systems: routing distances and fault resilience, IEEE/ACM Trans. Netw. **13** (2005), no. 5, 1107–1120.

- C. D. Savage, *A survey of combinatorial gray codes*, 605–629.
- Paul Vixie, Cron manual, 1993.

Agenda

Applications

- Peer-to-peer networks
- Calendaring
- 2 Combinatorial generation
 - Model
 - Data structures
 - Algorithms

- Theoretical analysis
- Experimental results

Chord – definition

- Choose key space S, such that $|S| = 2^m$.
- Assign a **random key** $k_i \in S$ to every node in the network
- Order nodes such that they form cyclic list and $k_i < k_{i+1}$
- Every node v keeps its routing table R_v of size m, such that R_i[j] stores address of node in distance 2^j from v

Applications

Combinatorial generation

Running time

Summary

Chord – searching

Distributed Hashtables

Other structured peer-to-peer networks based on DHT use **minimal-change** topologies like

- n-cube
- Butterfly
- de Brujin graph

What if someone wanted to visit some subset of nodes?

Distributed Hashtables

Other structured peer-to-peer networks based on DHT use **minimal-change** topologies like

- n-cube
- Butterfly
- de Brujin graph

What if someone wanted to visit some subset of nodes?

Agenda

Applications

- Peer-to-peer networks
- Calendaring
- 2 Combinatorial generation
 - Model
 - Data structures
 - Algorithms

- Theoretical analysis
- Experimental results

Software

- Personal Information Mangement (*PIM*): Palm Desktop, Mozilla
- Google Calendar
- CRON

Running time

PIM pattern specification

- choose exclusively one of the patterns (granularity)
- choose **start** and **end** date

Starti	ng 25	marca	2007
--------	-------	-------	------

Select how often this event should repeat:

None	Day	Week	Month	Year			
Every: 1 📩 Week							
End on:	ΘN	lo End D	ate				
0 2007-03-25 🕂 🔲							
Repeation: MTWTFSS							
Every niedzieła							

イロン 不得 とくほ とくほ とうほ

PIM views

•	Dzisiaj 26 ma	r 2007 - 1 kwi	2007				0	Dzień	Tydzi	ień	Miesiąc	Nastę	pne 4 dni	Plan dnia	a
	pon. 3/26	wt. 3/27		śr. 3/28		czw. 3/29		pt. 3	8/30	-	sob. 3/	31	niedz	. 4/1	
		P.Madziar nie	obecny										Niedziela Prima Ap	Palmowa orilis	
08:00											08:00 Natalia Wa	kuła			•
09:00															
10:00	10:00 Licencjat Wakula/Skorka	10:00 licencjat 2xAgnieszka									10:00 Tomasz Ci	/bal			
11:00															
12:00											12:00 Mikołaj Ko	nkel			
13:00															
14:00															
15:00					1	i:30 an									
16:00	_	_													
17:00		17:00 licencjat Pak/Adamowi	cz Pak	00 ncjat (/Adamowic	2Z			17:00 licencjat Pak/Ada	mowica	;					-

Running time

CRON pattern specification

- 6 fields: year, month, dom, dow, hour, minute
- example: *, *, 1–15, *, 0–23/2, 0
- runs in background checking every minute if there is an event matching a pattern

How to generate monthly view for CRON?

Running time

CRON pattern specification

- 6 fields: year, month, dom, dow, hour, minute
- example: *, *, 1–15, *, 0–23/2, 0
- runs in background checking every minute if there is an event matching a pattern

How to generate monthly view for CRON?

Agenda

Applications

- Peer-to-peer networks
- Calendaring
- 2 Combinatorial generation
 - Model
 - Data structures
 - Algorithms

- Theoretical analysis
- Experimental results

Sequence spaces

Definition (Consecutive sequence space)

Space Ω_n is called **consecutive sequence space** iff for some $n \in \mathbb{N}, s_j \in \mathbb{N}, e_j \in \mathbb{N}$ we have

$$\Omega_n = \{ (a_n) : s_j \le a_j \le e_j, 1 \le j \le n, a_j \in \mathbb{N} \}.$$

Definition (Pattern sequence space)

Space Ψ_n is called **pattern sequence space** iff for some $n \in \mathbb{N}$ and characteristic functions $\chi = (\chi_n)$, where $\chi_j : \mathbb{N} \mapsto \{0, 1\}$ for all $1 \leq j \leq n$, we have

$$\Psi_n = \{(a_n): \chi_j(a_j) = 1, 1 \leq j \leq n, a_j \in \mathbb{N}\}.$$

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Sequence spaces

Definition (Consecutive sequence space)

Space Ω_n is called **consecutive sequence space** iff for some $n \in \mathbb{N}, s_j \in \mathbb{N}, e_j \in \mathbb{N}$ we have

$$\Omega_n = \{ (a_n) : s_j \leq a_j \leq e_j, 1 \leq j \leq n, a_j \in \mathbb{N} \}.$$

Definition (Pattern sequence space)

Space Ψ_n is called **pattern sequence space** iff for some $n \in \mathbb{N}$ and characteristic functions $\chi = (\chi_n)$, where $\chi_j : \mathbb{N} \mapsto \{0, 1\}$ for all $1 \leq j \leq n$, we have

$$\Psi_n = \{(a_n): \chi_j(a_j) = 1, 1 \leq j \leq n, a_j \in \mathbb{N}\}.$$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Sequence ranges

Definition (Sequence range)

A pair $((f_n), (t_n))$ is called **sequence range** iff $(f_n) \in \Omega_n$, $(t_n) \in \Omega_n$ and $(f_n) \preceq_{\Omega_n} (t_n)$.

Definition (Sequence space subrange)

Sequence range $((f_n), (t_n))$ generates **sequence space subrange** $\Phi_n^{f,t}$ for some sequence space Φ_n where

$$\Phi_n^{f,t} = \{(a_n) \in \Phi_n : (f_n) \preceq (a_n) \preceq (t_n)\}$$

and by Φ_n we may take pattern sequence space Ψ_n or consecutive sequence space Ω_n .

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Sequence ranges

Definition (Sequence range)

A pair $((f_n), (t_n))$ is called **sequence range** iff $(f_n) \in \Omega_n$, $(t_n) \in \Omega_n$ and $(f_n) \preceq_{\Omega_n} (t_n)$.

Definition (Sequence space subrange)

Sequence range $((f_n), (t_n))$ generates **sequence space subrange** $\Phi_n^{f,t}$ for some sequence space Φ_n where

$$\Phi_n^{f,t} = \{(a_n) \in \Phi_n : (f_n) \preceq (a_n) \preceq (t_n)\}$$

and by Φ_n we may take pattern sequence space Ψ_n or consecutive sequence space Ω_n .

ъ

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Running time

Not so easy task

Definition (Pattern sequence rookie)

Sequence $(r_n) \in \Psi_n^{f,t}$ is called **pattern sequence rookie** iff

$$\forall (\mathbf{a}_n) \in \Psi_n^{f,t} : (\mathbf{r}_n) \preceq (\mathbf{a}_n).$$

Solution: find pattern sequence rookie!

Running time

Not so easy task

Definition (Pattern sequence rookie)

Sequence $(r_n) \in \Psi_n^{f,t}$ is called **pattern sequence rookie** iff

$$\forall (\mathbf{a}_n) \in \Psi_n^{f,t} : (\mathbf{r}_n) \preceq (\mathbf{a}_n).$$

Solution: find pattern sequence rookie!

Agenda

Applications

- Peer-to-peer networks
- Calendaring
- 2 Combinatorial generation
 - Model
 - Data structures
 - Algorithms

- Theoretical analysis
- Experimental results

Pattern

Definition (Pattern)

Let $\Gamma = (\Gamma_n)$ be a **pattern** defined as $(\Gamma_j) = supp\{\chi_j\}$ for all $1 \le j \le n$.

Definition (Filtered pattern)

For sequence range $((f_n), (t_n))$ we define $\Gamma^f = (\Gamma^f_n)$ to be a **filtered pattern**, where $\Gamma^f_j = \Gamma_j \cap \{f_j, \dots, \infty\}$ for all $1 \le j \le n$.

Pattern

Definition (Pattern)

Let $\Gamma = (\Gamma_n)$ be a **pattern** defined as $(\Gamma_j) = supp\{\chi_j\}$ for all $1 \le j \le n$.

Definition (Filtered pattern)

For sequence range $((f_n), (t_n))$ we define $\Gamma^f = (\Gamma^f_n)$ to be a **filtered pattern**, where $\Gamma^f_j = \Gamma_j \cap \{f_j, \ldots, \infty\}$ for all $1 \le j \le n$.

Agenda

Applications

- Peer-to-peer networks
- Calendaring

2 Combinatorial generation

- Model
- Data structures
- Algorithms

- Theoretical analysis
- Experimental results

Running time

Summary

Naive generate

Applications	
000000000	

Running time

Summary

JSUCCESSOR()

```
Algorithm 2.2: JSUCCESSOR(i, (c_n), (\Gamma_n))
 global (\lambda_n)
  i \leftarrow i
  while i > 0 and \lambda_i = |\Gamma_i|
                                                                                       (1)
     do i \leftarrow i - 1
  if i = 0
     then return ("undefined")
  (s_n) \leftarrow (c_n)
                                                                                       (2)
 \lambda_i \leftarrow \lambda_i + 1
 \boldsymbol{s}_i \leftarrow \Gamma_{i,\lambda_i}
 for k \leftarrow i + 1 to j
                                                                                       (3)
    do \begin{cases} \lambda_k = 1 \\ s_k \leftarrow \Gamma_{k,1} \end{cases}
  return ((s_n))
                                                                                       (4)
```

More definitions

Definition (Favorite subsequence)

Subsequence $(u_j) = (u_1, u_2, ..., u_j)$ for $1 \le j \le n$ is called **favorite subsequence** of sequence space subrange $\Psi_n^{f,t}$ iff (u_j) is a pattern sequence rookie of sequence space subrange $\Psi_i^{f,t}$.

Favorite subsequence lemma

Lemma

- If $(u_{j-1}) \in \Psi_{j-1}^{f,t}$ is a **favorite subsequence** of $\Psi_n^{f,t}$ for $1 < j \le n$ and pattern sequence rookie $(r_n) \in \Psi_n^{f,t}$ exists then:
 - (T1) $(u_1, u_2, ..., u_{j-1}, \Gamma_{j,1}^f, \Gamma_{j+1,1}, \Gamma_{j+2,1}, ..., \Gamma_{n,1})$ is a pattern sequence rookie of $\Psi_n^{f,t}$ when $f_j < \Gamma_{j,1}^f$,

(T2) $(v_1, v_2, ..., v_{j-1}, \Gamma_{j,1}, \Gamma_{j+1,1}, ..., \Gamma_{n,1})$ is a pattern sequence rookie of $\Psi_n^{f,t}$ when $\Gamma_{j,1}^f$ does not exist, where $(v_{j-1}) \in \Psi_{j-1}^{f,t}$ is a **successor** of $(u_{j-1}) \in \Psi_{j-1}^{f,t}$,

- (R) $(u_1, u_2, \dots, u_{j-1}, \Gamma_{j,1}^f) \in \Psi_j^{f,t}$ is a favorite subsequence of $\Psi_n^{f,t}$ when $f_j = \Gamma_{j,1}^f$.
- If j = 1 and pattern sequence rookie $(r_n) \in \Psi_n^{f,t}$ exists, then $(\Gamma_{1,1}^f)$ is a favorite subsequence of $\Psi_n^{f,t}$.

Applications

Combinatorial generation

Running time

Summary

Auxiliary array (λ^f)

Definition

$$\lambda_j^f = \begin{cases} 0, & (\Gamma_j^f) = \emptyset \\ z : \Gamma_{j,z} = \Gamma_{j,1}^f, & (\Gamma_j^f) \neq \emptyset \end{cases}$$

Applications	

Running time

Summary

GETFIRST()

Applications

Combinatorial generation

Running time

Summary

GETFIRST() validity

Theorem

Algorithm GETFIRST() returns **pattern sequence rookie** (r_n) of sequence space subrange $\Psi_n^{f,t}$, if (r_n) exists.

Pattern generate

Agenda

Applications

- Peer-to-peer networks
- Calendaring
- 2 Combinatorial generation
 - Model
 - Data structures
 - Algorithms

- Theoretical analysis
- Experimental results

Running time o●ooooo

Granularity

Definition (Pattern granularity)

Let us take sequence range $((f_n), (t_n))$ and pattern Γ . We define **pattern granularity** as

$$\operatorname{gran}(\Gamma) = \frac{|\Psi_n^{f,t}|}{|\Omega_n^{f,t}|}$$

Running time

Summary

Naive generate running time

$$\frac{1}{\varepsilon}O(n|\Omega_n^{f,t}|) = O(n\frac{1}{\varepsilon}|\Omega_n^{f,t}|)$$

Running time

Summary

Pattern generate running time

Algorithm 3.2: PATTERNGENERATE(
$$(f_n), (t_n), (\Gamma_n)$$
)
(c_n) \leftarrow GETFIRST($(f_n), (t_n), (\Gamma_n)$)
while (c_n) \neq " undefined"
do $\begin{cases} \text{output } ((c_n)) \\ (c_n) \leftarrow \text{JSUCCESSOR}(n, (c_n), (\Gamma_n)) \end{cases}$

$$O(n \log n + n \operatorname{gran}(\Gamma_n) |\Omega_n^{f,t}|) = O(n \operatorname{gran}(\Gamma_n) |\Omega_n^{f,t}|).$$

Agenda

Applications

- Peer-to-peer networks
- Calendaring
- 2 Combinatorial generation
 - Model
 - Data structures
 - Algorithms

- Theoretical analysis
- Experimental results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = �

Applications

Running time

$ \Omega_n^{f,t} $	T _h	t _h	T _{min}	t _{min}	
0′	2.61 <i>ms</i>	1.53 <i>ms</i>	2.94 <i>ms</i>	1.7 <i>ms</i>	
15′	2.06 <i>ms</i>	3.12 <i>ms</i>	4.33 <i>ms</i>	3.35 <i>ms</i>	
30′	2.09 <i>ms</i>	4.99 <i>ms</i>	6.18 <i>ms</i>	5.49 <i>ms</i>	
1 <i>h</i>	2.22 <i>ms</i>	8.79 <i>ms</i>	10.25 <i>ms</i>	10.11 <i>ms</i>	
2h	2.44 <i>ms</i>	16.4 <i>ms</i>	17.79 <i>ms</i>	18.48 <i>ms</i>	
4 <i>h</i>	2.75 <i>ms</i>	31.79 <i>ms</i>	33.3 <i>ms</i>	35.6 <i>ms</i>	
8 <i>h</i>	3.96 <i>ms</i>	62.54 <i>ms</i>	63.68 <i>ms</i>	70.5 <i>ms</i>	
16 <i>h</i>	4.9 <i>ms</i>	125.82 <i>ms</i>	125.36 <i>ms</i>	140.74 <i>ms</i>	
1 <i>m</i>	129.28 <i>ms</i>	6.01″	5.71″	6.82″	
2 <i>m</i>	243.82 <i>ms</i>	11.85″	10.83″	12.89″	
4 <i>m</i>	502.85 <i>ms</i>	23.55″	22.14″	26.41″	
8 <i>m</i>	1″	48.11″	44.97″	54.19″	
1 <i>y</i>	1.5″	1.21′	1.12′	1.37′	
2 <i>y</i>	3″	2.44′	2.26′	2.76′	
4 <i>y</i>	6.03″	4.88′	4.51′	5.5′	

UAM

<ロ> <四> <四> <三> <三> <三> <三> <三

Summary

• Define RANK() and UNRANK() for lexicographic ordering

- Define all algorithms for minimal-change ordering
- Apply to peer-to-peer structured networks

- Define RANK() and UNRANK() for lexicographic ordering
- Define all algorithms for minimal-change ordering
- Apply to peer-to-peer structured networks

- Define RANK() and UNRANK() for lexicographic ordering
- Define all algorithms for minimal-change ordering
- Apply to peer-to-peer structured networks

