Less naive type theory

Agnieszka Kozubek

Institute of Informatics Warsaw University

26 May 2007

Agnieszka Kozubek Less naive type theory

イロト 不得 とくほと くほとう

= 990

Plan

Lambda calculus

- Overview
- Syntax of lambda calculus
- Why typed lambda calculi?
- 2 Typed lambda calculus
 - Overview
 - Basic type system
 - Curry-Howard isomorphism
 - Pure Type Systems

System LNTT

> < 三 > < 三 >

Overview Syntax of lambda calculus Why typed lambda calculi?

Lambda calculus

- origins in 1930s (Church, Curry)
- alternative foundation of mathematics
- model of computation
- basic notion: function
- function understood in an intensional way

ヘロト 人間 ト ヘヨト ヘヨト

Overview Syntax of lambda calculus Why typed lambda calculi?

Syntax of lambda calculus

Lambda term

- variables *x*, *y*, ... are lambda terms
- if *M*, *N* are lambda terms then *MN* is also a lambda term
- if x is a variable and M is a lambda term then λx.M is a lambda term

Intuitive meaning

Lambda term represents a function.

- variables x, y, ... represent some functions
- *MN* is an application of a function *M* to an argument *N*
- $\lambda x.M$ is a function with a parameter x and a definition M

・ロト ・ 理 ト ・ ヨ ト ・

Overview Syntax of lambda calculus Why typed lambda calculi?

Syntax of lambda calculus

Lambda term

- variables *x*, *y*, ... are lambda terms
- if *M*, *N* are lambda terms then *MN* is also a lambda term
- if x is a variable and M is a lambda term then λx.M is a lambda term

Intuitive meaning

Lambda term represents a function.

- variables x, y, ... represent some functions
- *MN* is an application of a function *M* to an argument *N*
- $\lambda x.M$ is a function with a parameter x and a definition M

ヘロト 人間 ト ヘヨト ヘヨト

Overview Syntax of lambda calculus Why typed lambda calculi?

Problem in lambda calculus

Problem

We compose arbitrary lambda terms (arbitrary functions).

Consider a function

 $f(x) = x^2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Overview Syntax of lambda calculus Why typed lambda calculi?

Problem in lambda calculus

Problem

We compose arbitrary lambda terms (arbitrary functions).

Consider a function

$$f(x) = x^2$$

イロト 不得 とくほ とくほ とう

Overview Syntax of lambda calculus Why typed lambda calculi?

Problem in lambda calculus

Problem

We compose arbitrary lambda terms (arbitrary functions).

Consider a function

$$f(x) = x^2$$

イロト 不得 とくほ とくほ とう

Overview Syntax of lambda calculus Why typed lambda calculi?

Problem in lambda calculus

Problem

We compose arbitrary lambda terms (arbitrary functions).

Consider a function

$$f(x) = x^2$$

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Type assignment systems

Typing rules

Rules telling how to type lambda terms.

イロト イポト イヨト イヨト

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Type assignment systems

Typing rules

Rules telling how to type lambda terms.

イロト イポト イヨト イヨト

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Type assignment systems

Typing rules

Rules telling how to type lambda terms.

(日)

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Important issue

Inhabitation problem

Is there a lambda term M such that $\vdash M : \tau$?

 \vdash ? : τ

Agnieszka Kozubek Less naive type theory

ヘロト 人間 とくほとくほとう

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Important issue

Inhabitation problem

Is there a lambda term M such that $\vdash M : \tau$?

ヘロト 人間 とくほとくほとう

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Important issue

Inhabitation problem

Is there a lambda term M such that $\vdash M : \tau$?

ヘロト 人間 とくほとくほとう

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Basic type system

ヘロト 人間 とくほとくほとう

æ

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Basic type system

Agnieszka Kozubek Less naive type theory

イロン 不得 とくほ とくほ とうほ

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Basic type system

イロト 不得 とくほと くほとう

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Basic type system

Looks familiar?

Agnieszka Kozubek Less naive type theory

イロト 不得 とくほと くほとう

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Curry-Howard isomorphism

Lambda calculus

Logic

simply typed lambda calculus λ_{\rightarrow}

minimal propositional (intuitionistic) logic

types typing rules inhabitation \vdash ? : τ inhabited types formulas proof rules provability $\vdash \tau$? provable formulas

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Curry-Howard isomorphism

Lambda calculus

Logic

simply typed lambda calculus λ_{\rightarrow}

minimal propositional (intuitionistic) logic

types typing rules inhabitation \vdash ? : τ inhabited types formulas proof rules provability $\vdash \tau$? provable formulas

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Curry-Howard isomorphism

Lambda calculus

Logic

simply typed lambda calculus λ_{\rightarrow}

types typing rules inhabitation \vdash ? : τ inhabited types minimal propositional (intuitionistic) logic

formulas proof rules provability $\vdash \tau$? provable formulas

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Curry-Howard isomorphism

Lambda calculus

Logic

simply typed lambda calculus λ_{\rightarrow}

types typing rules inhabitation $\vdash ?: \tau$ inhabited types minimal propositional (intuitionistic) logic

formulas proof rules provability $\vdash \tau$? provable formulas

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Curry-Howard isomorphism

Lambda calculus

Logic

simply typed lambda calculus λ_{\rightarrow}

minimal propositional (intuitionistic) logic

types typing rules inhabitation \vdash ? : τ inhabited types formulas proof rules provability $\vdash \tau$? provable formulas

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Curry-Howard isomorphism

Lambda calculus

Logic

simply typed lambda calculus λ_{\rightarrow}

types typing rules inhabitation \vdash ? : τ inhabited types minimal propositional (intuitionistic) logic

formulas proof rules provability $\vdash \tau$? provable formulas

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Extensions of simple types

- system λP first-order logic
- system F second-order propositional logic
- system F_{ω} higher-order propositional logic
- calculus of constructions λC higher-order predicate logic
- other

ヘロト 人間 とくほとくほとう

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

The λ -cube

ヘロト 人間 とくほとくほとう

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

The λ -cube

Agnieszka Kozubek Less naive type theory

<ロト <回 > < 注 > < 注 > 、

Overview Basic type system Curry-Howard isomorphism Pure Type Systems

Pure Type Systems (PTSs)

- formalism to talk about type systems
- parametric representation
- useful for comparing type systems
- beyond the cube
- used for defining new type systems (new logics)

・ロト ・聞 と ・ ヨ と ・ ヨ と …

æ

Threat with PTSs

Example PTS – system NTT

$$\mathcal{S} = *, \Box$$

 $\mathcal{A} = * : \Box$
 $\mathcal{R} = (*, *), (*, \Box), (*, \Box, *)$

Inconsistent type system

Every type is inhabited \Rightarrow everything is provable.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Threat with PTSs

Example PTS – system NTT

$$\mathcal{S} = *, \Box$$

 $\mathcal{A} = * : \Box$
 $\mathcal{R} = (*, *), (*, \Box), (*, \Box, *)$

Inconsistent type system

Every type is inhabited \Rightarrow everything is provable.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

System LNTT

System LNTT

$$S = *^{t}, *^{p}, \Box^{t}, \Box^{p}$$
$$\mathcal{A} = *^{t}: \Box^{t}, *^{p}: \Box^{p}$$
$$\mathcal{R} = (*^{t}, *^{t}), (*^{p}, *^{p}), (*^{t}, *^{p}), (*^{t}, \Box^{p}, *^{t}), (*^{t}, \Box^{t})$$

Theorem

System LNTT is consistent.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

System LNTT

System LNTT

$$S = *^{t}, *^{p}, \Box^{t}, \Box^{p}$$
$$\mathcal{A} = *^{t}: \Box^{t}, *^{p}: \Box^{p}$$
$$\mathcal{R} = (*^{t}, *^{t}), (*^{p}, *^{p}), (*^{t}, *^{p}), (*^{t}, \Box^{p}, *^{t}), (*^{t}, \Box^{t})$$

Theorem

System LNTT is consistent.

ヘロト 人間 とくほとくほとう

= 990