Spectra of formulae with restrictions

Eryk Kopczyński

University of Warsaw
Based on work with Anuj Dawar (University of Cambridge) and Tony Tan (Hasselt University and Transnational University of Limburg)

Sep 19, 2014

Definition and examples

Spectrum (Scholz '52)

Let ϕ be a formula (usually FO).
Then the spectrum of ϕ (denoted $\operatorname{spec}(\phi))$ is the set of $N \in \mathbb{N}$ such that ϕ has a model of size N.

Definition and examples Spectra and complexity Fagin's theorem
Corollaries and generalizations

Examples of spectra

Example

$\phi=$ conjunction of axioms of linear spaces over \mathbb{Z}_{2}
$\operatorname{spec}(\phi)=$ powers of 2

Definition and examples

Examples of spectra

Example

$\phi=$ conjunction of axioms of linear spaces over \mathbb{Z}_{2} $\operatorname{spec}(\phi)=$ powers of 2

Example

$$
\begin{gathered}
\phi=\text { conjunction of axioms of fields } \\
\operatorname{spec}(\phi)=\text { powers of primes }
\end{gathered}
$$

Introduction
Variable restrictions Graph restrictions Summary

Definition and examples Spectra and complexity Fagin's theorem

Examples of spectra

Example

$\phi=$ conjunction of axioms of linear spaces over \mathbb{Z}_{2}

$$
\operatorname{spec}(\phi)=\text { powers of } 2
$$

Example

$$
\begin{gathered}
\phi=\text { conjunction of axioms of fields } \\
\operatorname{spec}(\phi)=\text { powers of primes }
\end{gathered}
$$

The main problem: Characterize subsets of \mathbb{N} which are $\operatorname{spec}(\phi)$ for some ϕ.

Definition and examples

Asser's problem

$$
\begin{gathered}
\operatorname{spec}(\phi \wedge \psi)=\operatorname{spec}(\phi) \cap \operatorname{spec}(\psi) \\
\operatorname{spec}(\phi \vee \psi)=\operatorname{spec}(\phi) \cup \operatorname{spec}(\psi) \\
\text { (if } \phi \text { and } \psi \text { are over disjoint signatures) }
\end{gathered}
$$

Thus, spectra are closed under (finite) union and intersection.

Asser's problem ('55): What about negation?

Idea (Fagin '74, Jones \& Selman '74): Characterize spectra using complexity theory.

Descriptive complexity:
find relationships between computational (complexity theoretic) and descriptive (logical) characterizations of objects.

Introduction
Variable restrictions
Graph restrictions
Summary

Definition and examples Spectra and complexity Fagin's theorem Corollaries and generalizations

Integers and languages

We identify subsets of \mathbb{N} with subsets of $\{0,1\}^{*}$:

$$
\begin{aligned}
A & \subseteq \mathbb{N} \\
& \Leftrightarrow
\end{aligned}
$$

$$
\{\boldsymbol{\operatorname { b i n }}(N): N \in A\}
$$

... and run computations on these binary encodings.

Notation

N - the number, n - the length of its encoding $\left(N=\Theta\left(2^{n}\right)\right)$

Notation

- $\operatorname{NTIME}(f(n))$ - the class of decision problems which can be solved non-deterministically in time $O(f(n))$
- e.g. $\operatorname{NTIME}\left(2^{n}\right)$ - pseudolinear time NTIME $\left(2^{2 n}\right)$ - pseudoquadratic time
- $\operatorname{NE}=\bigcup_{k} \operatorname{NTIME}\left(2^{n k}\right)$ (non-deterministic pseudopolynomial time)
- note $\operatorname{NE} \neq \operatorname{NEXPTIME}=\bigcup_{k} \operatorname{NTIME}\left(2^{n^{k}}\right)$)
- $\operatorname{NTISP}(f(n), g(n))$ - the class of decision problems which can be solved non-deterministically in time $O(f(n))$ and space $O(g(n))$

Introduction
Variable restrictions Graph restrictions

Summary

Definition and examples Spectra and complexity
Fagin's theorem
Corollaries and generalizations

Fagin's theorem

Theorem (Fagin '74, Jones \& Selman '74)

$S P E C=N E$

Fagin's theorem

Theorem (Fagin '74, Jones \& Selman '74)

$S P E C=N E$

For a formula ϕ using at most k variables and k-ary relations, $\operatorname{spec}(\phi) \in \operatorname{NTIME}\left(n 2^{n k}\right)$ (guess the model and just check whether the formula is satisfied)
On the other hand, let $A \in \operatorname{NTISP}\left(2^{n k}, 2^{n l}\right)$

- ϕ defines an order on $\{1, \ldots, N\}$
- we encode the computation of the machine on a $N^{\prime} \times N^{k}$ grid $G(x, y)$
- we encode G with $R\left(x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{k}\right)$
- in ϕ, we check whether R is correct (using $l+k+1$ variables)

Corollaries and generalizations

- Spectra are closed under complement iff NE $=\mathbf{c o N E}$ (equivalently, $N P \cap T A L L Y=\operatorname{coNP} \cap T A L L Y$)

Corollaries and generalizations

- Spectra are closed under complement iff NE $=$ coNE (equivalently, NP $\cap \mathbf{T A L L Y}=\mathbf{c o N P} \cap \mathbf{T A L L Y}$)
- Generalized spectra (Fagin) Classes of structures, not numbers - we know some relations R_{1}, \ldots, R_{k} and want to know if R_{k+1}, \ldots exist such that ϕ holds
Corollary: a class of structures is definable in $\exists S O$ iff it is decidable in NP (big open problem: is there a logic which captures \mathbf{P} in the same way?)

Definition and examples
Spectra and complexity
Fagin's theorem
Corollaries and generalizations

Corollaries and generalizations, part 2

- Many-sorted spectra: ϕ is a formula over a k-sorted structure, so $\operatorname{spec}(\phi) \subseteq \mathbb{N}^{k}$

Definition and examples

Corollaries and generalizations, part 2

- Many-sorted spectra: ϕ is a formula over a k-sorted structure, so $\operatorname{spec}(\phi) \subseteq \mathbb{N}^{k}$
- Image: ϕ is a formula with predicates P_{1}, \ldots, P_{k},
$\Psi(\phi)=\left\{\left(N_{1}, \ldots, N_{k}\right): \phi\right.$ has a model where N_{i} elements satisfy $\left.P_{i}\right\}$
Note: Images are exactly RE sets (and we know RE \neq coRE)

Corollaries and generalizations, part 2

- Many-sorted spectra: ϕ is a formula over a k-sorted structure, so $\operatorname{spec}(\phi) \subseteq \mathbb{N}^{k}$
- Image: ϕ is a formula with predicates P_{1}, \ldots, P_{k}, $\Psi(\phi)=\left\{\left(N_{1}, \ldots, N_{k}\right): \phi\right.$ has a model where N_{i} elements satisfy $\left.P_{i}\right\}$

Note: Images are exactly RE sets (and we know RE \neq coRE)

- Fifty years of the spectrum problem: survey and new results. Durand, Jones, Makowsky, More, 2009

Corollaries and generalizations, part 2

- Many-sorted spectra: ϕ is a formula over a k-sorted structure, so $\operatorname{spec}(\phi) \subseteq \mathbb{N}^{k}$
- Image: ϕ is a formula with predicates P_{1}, \ldots, P_{k}, $\Psi(\phi)=\left\{\left(N_{1}, \ldots, N_{k}\right): \phi\right.$ has a model where N_{i} elements satisfy $\left.P_{i}\right\}$

Note: Images are exactly RE sets (and we know RE \neq coRE)

- Fifty years of the spectrum problem: survey and new results. Durand, Jones, Makowsky, More, 2009
- Okay, we know a lot about spectra - but what if we put restrictions?

Restricted Variables

Let $\mathbf{F O}^{k}$ be the class of formulae using k variables.

$$
\exists x \exists y(\ldots \exists x \ldots) \in \mathbf{F O}^{2}
$$

(we consider only relational signatures)

Let $\operatorname{SPEC}\left(\mathrm{FO}^{k}\right)$ be the class of spectra of FO^{k} formulae.
Does the hierarchy collapse?

Introduction
Variable restrictions Graph restrictions Summary

Variable hierarchy

Theorem (K, Tony Tan)

$\operatorname{SPEC}\left(\mathbf{F O}^{k}\right) \subseteq \operatorname{NTIME}\left(n 2^{k n}\right) \subsetneq$
 $\subsetneq \operatorname{NTIME}\left(2^{(k+1 / 2) n}\right) \subseteq \operatorname{SPEC}\left(\mathbf{F O}^{2 k+2}\right)$

(listed as an open problem in the survey)

Variable hierarchy: two variables with counting

Between FO^{2} and $\mathrm{FO}^{3}: \mathbf{C}^{2}$ (two-variable logic with counting)

- we can use 2 variables
- we can also say there are at least k elements such that ...

$$
\forall x \exists=2 y R(x, y)
$$

This is a logic with good properties:

- Decidable (Grädel, Otto, Rosen '97)
- Related to modal logic

Introduction
Variable restrictions Graph restrictions

Summary

Two variables with counting - examples

- ϕ_{1} : Each man is married to exactly one woman, each woman is married to exactly one man

Introduction
Variable restrictions Graph restrictions

Summary

Two variables with counting - examples

- ϕ_{2} : Each mafia member has contact to exactly five other mafia members

Introduction
Variable restrictions Graph restrictions

Summary

Two variables with counting - examples

- ϕ_{3} : Each paper has three authors, each author has written two papers

$$
\psi\left(\phi_{4}\right)=\left\{\left(n_{1}, n_{2}\right): 3 n_{1}=2 n_{2}\right\}
$$

(a 2,3 -regular bipartite graph)

Introduction
Variable restrictions
Graph restrictions
Summary

Two variables with counting - examples

- ϕ_{4} : There are three teams, each competitor plays against a competitor from another team

C^{2} : the main result

Theorem (K, Tony Tan)

Let ϕ be a formula of two-variable logic with counting. Then $\Psi(\phi)$ is definable in Presburger arithmetic.

Sets definable in Presburger arithmetic are exactly the semilinear sets.
Semilinear set $=$ a union of finitely many linear sets Linear set $=$ a set of form $\left\{b+n_{i} v_{i}: n_{1}, \ldots, n_{k} \in \mathbb{N}\right\}$ for some b, v_{1}, \ldots, v_{k}

Introduction
Variable restrictions Graph restrictions Summary

C^{2} : corollaries

Note that for each semilinear set S it is easy to construct a \mathbf{C}^{2} formula ϕ such that $S=\Psi(\phi)$.

Corollary
A set of positive integers is a spectrum of a \mathbf{C}^{2} formula iff it is eventually periodic.

Corollary

C^{2} spectra (and images) are closed under complement.

Proof: simplify the universe

Let ϕ be a \mathbf{C}^{2} formula.
We can assume that:

- ϕ is over a signature including only unary relations $\mathcal{P}=\left\{P_{1}, \ldots, P_{d}\right\}$ and binary relations $\mathcal{R}=\left\{R_{1}, \ldots, R_{l}\right\}$
- for each two elements x, y, either $x=y$ or $R_{i}(x, y)$ for exactly one relation R_{i}
- For each relation $R \in \mathcal{R}$ there is a reverse relation $\overleftarrow{R} \in \mathcal{R}$, such that $R_{i}(x, y)$ iff $\overline{R_{i}}(y, x)$.

Proof: use modal logic

We transform ϕ into a formula of QMLC (quantified modal logic with counting).

$$
\text { MLC: } \psi::=\neg \psi|P| \psi_{1} \wedge \psi_{2} \mid \diamond_{R}^{k} \psi
$$

$a \models \diamond_{R}^{k} \psi$ iff there are at least k elements b such that $R(a, b)$ and $b \vDash \psi$

$$
\text { QMLC: } \phi::=\neg \phi\left|\phi_{1} \wedge \phi_{2}\right| \exists^{k} \psi
$$

where $\exists^{k} \psi$ (where $\psi \in \mathrm{MLC}$) means that there are at least k elements a such that $a \models \psi$

Proof: C, D-regular bipartite graphs

Is there a complete bipartite graph such that:

- there are $M_{1}+\ldots+M_{m}$ vertices on the left side
- there are $N_{1}+\ldots+N_{n}$ vertices on the right side
- each edge has one of / colors
- each of the M_{i} vertices has $C_{i, j}$ edges of color j
- each of the N_{i} vertices has $D_{i, j}$ edges of color j ?
- $C_{i, j}$ and $D_{i, j}$ can be given as an exact number or at least some number: $\mathbb{B}=\{=0,=1,=2, \ldots,=k, \geq 0, \geq 1, \ldots, \geq k\}$

Proof: C, D-regular bipartite graphs

Is there a complete bipartite graph such that:

- there are $M_{1}+\ldots+M_{m}$ vertices on the left side
- there are $N_{1}+\ldots+N_{n}$ vertices on the right side
- each edge has one of / colors
- each of the M_{i} vertices has $C_{i, j}$ edges of color j
- each of the N_{i} vertices has $D_{i, j}$ edges of color j ?
- $C_{i, j}$ and $D_{i, j}$ can be given as an exact number or at least some number: $\mathbb{B}=\{=0,=1,=2, \ldots,=k, \geq 0, \geq 1, \ldots, \geq k\}$

Theorem

There is a Presburger formula $\Psi_{C, D}\left(X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}\right)$ such that $\Psi_{C, D}\left(M_{1}, \ldots, M_{m}, N_{1}, \ldots, N_{n}\right)$ holds iff such a graph exists

Proof: types and functions

Each element a of the universe has a type (the set of MLC subformulae of ϕ which are satisfied in a). Let \mathcal{T} be the set of all types.
Let $X_{T, f}$ be a variable (intuitively, the number of elements of type T whose number of edges to other types is given by a function $f: \mathcal{R} \times \mathcal{T} \rightarrow \mathbb{B}$; we consider only functions consistent with the semantics of T).
For each two types T_{1}, T_{2} we use the previous Theorem to generate Presburger formulas to verify whether $X_{T_{1}, f}$ and $X_{T_{2}, f}$ are consistent. We also need another theorem for the case where $T_{1}=T_{2}$.

Introduction

Summary: variable hierarchy and spectra

- FO 1 : empty and $\{n: n \geq k\}$
- $\mathbf{C}^{1}, \mathbf{F O}^{2}$: finite and cofinite sets
- \mathbf{C}^{2} : semilinear sets
- $\mathrm{FO}^{3} \supseteq \operatorname{NTIME}\left(2^{n}\right)$ (pseudolinear), $\subseteq \operatorname{NTIME}\left(n 2^{3 n}\right)$
- $\mathrm{FO}_{k} \subsetneq \mathrm{FO}_{2 k+2}$

Graph structure

A - structure
Gaifman graph of \mathbb{A} - graph whose vertices are the elements of universe of A, edges are vertices which are related Many logical and algorithmic properties of graphs are easier when the graph is simple:

- bounded degree
- planar
- bounded tree width
- forbidden minor

Graph structure: trees

- For signatures including only unary relations and one unary function, spectra can only be semilinear sets (Durand, Fagin, Loescher '97)

```
Trees
Bounded degree
Planar graphs
Forced planar spectra
```


Graph structure: trees

- For signatures including only unary relations and one unary function, spectra can only be semilinear sets (Durand, Fagin, Loescher '97)
- This even holds for formulae of MSO (Gurevich, Shelah '03)

```
Trees
Bounded degree
Planar graphs
Forced planar spectra
```


Graph structure: trees

- For signatures including only unary relations and one unary function, spectra can only be semilinear sets (Durand, Fagin, Loescher '97)
- This even holds for formulae of MSO (Gurevich, Shelah '03)
- This is because the model has to be of form of unconnected cycles with trees (with two unary functions spectra can be NEXPTIME-complete)

```
Trees
Bounded degree
Planar graphs
Forced planar spectra
```


Graph structure: bounded tree width

- If all models of a CMSO (MSO with modulo counting) formula ϕ have bounded tree width, then (many-sorted) $\operatorname{spec}(\phi)$ is semilinear (Fischer, Makowsky 2004)
- This holds for images, too

Bounded degree spectra

A degree d spectrum is a set $S \subseteq \mathbb{N}$ such that $S=\operatorname{spec}(\phi)$ for some formula ϕ such that all models of ϕ are of degree at most d.

Equivalently: a set $S \subseteq \mathbb{N}$ such that for some formula $\phi, n \in S$ iff ϕ has a model with degree at most d.

By BDSpec $_{d}$ we denote the set of all degree d spectra.

Our result

For $d \geq 3$,

Theorem (Anuj Dawar, K)

$\operatorname{NTIME}\left(2^{n}\right) \subseteq \operatorname{BDSpec}_{d} \subseteq \operatorname{NTIME}\left(n^{2} 2^{n}\right)$

- for the first inclusion, we only require $d=3$, unary relations, and a single symmetric binary relation.

Introduction
Variable restrictions Graph restrictions Summary

Gaifman graph
Bounded degree
Planar graphs
Forced planar spectra

Technique: NTIME $\left(2^{n}\right) \subseteq$ BDSpec $_{\boldsymbol{d}}$

How to simulate Turing machines with bounded degree spectra? We use partial injective function symbols (PIFs)
k PIFs \rightarrow degree $2 k$

Introduction
Variable restrictions Graph restrictions

Summary

Gaifman graph
Trees
Bounded degree
Planar graphs
Forced planar spectra

Integers

We can axiomatize the following structure:

$$
\begin{aligned}
A & =\{1, \ldots, N\} \\
f_{A}(x) & =x+1 \\
g_{A}(x) & =2 x
\end{aligned}
$$

Integer functions

We can add the following functions (where C is a constant in the structure):

$$
\begin{align*}
h(x) & =x+C \tag{1}\\
j(x) & =x \times C \tag{2}\\
k(x) & =2^{x} \tag{3}\\
I(x) & =\left\lfloor N / 2^{x}\right\rfloor \tag{4}
\end{align*}
$$

... and use $/$ to find the binary representation of N, and h to construct a Turing machine working on it in space C and time N / C

Gaifman graph

Effective simulation of a Turing machine

With more sophisticated techniques this can be optimized to time $O(N)$:

Gaifman graph

Technique: $\mathrm{BDSpec}_{d} \subseteq \operatorname{NTIME}\left(n^{2} 2^{n}\right)$

To check whether $N \in \operatorname{spec}(\phi)$:

- We guess the structure \mathfrak{A} of size N and degree d
- We use Hanf's locality theorem to effectively verify whether \mathfrak{A} satisfies ϕ

Theorem (Hanf '65)

Let ϕ be a FO formula. Then there exist numbers r and M such that, for each graph $G=(V, E), G \models \phi$ depends only on the number of r-neighborhoods of each type, up to the threshold of M.

Introduction
Variable restrictions Graph restrictions Summary

Two definitions of planar spectra

There are two non-equivalent definitions of planar spectra:

- A planar spectrum of formula $\phi, \operatorname{pspec}(\phi)$, is the set of cardinalities of all models of ϕ whose Gaifman graph is planar
- PSpec is a set of all $S \subseteq \mathbb{N}$ such that $S=\operatorname{pspec}(\phi)$ for some ϕ
- FPSpec if a set of all $S \subseteq \mathbb{N}$ such that $S=\operatorname{spec}(\phi)$ for some ϕ such that all models of ϕ are planar

Weak planar spectrum: lower bounds

Theorem (Anuj Dawar, K)

$\operatorname{NTIME}^{S}\left(2^{n} / n\right) \subseteq$ PSpec

- our model simulating a Turing machine is planar as long as the machine has only one tape (superscript S)
- we can make sure that all members of the universe are a part of this simulation (as long as we only consider planar models!)
- we are unable to read the size of the universe (that required non-planarity), but we can calculate it with a logarithmic overhead

Weak planar spectrum: queue machines

Let M be a non-deterministic non-contracting queue machine M accepts $n \in \mathbb{N}$ iff M has a computation which writes n symbols to the queue
QTL $\subseteq P(\mathbb{N})$ is the class of sets of integers accepted by some queue machine of this type

Example

Initial queue contents: A, transitions:

$$
\begin{aligned}
A & \rightarrow A a \\
a & \rightarrow a a \\
A & \rightarrow \text { accept }
\end{aligned}
$$

accepts powers of two minus one

We write all elements in the queue in a line
Black arrows: next in the queue Blue arrows: connect the reading head to the writing head

Introduction
Variable restrictions
Graph restrictions
Summary

Gaifman graph

Weak planar spectrum: queue machines

Theorem (Anuj Dawar, K)

$\operatorname{NTIME}\left(\sqrt{2^{n}}\right) \subseteq \mathbf{N T S}\left(2^{n}\right) \subseteq \mathbf{Q} \mathbf{T L} \subseteq \mathbf{P S p e c}$

$\operatorname{NTS}\left(2^{n}\right)=$ the product of time and space is $O\left(2^{n}\right)$

Weak planar spectrum: upper bounds

Our planar models so far have bounded degree (PBDSpec $_{d}$).

$$
\mathrm{PBDSpec}_{d} \subseteq \operatorname{NTIME}\left(2^{n} n^{2}\right)
$$

Without assuming bounded degree, on a non-deterministic RAM machine, in linear time we can guess the model M, verify whether M is a planar graph and whether M satisfies ϕ (Frick, Grohe 2001). Together with the time hierarchy theorem, this solves an open problem from the Fifty years of the spectrum problem.

Introduction
Variable restrictions Graph restrictions Summary

Gaifman graph
Trees
Bounded degree
Planar graphs
Forced planar spectra

Forcing planarity

We cannot use our simulation of Turing machines when we require all models of ϕ to be planar:

Forcing planarity

We cannot use our simulation of queue machines either:

$$
w \rightarrow^{*} w
$$

We can write this computation on a torus

We could simulate an "extending" queue machine:

$$
w \rightarrow^{*} u \text { implies }|u|>|w|
$$

Forcing planarity

However, such queue machines typically blow up the queue exponentially in each iteration, and thus we get only a logarithmic number of iterations.

Forcing planarity

By using the $\log _{d}(N)$ outermost layers of this spiral, we can calculate the d-ary representation of N, and run a Turing machine in space $\log _{d}(N)$ and time $N^{1-\log _{d} 2}$

Forcing planarity

Theorem (Anuj Dawar, K)

$\operatorname{NTISP}\left((2-\epsilon)^{n}, n\right) \subseteq$ FPSpec

We can simulate a Turing machine which recognizes the binary representation of N in space $\log N$ and time $N^{1-\epsilon}$.

Example

the set of primes (via the trivial algorithm)

Open problems

- Finer hierarchy than $\left.\operatorname{SPEC}\left(\mathbf{F O}^{k}\right) \subsetneq \operatorname{SPEC}\left(\mathbf{F O}^{(} 2 k+2\right)\right)$
- Between C_{2} and $\mathrm{FO}_{3}: \mathbf{C}_{2}(<)$ We know that $\Psi(\phi)$ for $\phi \in F O_{2} C(<)$ include reachability sets of Petri nets (so no longer semilinear, but still decidable Kosaraju '82)
- Arity hierarchy
- Can we reduce the gaps between the lower and upper bounds?
- Can we use more memory in the forced planar case?
- What about other classes of graphs with an excluded minor?

Summary

- Variable hierarchy: $\operatorname{SPEC}\left(\mathrm{FO}^{k}\right) \subsetneq \operatorname{SPEC}\left(\mathrm{FO}^{2 k+2}\right)$
- Two variables and counting: semilinear sets
- Bounded treewidth: semilinear sets
- Bounded degree: $\operatorname{NTIME}\left(2^{n}\right) \subseteq \operatorname{BDSpec}_{d} \subseteq \operatorname{NTIME}\left(n^{2} 2^{n}\right)$
- Weak planarity: $\mathrm{NTIME}_{S} 2^{n} / n \subseteq$ PSpec, PSpec \subseteq NTIME $\left(c^{n}\right)$
- Forced planarity: $\operatorname{NTISP}\left((2-\epsilon)^{n}, n\right) \subseteq$ FPSpec

