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Chord – definition

Choose key space S, such that|S| = 2m.
Assign a random key ki ∈ S to every node in the network
Order nodes such that they form cyclic list and ki < ki+1

Every node v keeps its routing table Rv of size m, such
that Ri [j] stores address of node in distance 2j from v
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Chord – searching
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Distributed Hashtables

Other structured peer-to-peer networks based on DHT use
minimal-change topologies like

n-cube
Butterfly
de Brujin graph

What if someone wanted to visit some
subset of nodes?
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Software

Personal Information Mangement (PIM): Palm Desktop,
Mozilla
Google Calendar
CRON
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PIM pattern specification

choose exclusively one
of the patterns
(granularity)
choose start and end
date
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PIM views
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CRON pattern specification

6 fields: year, month, dom, dow, hour, minute
example: ?, ?, 1–15, ?, 0–23/2, 0
runs in background checking every minute if there is an
event matching a pattern

How to generate monthly view for CRON?
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Sequence spaces

Definition (Consecutive sequence space)
Space Ωn is called consecutive sequence space iff for some
n ∈ N, sj ∈ N, ej ∈ N we have

Ωn = {(an) : sj ≤ aj ≤ ej ,1 ≤ j ≤ n,aj ∈ N}.

Definition (Pattern sequence space)

Space Ψn is called pattern sequence space iff for some n ∈ N
and characteristic functions χ = (χn), where χj : N 7→ {0,1} for
all 1 ≤ j ≤ n, we have

Ψn = {(an) : χj(aj) = 1,1 ≤ j ≤ n,aj ∈ N}.
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Sequence ranges

Definition (Sequence range)

A pair ((fn), (tn)) is called sequence range iff (fn) ∈ Ωn,
(tn) ∈ Ωn and (fn) �Ωn (tn).

Definition (Sequence space subrange)

Sequence range ((fn), (tn)) generates sequence space
subrange Φf ,t

n for some sequence space Φn where

Φf ,t
n = {(an) ∈ Φn : (fn) � (an) � (tn)}

and by Φn we may take pattern sequence space Ψn or
consecutive sequence space Ωn.
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Not so easy task

Definition (Pattern sequence rookie)

Sequence (rn) ∈ Ψf ,t
n is called pattern sequence rookie iff

∀(an) ∈ Ψf ,t
n : (rn) � (an).

Solution: find pattern sequence rookie!
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Pattern

Definition (Pattern)

Let Γ = (Γn) be a pattern defined as (Γj) = supp{χj} for all
1 ≤ j ≤ n.

Definition (Filtered pattern)

For sequence range ((fn), (tn)) we define Γf = (Γf
n) to be a

filtered pattern, where Γf
j = Γj ∩ {fj , . . . ,∞} for all 1 ≤ j ≤ n.
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Naive generate

Algorithm 2.1: NAIVEGENERATE((fn), (tn), (χn))

global ε
(cn)← (fn) (1)
while (cn) � (tn) (2)

do


if χ((cn)) ≡ 1 (3)

then output ((cn)) (4)
(cn)← (cn)⊕ ε (5)
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JSUCCESSOR()

Algorithm 2.2: JSUCCESSOR(j , (cn), (Γn))

global (λn)
i ← j
while i > 0 and λi = |Γi | (1)

do i ← i − 1
if i = 0

then return (”undefined”)
(sn)← (cn) (2)
λi ← λi + 1
si ← Γi,λi

for k ← i + 1 to j (3)

do
{
λk = 1
sk ← Γk ,1

return ((sn)) (4)
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More definitions

Definition (Favorite subsequence)

Subsequence (uj) = (u1,u2, . . . ,uj) for 1 ≤ j ≤ n is called
favorite subsequence of sequence space subrange Ψf ,t

n iff (uj)

is a pattern sequence rookie of sequence space subrange Ψf ,t
j .
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Favorite subsequence lemma

Lemma

If (uj−1) ∈ Ψf ,t
j−1 is a favorite subsequence of Ψf ,t

n for

1 < j ≤ n and pattern sequence rookie (rn) ∈ Ψf ,t
n exists

then:
(T1) (u1,u2, . . . ,uj−1, Γ

f
j,1, Γj+1,1, Γj+2,1, . . . , Γn,1) is a pattern

sequence rookie of Ψf ,t
n when fj < Γf

j,1,
(T2) (v1, v2, . . . , vj−1, Γj,1, Γj+1,1, . . . , Γn,1) is a pattern sequence

rookie of Ψf ,t
n when Γf

j,1 does not exist, where (vj−1) ∈ Ψf ,t
j−1

is a successor of (uj−1) ∈ Ψf ,t
j−1,

(R) (u1,u2, . . . ,uj−1, Γ
f
j,1) ∈ Ψf ,t

j is a favorite subsequence of

Ψf ,t
n when fj = Γf

j,1.

If j = 1 and pattern sequence rookie (rn) ∈ Ψf ,t
n exists, then

(Γf
1,1) is a favorite subsequence of Ψf ,t

n .
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Auxiliary array (λf )

Definition

λf
j =

{
0, (Γf

j ) = ∅
z : Γj,z = Γf

j,1, (Γf
j ) 6= ∅
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GETFIRST()

Algorithm 2.3: GETFIRST((fn), (tn), (Γn))

for j ← 1 to n

do



if λf
j = 0

then
{

(rn)← JSUCCESSOR(j − 1, (rn), (Γn))
break

rj ← Γj,λf
j

λj ← λf
j

if fj < Γj,λf
j

then
{

j ← j + 1
break

for i ← j to n
do ri ← Γi,1

return ((rn))
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GETFIRST() validity

Theorem

Algorithm GETFIRST() returns pattern sequence rookie (rn) of
sequence space subrange Ψf ,t

n , if (rn) exists.
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Pattern generate

Algorithm 2.4: PATTERNGENERATE((fn), (tn), (Γn))

(cn)← GETFIRST((fn), (tn), (Γn))
while (cn) 6= ”undefined”

do
{

output ((cn))
(cn)← JSUCCESSOR(n, (cn), (Γn))
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Granularity

Definition (Pattern granularity)

Let us take sequence range ((fn), (tn)) and pattern Γ. We define
pattern granularity as

gran(Γ) =
|Ψf ,t

n |
|Ωf ,t

n |
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Naive generate running time

Algorithm 3.1: NAIVEGENERATE((fn), (tn), (χn))

global ε
(cn)← (fn) (1)
while (cn) � (tn) (2)

do


if χ((cn)) ≡ 1 (3)

then output ((cn)) (4)
(cn)← (cn)⊕ ε (5)

1
ε

O(n|Ωf ,t
n |) = O(n

1
ε
|Ωf ,t

n |)
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Pattern generate running time

Algorithm 3.2: PATTERNGENERATE((fn), (tn), (Γn))

(cn)← GETFIRST((fn), (tn), (Γn))
while (cn) 6= ”undefined”

do
{

output ((cn))
(cn)← JSUCCESSOR(n, (cn), (Γn))

O(n log n + n gran(Γn)|Ωf ,t
n |) = O(n gran(Γn)|Ωf ,t

n |).
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|Ωf ,t
n | Th th Tmin tmin

0′ 2.61ms 1.53ms 2.94ms 1.7ms
15′ 2.06ms 3.12ms 4.33ms 3.35ms
30′ 2.09ms 4.99ms 6.18ms 5.49ms
1h 2.22ms 8.79ms 10.25ms 10.11ms
2h 2.44ms 16.4ms 17.79ms 18.48ms
4h 2.75ms 31.79ms 33.3ms 35.6ms
8h 3.96ms 62.54ms 63.68ms 70.5ms

16h 4.9ms 125.82ms 125.36ms 140.74ms
1m 129.28ms 6.01′′ 5.71′′ 6.82′′

2m 243.82ms 11.85′′ 10.83′′ 12.89′′

4m 502.85ms 23.55′′ 22.14′′ 26.41′′

8m 1′′ 48.11′′ 44.97′′ 54.19′′

1y 1.5′′ 1.21′ 1.12′ 1.37′

2y 3′′ 2.44′ 2.26′ 2.76′

4y 6.03′′ 4.88′ 4.51′ 5.5′
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Define RANK() and UNRANK() for lexicographic ordering
Define all algorithms for minimal-change ordering
Apply to peer-to-peer structured networks
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