
Applications Combinatorial generation Running time Summary

Use of patterns in n-tuple combinatorial
generation

Dominik Zalewski

Faculty of Mathematics and Computer Science
UAM

Otwarte Wykłady dla Doktorantów

25-26 May 2007

Applications Combinatorial generation Running time Summary

Agenda

1 Applications
Peer-to-peer networks
Calendaring

2 Combinatorial generation
Model
Data structures
Algorithms

3 Running time
Theoretical analysis
Experimental results

Applications Combinatorial generation Running time Summary

Bibliografia

D. E. Knuth, The art of computer programming: Volume 4,
Addison Wesley, 2005.

D. L. Kreher and D. R. Stinson, Combinatorial algorithms:
Generation, enumeration and search, CRC press LTC,
Boca Raton, Florida, 1998.

Dmitri Loguinov, Juan Casas, and Xiaoming Wang,
Graph-theoretic analysis of structured peer-to-peer
systems: routing distances and fault resilience, IEEE/ACM
Trans. Netw. 13 (2005), no. 5, 1107–1120.

C. D. Savage, A survey of combinatorial gray codes,
605–629.

Paul Vixie, Cron manual, 1993.

Applications Combinatorial generation Running time Summary

Agenda

1 Applications
Peer-to-peer networks
Calendaring

2 Combinatorial generation
Model
Data structures
Algorithms

3 Running time
Theoretical analysis
Experimental results

Applications Combinatorial generation Running time Summary

Chord – definition

Choose key space S, such that|S| = 2m.
Assign a random key ki ∈ S to every node in the network
Order nodes such that they form cyclic list and ki < ki+1

Every node v keeps its routing table Rv of size m, such
that Ri [j] stores address of node in distance 2j from v

Applications Combinatorial generation Running time Summary

Chord – searching

Applications Combinatorial generation Running time Summary

Distributed Hashtables

Other structured peer-to-peer networks based on DHT use
minimal-change topologies like

n-cube
Butterfly
de Brujin graph

What if someone wanted to visit some
subset of nodes?

Applications Combinatorial generation Running time Summary

Distributed Hashtables

Other structured peer-to-peer networks based on DHT use
minimal-change topologies like

n-cube
Butterfly
de Brujin graph

What if someone wanted to visit some
subset of nodes?

Applications Combinatorial generation Running time Summary

Agenda

1 Applications
Peer-to-peer networks
Calendaring

2 Combinatorial generation
Model
Data structures
Algorithms

3 Running time
Theoretical analysis
Experimental results

Applications Combinatorial generation Running time Summary

Software

Personal Information Mangement (PIM): Palm Desktop,
Mozilla
Google Calendar
CRON

Applications Combinatorial generation Running time Summary

PIM pattern specification

choose exclusively one
of the patterns
(granularity)
choose start and end
date

Applications Combinatorial generation Running time Summary

PIM views

Applications Combinatorial generation Running time Summary

CRON pattern specification

6 fields: year, month, dom, dow, hour, minute
example: ?, ?, 1–15, ?, 0–23/2, 0
runs in background checking every minute if there is an
event matching a pattern

How to generate monthly view for CRON?

Applications Combinatorial generation Running time Summary

CRON pattern specification

6 fields: year, month, dom, dow, hour, minute
example: ?, ?, 1–15, ?, 0–23/2, 0
runs in background checking every minute if there is an
event matching a pattern

How to generate monthly view for CRON?

Applications Combinatorial generation Running time Summary

Agenda

1 Applications
Peer-to-peer networks
Calendaring

2 Combinatorial generation
Model
Data structures
Algorithms

3 Running time
Theoretical analysis
Experimental results

Applications Combinatorial generation Running time Summary

Sequence spaces

Definition (Consecutive sequence space)
Space Ωn is called consecutive sequence space iff for some
n ∈ N, sj ∈ N, ej ∈ N we have

Ωn = {(an) : sj ≤ aj ≤ ej ,1 ≤ j ≤ n,aj ∈ N}.

Definition (Pattern sequence space)

Space Ψn is called pattern sequence space iff for some n ∈ N
and characteristic functions χ = (χn), where χj : N 7→ {0,1} for
all 1 ≤ j ≤ n, we have

Ψn = {(an) : χj(aj) = 1,1 ≤ j ≤ n,aj ∈ N}.

Applications Combinatorial generation Running time Summary

Sequence spaces

Definition (Consecutive sequence space)
Space Ωn is called consecutive sequence space iff for some
n ∈ N, sj ∈ N, ej ∈ N we have

Ωn = {(an) : sj ≤ aj ≤ ej ,1 ≤ j ≤ n,aj ∈ N}.

Definition (Pattern sequence space)

Space Ψn is called pattern sequence space iff for some n ∈ N
and characteristic functions χ = (χn), where χj : N 7→ {0,1} for
all 1 ≤ j ≤ n, we have

Ψn = {(an) : χj(aj) = 1,1 ≤ j ≤ n,aj ∈ N}.

Applications Combinatorial generation Running time Summary

Sequence ranges

Definition (Sequence range)

A pair ((fn), (tn)) is called sequence range iff (fn) ∈ Ωn,
(tn) ∈ Ωn and (fn) �Ωn (tn).

Definition (Sequence space subrange)

Sequence range ((fn), (tn)) generates sequence space
subrange Φf ,t

n for some sequence space Φn where

Φf ,t
n = {(an) ∈ Φn : (fn) � (an) � (tn)}

and by Φn we may take pattern sequence space Ψn or
consecutive sequence space Ωn.

Applications Combinatorial generation Running time Summary

Sequence ranges

Definition (Sequence range)

A pair ((fn), (tn)) is called sequence range iff (fn) ∈ Ωn,
(tn) ∈ Ωn and (fn) �Ωn (tn).

Definition (Sequence space subrange)

Sequence range ((fn), (tn)) generates sequence space
subrange Φf ,t

n for some sequence space Φn where

Φf ,t
n = {(an) ∈ Φn : (fn) � (an) � (tn)}

and by Φn we may take pattern sequence space Ψn or
consecutive sequence space Ωn.

Applications Combinatorial generation Running time Summary

Not so easy task

Definition (Pattern sequence rookie)

Sequence (rn) ∈ Ψf ,t
n is called pattern sequence rookie iff

∀(an) ∈ Ψf ,t
n : (rn) � (an).

Solution: find pattern sequence rookie!

Applications Combinatorial generation Running time Summary

Not so easy task

Definition (Pattern sequence rookie)

Sequence (rn) ∈ Ψf ,t
n is called pattern sequence rookie iff

∀(an) ∈ Ψf ,t
n : (rn) � (an).

Solution: find pattern sequence rookie!

Applications Combinatorial generation Running time Summary

Agenda

1 Applications
Peer-to-peer networks
Calendaring

2 Combinatorial generation
Model
Data structures
Algorithms

3 Running time
Theoretical analysis
Experimental results

Applications Combinatorial generation Running time Summary

Pattern

Definition (Pattern)

Let Γ = (Γn) be a pattern defined as (Γj) = supp{χj} for all
1 ≤ j ≤ n.

Definition (Filtered pattern)

For sequence range ((fn), (tn)) we define Γf = (Γf
n) to be a

filtered pattern, where Γf
j = Γj ∩ {fj , . . . ,∞} for all 1 ≤ j ≤ n.

Applications Combinatorial generation Running time Summary

Pattern

Definition (Pattern)

Let Γ = (Γn) be a pattern defined as (Γj) = supp{χj} for all
1 ≤ j ≤ n.

Definition (Filtered pattern)

For sequence range ((fn), (tn)) we define Γf = (Γf
n) to be a

filtered pattern, where Γf
j = Γj ∩ {fj , . . . ,∞} for all 1 ≤ j ≤ n.

Applications Combinatorial generation Running time Summary

Agenda

1 Applications
Peer-to-peer networks
Calendaring

2 Combinatorial generation
Model
Data structures
Algorithms

3 Running time
Theoretical analysis
Experimental results

Applications Combinatorial generation Running time Summary

Naive generate

Algorithm 2.1: NAIVEGENERATE((fn), (tn), (χn))

global ε
(cn)← (fn) (1)
while (cn) � (tn) (2)

do

if χ((cn)) ≡ 1 (3)

then output ((cn)) (4)
(cn)← (cn)⊕ ε (5)

Applications Combinatorial generation Running time Summary

JSUCCESSOR()

Algorithm 2.2: JSUCCESSOR(j , (cn), (Γn))

global (λn)
i ← j
while i > 0 and λi = |Γi | (1)

do i ← i − 1
if i = 0

then return (”undefined”)
(sn)← (cn) (2)
λi ← λi + 1
si ← Γi,λi

for k ← i + 1 to j (3)

do
{
λk = 1
sk ← Γk ,1

return ((sn)) (4)

Applications Combinatorial generation Running time Summary

More definitions

Definition (Favorite subsequence)

Subsequence (uj) = (u1,u2, . . . ,uj) for 1 ≤ j ≤ n is called
favorite subsequence of sequence space subrange Ψf ,t

n iff (uj)

is a pattern sequence rookie of sequence space subrange Ψf ,t
j .

Applications Combinatorial generation Running time Summary

Favorite subsequence lemma

Lemma

If (uj−1) ∈ Ψf ,t
j−1 is a favorite subsequence of Ψf ,t

n for

1 < j ≤ n and pattern sequence rookie (rn) ∈ Ψf ,t
n exists

then:
(T1) (u1,u2, . . . ,uj−1, Γ

f
j,1, Γj+1,1, Γj+2,1, . . . , Γn,1) is a pattern

sequence rookie of Ψf ,t
n when fj < Γf

j,1,
(T2) (v1, v2, . . . , vj−1, Γj,1, Γj+1,1, . . . , Γn,1) is a pattern sequence

rookie of Ψf ,t
n when Γf

j,1 does not exist, where (vj−1) ∈ Ψf ,t
j−1

is a successor of (uj−1) ∈ Ψf ,t
j−1,

(R) (u1,u2, . . . ,uj−1, Γ
f
j,1) ∈ Ψf ,t

j is a favorite subsequence of

Ψf ,t
n when fj = Γf

j,1.

If j = 1 and pattern sequence rookie (rn) ∈ Ψf ,t
n exists, then

(Γf
1,1) is a favorite subsequence of Ψf ,t

n .

Applications Combinatorial generation Running time Summary

Auxiliary array (λf)

Definition

λf
j =

{
0, (Γf

j) = ∅
z : Γj,z = Γf

j,1, (Γf
j) 6= ∅

Applications Combinatorial generation Running time Summary

GETFIRST()

Algorithm 2.3: GETFIRST((fn), (tn), (Γn))

for j ← 1 to n

do

if λf
j = 0

then
{

(rn)← JSUCCESSOR(j − 1, (rn), (Γn))
break

rj ← Γj,λf
j

λj ← λf
j

if fj < Γj,λf
j

then
{

j ← j + 1
break

for i ← j to n
do ri ← Γi,1

return ((rn))

Applications Combinatorial generation Running time Summary

GETFIRST() validity

Theorem

Algorithm GETFIRST() returns pattern sequence rookie (rn) of
sequence space subrange Ψf ,t

n , if (rn) exists.

Applications Combinatorial generation Running time Summary

Pattern generate

Algorithm 2.4: PATTERNGENERATE((fn), (tn), (Γn))

(cn)← GETFIRST((fn), (tn), (Γn))
while (cn) 6= ”undefined”

do
{

output ((cn))
(cn)← JSUCCESSOR(n, (cn), (Γn))

Applications Combinatorial generation Running time Summary

Agenda

1 Applications
Peer-to-peer networks
Calendaring

2 Combinatorial generation
Model
Data structures
Algorithms

3 Running time
Theoretical analysis
Experimental results

Applications Combinatorial generation Running time Summary

Granularity

Definition (Pattern granularity)

Let us take sequence range ((fn), (tn)) and pattern Γ. We define
pattern granularity as

gran(Γ) =
|Ψf ,t

n |
|Ωf ,t

n |

Applications Combinatorial generation Running time Summary

Naive generate running time

Algorithm 3.1: NAIVEGENERATE((fn), (tn), (χn))

global ε
(cn)← (fn) (1)
while (cn) � (tn) (2)

do

if χ((cn)) ≡ 1 (3)

then output ((cn)) (4)
(cn)← (cn)⊕ ε (5)

1
ε

O(n|Ωf ,t
n |) = O(n

1
ε
|Ωf ,t

n |)

Applications Combinatorial generation Running time Summary

Pattern generate running time

Algorithm 3.2: PATTERNGENERATE((fn), (tn), (Γn))

(cn)← GETFIRST((fn), (tn), (Γn))
while (cn) 6= ”undefined”

do
{

output ((cn))
(cn)← JSUCCESSOR(n, (cn), (Γn))

O(n log n + n gran(Γn)|Ωf ,t
n |) = O(n gran(Γn)|Ωf ,t

n |).

Applications Combinatorial generation Running time Summary

Agenda

1 Applications
Peer-to-peer networks
Calendaring

2 Combinatorial generation
Model
Data structures
Algorithms

3 Running time
Theoretical analysis
Experimental results

Applications Combinatorial generation Running time Summary

Applications Combinatorial generation Running time Summary

|Ωf ,t
n | Th th Tmin tmin

0′ 2.61ms 1.53ms 2.94ms 1.7ms
15′ 2.06ms 3.12ms 4.33ms 3.35ms
30′ 2.09ms 4.99ms 6.18ms 5.49ms
1h 2.22ms 8.79ms 10.25ms 10.11ms
2h 2.44ms 16.4ms 17.79ms 18.48ms
4h 2.75ms 31.79ms 33.3ms 35.6ms
8h 3.96ms 62.54ms 63.68ms 70.5ms

16h 4.9ms 125.82ms 125.36ms 140.74ms
1m 129.28ms 6.01′′ 5.71′′ 6.82′′

2m 243.82ms 11.85′′ 10.83′′ 12.89′′

4m 502.85ms 23.55′′ 22.14′′ 26.41′′

8m 1′′ 48.11′′ 44.97′′ 54.19′′

1y 1.5′′ 1.21′ 1.12′ 1.37′

2y 3′′ 2.44′ 2.26′ 2.76′

4y 6.03′′ 4.88′ 4.51′ 5.5′

Applications Combinatorial generation Running time Summary

Summary

Define RANK() and UNRANK() for lexicographic ordering
Define all algorithms for minimal-change ordering
Apply to peer-to-peer structured networks

Applications Combinatorial generation Running time Summary

Summary

Define RANK() and UNRANK() for lexicographic ordering
Define all algorithms for minimal-change ordering
Apply to peer-to-peer structured networks

Applications Combinatorial generation Running time Summary

Summary

Define RANK() and UNRANK() for lexicographic ordering
Define all algorithms for minimal-change ordering
Apply to peer-to-peer structured networks

	Applications
	Peer-to-peer networks
	Calendaring

	Combinatorial generation
	Model
	Data structures
	Algorithms

	Running time
	Theoretical analysis
	Experimental results

	Summary

