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Spectrum (Scholz '52)

Let φ be a formula (usually FO).

Then the spectrum of φ (denoted spec(φ)) is the set of N ∈ N
such that φ has a model of size N.
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Examples of spectra

Example

φ = conjunction of axioms of linear spaces over Z2

spec(φ) = powers of 2

Example

φ = conjunction of axioms of �elds

spec(φ) = powers of primes

The main problem: Characterize subsets of N which are spec(φ)
for some φ.
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Asser's problem

spec(φ ∧ ψ) = spec(φ) ∩ spec(ψ)

spec(φ ∨ ψ) = spec(φ) ∪ spec(ψ)

(if φ and ψ are over disjoint signatures)

Thus, spectra are closed under (�nite) union and intersection.

Asser's problem ('55):
What about negation?
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Idea (Fagin '74, Jones & Selman '74):
Characterize spectra using complexity theory.

Descriptive complexity:
�nd relationships between computational (complexity theoretic) and

descriptive (logical) characterizations of objects.
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Integers and languages

We identify subsets of N with subsets of {0, 1}∗:

A ⊆ N

⇔

{bin(N) : N ∈ A}

... and run computations on these binary encodings.

Notation

N - the number, n - the length of its encoding (N = Θ(2n))
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Notation

NTIME(f (n)) � the class of decision problems which can be

solved non-deterministically in time O(f (n))

e.g. NTIME(2n) - pseudolinear time

NTIME(22n) - pseudoquadratic time

NE =
⋃

k NTIME(2nk)
(non-deterministic pseudopolynomial time)

note NE 6= NEXPTIME =
⋃

k NTIME(2n
k

))

NTISP(f (n), g(n)) � the class of decision problems which can

be solved non-deterministically in time O(f (n)) and space

O(g(n))
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Fagin's theorem

Theorem (Fagin '74, Jones & Selman '74)

SPEC = NE

For a formula φ using at most k variables and k-ary relations,

spec(φ) ∈ NTIME(n2nk) (guess the model and just check whether

the formula is satis�ed)

On the other hand, let A ∈ NTISP(2nk , 2nl )

φ de�nes an order on {1, . . . ,N}
we encode the computation of the machine on a N l × Nk grid

G (x , y)

we encode G with R(x1, . . . , xl , y1, . . . , yk)

in φ, we check whether R is correct (using l + k + 1 variables)
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Corollaries and generalizations

Spectra are closed under complement i� NE = coNE
(equivalently, NP ∩TALLY = coNP ∩TALLY)

Generalized spectra (Fagin)

Classes of structures, not numbers � we know some relations

R1, . . . ,Rk and want to know if Rk+1, . . . exist such that φ
holds

Corollary: a class of structures is de�nable in ∃SO i� it is

decidable in NP (big open problem: is there a logic which

captures P in the same way?)
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Corollaries and generalizations, part 2

Many-sorted spectra: φ is a formula over a k-sorted

structure, so spec(φ) ⊆ Nk

Image: φ is a formula with predicates P1, . . . ,Pk ,

Ψ(φ) = {(N1, . . . ,Nk) : φ has a model where Ni elements satisfy Pi}

Note: Images are exactly RE sets (and we know RE 6= coRE)

Fifty years of the spectrum problem: survey and new results.

Durand, Jones, Makowsky, More, 2009

Okay, we know a lot about spectra � but what if we put

restrictions?
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Restricted Variables

Let FOk be the class of formulae using k variables.

∃x∃y(. . . ∃x . . .) ∈ FO2

(we consider only relational signatures)

Let SPEC(FOk) be the class of spectra of FOk formulae.

Does the hierarchy collapse?
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Variable hierarchy

Theorem (K, Tony Tan)

SPEC(FOk) ⊆ NTIME(n2kn) (
( NTIME(2(k+1/2)n) ⊆ SPEC(FO2k+2)

(listed as an open problem in the survey)
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Variable hierarchy: two variables with counting

Between FO2 and FO3: C2 (two-variable logic with counting)

we can use 2 variables

we can also say there are at least k elements such that . . .

∀x∃=2yR(x , y)

This is a logic with good properties:

Decidable (Grädel, Otto, Rosen '97)

Related to modal logic
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Two variables with counting � examples

φ1: Each man is married to exactly one woman, each woman

is married to exactly one man

Ψ(φ1) = {(n1, n2) : n1 = n2}
(a 1-regular bipartite graph)
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Two variables with counting � examples

φ2: Each ma�a member has contact to exactly �ve other

ma�a members

spec(φ2) = {n : 2|n, n 6= 2, n 6= 4}
(a 5-regular graph)
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Two variables with counting � examples

φ3: Each paper has three authors, each author has written two

papers

Ψ(φ4) = {(n1, n2) : 3n1 = 2n2}
(a 2,3-regular bipartite graph)
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φ4: There are three teams, each competitor plays against a

competitor from another team

Ψ(φ3) =

{
(n1, n2, n3) :

n1 ≤ n2 + n3, n2 ≤ n3 + n1,
n3 ≤ n1 + n2, 2|n1 + n2 + n3

}
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C2: the main result

Theorem (K, Tony Tan)

Let φ be a formula of two-variable logic with counting. Then Ψ(φ)
is de�nable in Presburger arithmetic.

Sets de�nable in Presburger arithmetic are exactly the semilinear
sets.
Semilinear set = a union of �nitely many linear sets
Linear set = a set of form {b + nivi : n1, . . . , nk ∈ N} for some

b, v1, . . . , vk
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C2: corollaries

Note that for each semilinear set S it is easy to construct a C2

formula φ such that S = Ψ(φ).

Corollary

A set of positive integers is a spectrum of a C2 formula i� it is

eventually periodic.

Corollary

C2 spectra (and images) are closed under complement.
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Proof: simplify the universe

Let φ be a C2 formula.

We can assume that:

φ is over a signature including only unary relations

P = {P1, . . . , Pd} and binary relations R = {R1, . . . , Rl}
for each two elements x , y , either x = y or Ri (x , y) for exactly

one relation Ri

For each relation R ∈ R there is a reverse relation
←−
R ∈ R,

such that Ri (x , y) i�
←−
Ri (y , x).
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Proof: use modal logic

We transform φ into a formula of QMLC (quanti�ed modal logic

with counting).

MLC: ψ ::= ¬ψ | P | ψ1 ∧ ψ2 | ♦k
Rψ

a |= ♦k
Rψ i� there are at least k elements b such that R(a, b) and

b |= ψ

QMLC: φ ::= ¬φ|φ1 ∧ φ2|∃kψ

where ∃kψ (where ψ ∈ MLC) means that there are at least k

elements a such that a |= ψ
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Proof: C ,D-regular bipartite graphs

Is there a complete bipartite graph such that:

there are M1 + . . .+ Mm vertices on the left side

there are N1 + . . .+ Nn vertices on the right side

each edge has one of l colors

each of the Mi vertices has Ci ,j edges of color j

each of the Ni vertices has Di ,j edges of color j?

Ci ,j and Di ,j can be given as an exact number or at least some

number: B = {= 0,= 1,= 2, . . . ,= k ,≥ 0,≥ 1, . . . ,≥ k}

Theorem

There is a Presburger formula ΨC ,D(X1, . . . ,Xm,Y1, . . . ,Yn) such

that ΨC ,D(M1, . . . ,Mm,N1, . . . ,Nn) holds i� such a graph exists
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Proof: types and functions

Each element a of the universe has a type (the set of MLC

subformulae of φ which are satis�ed in a). Let T be the set of all

types.

Let XT ,f be a variable (intuitively, the number of elements of type

T whose number of edges to other types is given by a function

f : R× T → B; we consider only functions consistent with the

semantics of T).

For each two types T1, T2 we use the previous Theorem to

generate Presburger formulas to verify whether XT1,f and XT2,f are

consistent. We also need another theorem for the case where

T1 = T2.
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Summary: variable hierarchy and spectra

FO1: empty and {n : n ≥ k}
C1,FO2: �nite and co�nite sets

C2: semilinear sets

FO3 ⊇ NTIME(2n) (pseudolinear), ⊆ NTIME(n23n)

FOk ( FO2k+2

Eryk Kopczy«ski Spectra of formulae with restrictions
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Graph structure

A - structure

Gaifman graph of A - graph whose vertices are the elements of

universe of A, edges are vertices which are related

Many logical and algorithmic properties of graphs are easier when

the graph is simple:

bounded degree

planar

bounded tree width

forbidden minor

Eryk Kopczy«ski Spectra of formulae with restrictions
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Graph structure: trees

For signatures including only unary relations and one unary

function, spectra can only be semilinear sets (Durand, Fagin,

Loescher '97)

This even holds for formulae of MSO (Gurevich, Shelah '03)

This is because the model has to be of form of unconnected

cycles with trees (with two unary functions spectra can be

NEXPTIME-complete)

Eryk Kopczy«ski Spectra of formulae with restrictions
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Graph structure: bounded tree width

If all models of a CMSO (MSO with modulo counting) formula

φ have bounded tree width, then (many-sorted) spec(φ) is

semilinear (Fischer, Makowsky 2004)

This holds for images, too

Eryk Kopczy«ski Spectra of formulae with restrictions
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Bounded degree spectra

A degree d spectrum is a set S ⊆ N such that S = spec(φ) for

some formula φ such that all models of φ are of degree at most d .

Equivalently: a set S ⊆ N such that for some formula φ, n ∈ S i�

φ has a model with degree at most d .

By BDSpecd we denote the set of all degree d spectra.

Eryk Kopczy«ski Spectra of formulae with restrictions
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Our result

For d ≥ 3,

Theorem (Anuj Dawar, K)

NTIME(2n) ⊆ BDSpecd ⊆ NTIME(n22n)

for the �rst inclusion, we only require d = 3, unary relations,

and a single symmetric binary relation.
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Technique: NTIME(2n) ⊆ BDSpecd

How to simulate Turing machines with bounded degree spectra?

We use partial injective function symbols (PIFs)

k PIFs → degree 2k

Eryk Kopczy«ski Spectra of formulae with restrictions
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Integers

We can axiomatize the following structure:

A = {1, . . . ,N}
fA(x) = x + 1

gA(x) = 2x

Eryk Kopczy«ski Spectra of formulae with restrictions
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Integer functions

We can add the following functions (where C is a constant in the

structure):

h(x) = x + C (1)

j(x) = x × C (2)

k(x) = 2x (3)

l(x) = bN/2xc (4)

... and use l to �nd the binary representation of N, and h to

construct a Turing machine working on it in space C and time N/C

Eryk Kopczy«ski Spectra of formulae with restrictions
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E�ective simulation of a Turing machine

With more sophisticated techniques this can be optimized to time

O(N):
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Technique: BDSpecd ⊆ NTIME(n22n)

To check whether N ∈ spec(φ):

We guess the structure A of size N and degree d

We use Hanf's locality theorem to e�ectively verify whether A
satis�es φ

Theorem (Hanf '65)

Let φ be a FO formula. Then there exist numbers r and M such

that, for each graph G = (V ,E ), G |= φ depends only on the

number of r -neighborhoods of each type, up to the threshold of M.
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Two de�nitions of planar spectra

There are two non-equivalent de�nitions of planar spectra:

A planar spectrum of formula φ, pspec(φ), is the set of

cardinalities of all models of φ whose Gaifman graph is planar

PSpec is a set of all S ⊆ N such that

S = pspec(φ) for some φ

FPSpec if a set of all S ⊆ N such that S = spec(φ) for some

φ such that all models of φ are planar

Eryk Kopczy«ski Spectra of formulae with restrictions
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Weak planar spectrum: lower bounds

Theorem (Anuj Dawar, K)

NTIMES(2n/n) ⊆ PSpec

our model simulating a Turing machine is planar as long as the

machine has only one tape (superscript S)

we can make sure that all members of the universe are a part

of this simulation (as long as we only consider planar models!)

we are unable to read the size of the universe (that required

non-planarity), but we can calculate it with a logarithmic

overhead
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Weak planar spectrum: queue machines

Let M be a non-deterministic non-contracting queue machine

M accepts n ∈ N i� M has a computation which writes n symbols

to the queue

QTL ⊆ P(N) is the class of sets of integers accepted by some

queue machine of this type

Example

Initial queue contents: A, transitions:

A → Aa

a → aa

A → accept

accepts powers of two minus one
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We write all elements in the queue in a line

Black arrows: next in the queue Blue arrows: connect the reading

head to the writing head
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Weak planar spectrum: queue machines

Theorem (Anuj Dawar, K)

NTIME(
√
2n) ⊆ NTS(2n) ⊆ QTL ⊆ PSpec

NTS(2n) = the product of time and space is O(2n)
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Weak planar spectrum: upper bounds

Our planar models so far have bounded degree (PBDSpecd ).

PBDSpecd ⊆ NTIME(2nn2)

Without assuming bounded degree, on a non-deterministic RAM

machine, in linear time we can guess the model M, verify whether

M is a planar graph and whether M satis�es φ (Frick, Grohe 2001).

Together with the time hierarchy theorem, this solves an open

problem from the Fifty years of the spectrum problem.
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Forcing planarity

We cannot use our simulation of Turing machines when we require

all models of φ to be planar:
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Forcing planarity

We cannot use our simulation of queue machines either:

w →∗ w

We can write this computation on a torus

We could simulate an �extending� queue machine:

w →∗ u implies |u| > |w |
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Forcing planarity

However, such queue machines typically blow up the queue

exponentially in each iteration, and thus we get only a logarithmic

number of iterations.
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Forcing planarity

By using the logd (N) outermost layers of this spiral, we can

calculate the d -ary representation of N, and run a Turing machine

in space logd (N) and time N1−logd 2
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Forcing planarity

Theorem (Anuj Dawar, K)

NTISP((2− ε)n, n) ⊆ FPSpec

We can simulate a Turing machine which recognizes the binary

representation of N in space logN and time N1−ε.

Example

the set of primes (via the trivial algorithm)
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Open problems

Finer hierarchy than SPEC(FOk) ( SPEC(FO(2k + 2))

Between C2 and FO3: C2(<)
We know that Ψ(φ) for φ ∈ FO2C (<) include reachability sets

of Petri nets (so no longer semilinear, but still decidable �

Kosaraju '82)

Arity hierarchy

Can we reduce the gaps between the lower and upper bounds?

Can we use more memory in the forced planar case?

What about other classes of graphs with an excluded minor?
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Variable hierarchy: SPEC(FOk) ( SPEC(FO2k+2)

Two variables and counting: semilinear sets

Bounded treewidth: semilinear sets

Bounded degree: NTIME(2n) ⊆ BDSpecd ⊆ NTIME(n22n)

Weak planarity: NTIMES2
n/n ⊆ PSpec,

PSpec ⊆ NTIME(cn)

Forced planarity: NTISP((2− ε)n, n) ⊆ FPSpec
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