Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki

Eryk Kopczyński

Nr albumu: 189185

Konstrukcja i własności ridgeletów

Praca magisterska na kierunku MATEMATYKA

> Praca wykonana pod kierunkiem prof. dr. hab. Przemysława Wojtaszczyka

Lipiec 2004

Pracę przedkładam do oceny

Data

Podpis autora pracy:

Praca jest gotowa do oceny przez recenzenta

Data

Podpis kierującego pracą:

Streszczenie

Ridgelety ortonormalne $(\rho_{\lambda})_{\lambda \in \Lambda'}$ są bazą ortonormalną przestrzeni $L^2(\mathbb{R}^2)$ mającą potencjalne zastosowania w kompresji obrazów.

Niniejsza praca przybliża konstrukcję ridgeletów ortonormalnych i bada ich własności, takie, jak oszacowanie na wartość $\rho_{\lambda}(x, y)$ dla punktów (x, y) w pobliżu 0 i ∞ , przedstawia wykresy ρ_{λ} , oraz konstrukcję rodziny prostszych funkcji η o kształcie i własnościach zbliżonych do ridgeletów.

Słowa kluczowe

falki, transformacja Radona, aproksymacja, ridgelets

Klasyfikacja tematyczna

42-xx. Fourier analysis 42Cxx. Nontrygonometric Fourier analysis 42C40. Wavelets

44-xx. Integral transforms, operational calculus 44A12. Radon transform

Spis treści

1.	Wstęp	5
	1.1. Oznaczenia i definicje	6
2.	Konstrukcja ridgeletów	7
	2.1. Baza ortonormalna na $\mathbb R$	7
	2.2. Baza ortonormalna na \mathbb{T}	8
	2.3. Przestrzeń Radona	9
	2.4. Baza ortonormalna na \mathbb{R}^d	10
	2.5. Konstrukcja ridgeletów	12
3.	Kształt ridgeletów	15
	3.1. Przybliżenie	19
	3.2. Oszacowanie ρ w pobliżu 0	20
	3.3. Oszacowanie ρ daleko od 0	22
Bi	Bibliografia	

Rozdział 1

Wstęp

Falki Meyera bardzo dobrze nadają się do aproksymacji pewnych klas funkcji, co ma zastosowanie między innymi w kompresji obrazów. Każda funkcja f klasy $L^2(\mathbb{R})$ zapisuje się jako $\sum_k a_k \Psi_k \ (\Psi_k - \text{falki Meyera takie, że ich transformata Fouriera jest klasy <math>C^{\infty}$). Oznaczmy przez $A_n(f)$ n-ty największy wyraz z ciągu modułów $(|a_k|)_k$. (Na przykład, dla f równej $\frac{1}{2}\Psi_1 + \Psi_4 - \frac{1}{2}\Psi_6$ kolejnymi wyrazami ciągu $A_k(f)$ są $1, \frac{1}{2}, \frac{1}{2}, 0, 0, \ldots$) Jeśli funkcja f jest klasy C^{∞} i ma zwarty nośnik, to $A_n = o(n^{\epsilon})$ dla każdego $\epsilon > 0$. Oznacza to, że wystarczy mało wyrazów sumy $\sum_k b_k \Psi_k$, żeby uzyskać bardzo dobre przybliżenie funkcji f. To samo zachodzi, jeśli funkcja f o zwartym nośniku jest klasy C^{∞} poza skończoną liczbą punktów, w których jest osobliwa. Przykładami funkcji z takimi osobliwościami punktowymi w a są $f(x) = |x - a|^{-1/3}w(x)$ i f(x) = H(x - a)w(x), gdzie H(x) jest funkcją charakterystyczną prawej półprostej $[0, \infty)$, a w(x) jest tzw. "oknem", czyli funkcją klasy C^{∞} o zwartym nośniku.

Na płaszczyźnie sytuacja jest bardziej skomplikowana, gdyż osobliwości mogą być różnych wymiarów. Dwuwymiarowe falki Meyera wciąż nadają się do aproksymacji funkcji z osobliwościami punktowymi, ale zawodzą dla funkcji z osobliwościami na odcinkach oraz na krzywych.

Funkcją grzbietową (ridge function, planar wave) nazywamy funkcję $f : \mathbb{R}^d \to \mathbb{R}$ postaci $f(x) = g(x \cdot u)$, czyli stałą na hiperpłaszczyznach $x \cdot u = t$, dla pewnego kierunku u. Ridgelety zostały wymyślone przez E. Candèsa w jego pracy doktorskiej [Cand98]. Są to funkcje grzbietowe na płaszczyźnie o własnościach zbliżonych w pewnym stopniu do falek, które bardzo dobrze nadają się do aproksymacji funkcji, które mają osobliwości na odcinkach (chociaż nie są one bazą ortonormalną L^2 — niezerowe funkcje grzbietowe nie mogą być klasy L^2).

Niniejsza praca zajmuje się *ridgeletami ortogonalnymi*, opisanymi przez D. Donoho w pracy [Dono00]. Są to funkcje na płaszczyźnie zbliżone do ridgeletów Candèsa, ale tworzą one bazę ortonormalną przestrzeni $L^2(\mathbb{R}^2)$.

Istnieje też układ funkcji na płaszczyźnie zwanych *curveletami*, których konstrukcja używa między innymi ridgeletów ortonormalnych. Curvelety są o wiele lepsze od innych znanych układów na płaszczyźnie, jak na przykład falki i wielomiany trygonometryczne Fouriera, jeśli chodzi o aproksymację funkcji klasy C^2 poza brzegiem klasy C^2 , czyli funkcji postaci

$$f(x,y) = \begin{cases} f_0(x,y) & \text{dla } |(x,y)| \le \rho(\operatorname{Arg}(x+iy)) \\ f_1(x,y) & \text{dla } |(x,y)| > \rho(\operatorname{Arg}(x+iy)) \end{cases},$$
(1.1)

gdzie f_0 i f_1 są funkcjami klasy C^2 o zwartym nośniku na \mathbb{R}^2 , a ρ jest funkcją dodatnią klasy C^1 na okręgu, której pochodna spełnia warunek Lipschitza. (Najprostszym przykładem takiej funkcji f jest funkcja charakterystyczna koła, dla której ρ jest funkcją stałą.) Dokładniej, błąd, który uzyskujemy, jeśli bierzemy m największych wyrazów przybliżenia jest rzędu $O(m^{-2}(\log m)^3)$, podczas gdy dla innych znanych układów jest on rzędu $O(m^{-1})$ lub gorszego. Ma to potencjalne zastosowanie w kompresji obrazów.

Dużo informacji o ridgeletach, curveletach i innych układach, ich związkach z sieciami neuronowymi, analizą harmoniczną i teorią aproksymacji można znaleźć w pracy [Cand01].

W niniejszej pracy przedstawiono konstrukcję Donoho (w hipotetycznym uogólnieniu na wyższe wymiary) oraz pewnie wyniki dotyczące kształtu ridgeletów ρ — m. in. ich wykresy (wyliczone numerycznie), oszacowanie na wartość $\rho(x, y)$ dla (x, y) w pobliżu 0, oraz rodzinę funkcji η o kształcie i własnościach zbliżonych do ridgeletów, ale łatwiejszych do liczenia.

1.1. Oznaczenia i definicje

W niniejszej pracy często będziemy używać następujących operatorów na przestrzeniach funkcyjnych $L_p(\mathbb{R}^d)$:

- Operator translacji T^y , zadany wzorem $T^y f(x) = f(x y)$.
- Operator odbicia Q, Qf(x) = f(-x).
- Operator dylatacji J, $Jf(x) = 2^{d/p}f(2x)$.
- Transformata Fouriera

$$\mathcal{F}_d(f)(\omega) = (2\pi)^{-d/2} \int_{-\infty}^{\infty} e^{-i\omega \cdot x} f(x) dx; \qquad (1.2)$$

funkcja $\mathcal{F}(f)$ bywa też oznaczana \widehat{f} .

• Odwrotna transformata Fouriera $\mathcal{F}_d^{-1} = Q\mathcal{F}_d = \mathcal{F}_d Q.$

W przypadku p = 2, wszystkie te operatory są unitarne. (Transformata Fouriera jest określona dla $f \in L_1(\mathbb{R}^d) \cap L_2(\mathbb{R}^d)$, ale daje się rozszerzyć do operatora unitarnego na L_2 .)

Symbol S^n oznacza sferę *n*-wymiarową, czyli $\{x \in \mathbb{R}^{n+1} : |x| = 1\}$. Punkt antypodyczny do $x \in S^n$ oznaczamy przez -x. Podobnie jak dla \mathbb{R}^d , na przestrzeniach funkcyjnych $L_p(S^n)$ mamy operator Qf(x) = f(-x).

Najbardziej dla nas interesujący jest przypadek d = 2. Płaszczyznę \mathbb{R}^2 interpretujemy jako płaszczyzną zespoloną \mathbb{C} . Okrąg S^1 interpretujemy jako $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. Z tej interpretacji wynika oznaczenie e^{it} i struktura mnożenia na okręgu.

Jeśli V i W są przestrzeniami L_2 ($V = L_2(A, \mu_A), W = L_2(B, \mu_B)$), to *iloczynem tensorowym* przestrzeni V i W, oznaczanym $V \otimes W$, nazywamy przestrzeń $L_2(A \times B, \mu_A \otimes \mu_B)$. Jeśli $v \in V, w \in W$, to przez $v \otimes w \in V \otimes W$ oznaczamy funkcję zadaną wzorem ($v \otimes w$)(a, b) =v(a)w(b). Nie wszystkie elementy $V \otimes W$ są tej postaci, ale jest ona domknięciem przestrzeni liniowej przez nie rozpinanej. Jeśli $(v_i)_{i \in I}$ i $(w_j)_{j \in J}$ są odpowiednio bazami ortonormalnymi V i W, to $(v_i \otimes w_j)_{i \in I, j \in J}$ jest bazą ortonormalną $V \otimes W$. Jeśli $L : V \to V$ jest operatorem liniowym, to $L \otimes I$ jest operatorem działającym dla każdego ustalonego b jak operator L, czyli $(L \otimes I)v(a, b) = (Lv(\cdot, b))(a)$. Analogicznie definiuje się operator $I \otimes M$ dla $M : W \to W$, oraz $L \otimes M = (L \otimes I)(I \otimes M)$.

Przez \mathbb{Z}_k oznaczamy grupę cykliczną rzędu k, czyli zbiór liczb $\{0, 1, 2, ..., k-1\}$ z dodawaniem modulo k.

Rozdział 2

Konstrukcja ridgeletów

Do konstrukcji ortonormalnych ridgeletów na \mathbb{R}^d potrzebujemy dwóch baz ortonormalnych: $(t_{\tau})_{\tau \in \mathcal{T}}$ na $L_2(\mathbb{R})$, oraz $(s_{\sigma})_{\sigma \in \mathcal{S}}$ na $L_2(S^{d-1})$ (na sferze). W konstrukcji zaproponowanej przez D. Donoho stosujemy bazy ortonormalne oparte na falkach Meyera. Bazy te są opisane w następnych dwóch podrozdziałach. Potrzebna również będzie transformata Radona.

Transformata Radona oraz konstrukcja prowadząca od baz ortonormalnych na $L_2(\mathbb{R})$ i $L_2(S^{d-1})$ do ridgeletów została w niniejszym rozdziale przedstawiona w sposób ogólny (dla dowolnego d), ale będziemy jej używać tylko dla d = 2.

2.1. Baza ortonormalna na $\mathbb R$

Definicja 2.1 Niech $\Phi \in L_2(\mathbb{R})$. Niech V_0 będzie podprzestrzenią domkniętą $L_2(\mathbb{R})$ rozpinaną przez funkcje $T^m \Phi$ dla $m \in \mathbb{Z}$ (przesuwamy funkcję Φ o odcinki będące liczbami całkowitymi). Niech $V_j = J^j V_0$ dla $j \in \mathbb{Z}$. Funkcję Φ nazywamy funkcją skalującą, jeśli spełnione są następujące warunki:

- 1. $(\mathbf{T}^m \Phi)_{m \in \mathbb{Z}}$ jest bazą ortonormalną V_0 ,
- $2. \cdots \subset V_{-1} \subset V_0 \subset V_1 \subset \cdots$
- $\mathcal{J}_{\cdot} \bigcap_{j \in \mathbb{Z}} V_j = \{0\},\$
- 4. $L_2(\mathbb{R})$ jest domknięciem $\bigcup_{j \in \mathbb{Z}} V_j$.

Przykładem funkcji skalującej jest Φ_H , funkcja charakterystyczna odcinka [0,1]. Przestrzeń V_j to wówczas przestrzeń funkcji stałych na odcinkach $[m/2^j, (m+1)/2^j]$.

Niech $\Psi \in V_1$ będzie taką funkcją, że funkcje $T^m \Phi$ i $T^m \Psi$ dla $m \in \mathbb{Z}$ stanowią razem bazę ortonormalną V_1 (słowo *razem* oznacza, że suma zbiorów $\{T^m \Phi\}$ i $\{T^m \Psi\}$ stanowi bazę ortonormalną, a nie każdy z nich). ($T_m \Phi$ jest bazą ortonormalną V_0 ; wiemy, że $V_0 \subset V_1$.) Dla Φ_H funkcją spełniającą ten warunek jest Ψ_H , różnica funkcji charakterystycznej [0, 1/2]i funkcji charakterystycznej [1/2, 1].

Z definicji funkcji skalującej i definicji Ψ wynika, że funkcje $\mathbf{J}^{j}\mathbf{T}^{m}\Phi$, $\mathbf{J}^{j}\mathbf{T}^{m}\Psi$ dla wszystkich $m \in \mathbb{Z}$ stanowią razem bazę ortonormalną V_{j+1} . Jeśli do tego dorzucimy funkcje $\mathbf{J}^{j+1}\mathbf{T}^{m}\Psi$, to otrzymamy bazę ortonormalną V_{j+2} (wzięliśmy inną bazę V_{j+1} zamiast $\mathbf{J}^{j+1}\mathbf{T}^{m}\Phi$). Kontynuując powyższą operację i wiedząc, że domknięciem sumy wszystkich przestrzeni V_{j} jest całe $L_{2}(\mathbb{R})$, otrzymujemy następujący fakt:

Fakt 2.2 Niech $j_0 \in \mathbb{Z}$. Funkcje $J^{j_0}T^m\Phi$ dla wszystkich $m \in \mathbb{Z}$, oraz $J^jT^m\Psi$ dla wszystkich $m \in \mathbb{Z}$ oraz $j \in \mathbb{Z}, j \geq j_0$, stanowią razem bazę ortonormalną przestrzeni $L_2(\mathbb{R})$.

Jeśli skorzystamy również z założenia, że przecięcie przestrzeni V_i jest puste, otrzymamy:

Fakt 2.3 Funkcje $J^jT^m\Psi$ dla wszystkich $m \in \mathbb{Z}$ oraz $j \in \mathbb{Z}$ stanowią bazę ortonormalną przestrzeni $L_2(\mathbb{R})$.

Definicja 2.4 Funkcję Ψ spełniającą tezę faktu 2.3 nazywamy falką. (Funkcję Ψ_H nazywamy falką Haara.) Funkcję Ψ powiązaną w powyższy sposób z funkcją skalującą Φ nazywamy falką powiązaną z Φ . Funkcje $J^jT^m\Psi$ oznaczamy przez $\Psi_{j,m}$ (tak samo dla Φ).

Będzie nam jeszcze potrzebna falka Meyera:

Definicja 2.5 Falką Meyera nazywamy falkę Ψ spełniającą następujące własności:

- 1. supp $\widehat{\Psi} \subset [-8/3\pi, -2/3\pi] \cup [2/3\pi, 8/3\pi],$
- 2. Ψ jest rzeczywistą funkcją klasy C^{∞} ,
- 3. $\Psi(-1-x) = \Psi(x)$.

Jeśli Ψ jest falką Meyera, to funkcja $T^{1/2}\Psi$ jest rzeczywistą funkcją parzystą, zatem jej transformata Fouriera $\gamma(\omega) = e^{-i\omega/2}\widehat{\Psi}(\omega)$ jest również rzeczywistą funkcją parzystą. Najprostszą falką Meyera jest Ψ_A zadana przez funkcję γ_A , która jest funkcją charakterystyczną zbioru $[-2\pi, -\pi] \cup [\pi, 2\pi]$, pomnożoną przez $(2\pi)^{-1/2}$. Odpowiadającą jej funkcją skalującą jest Φ_A taka, że $\widehat{\Phi}_A$ jest funkcją charakterystyczną odcinka $[-\pi, \pi]$ (znów pomnożoną przez $(2\pi)^{-1/2}$). Wadą jej jest to, że funkcją $\widehat{\Psi}_A$ nie jest ciągła, przez co m. in. Ψ_A nie należy do klasy L_1 .

Jeśli zamiast γ_A użyjemy funkcji γ takiej, że odpowiednia Ψ również będzie falką, ale γ będzie klasy C^{∞} , to unikniemy tego problemu. Przykładowe konstrukcje takich falek można znaleźć w [Wojt00]; falkę Meyera, dla której transformatą Fouriera jej funkcji skalującej jest funkcja θ z Zadania 4.2 z [Wojt00], będziemy oznaczać przez Ψ_C .

Z definicji supp (γ) jest zawarty w $\left[-\frac{8\pi}{3}, -\frac{2\pi}{3}\right] \cup \left[+\frac{2\pi}{3}, +\frac{8\pi}{3}\right]$. Funkcja γ musi spełniać $|\gamma(\omega)| \leq (2\pi)^{-1/2}$.

2.2. Baza ortonormalna na $\mathbb T$

Korzystając ze skonstruowanego w fakcie 2.2 układu ortonormalnego na $L_2(\mathbb{R})$, możemy skonstruować układ ortonormalny falek okresowych na $L_2[0,1]$. Niech $\mathcal{O}: L_1(\mathbb{R}) \to L_1[0,1]$ będzie operatorem zadanym wzorem $\mathcal{O}f(x) = \sum_{m \in \mathbb{Z}} f(x+m)$. Korzystając z faktu 2.2 oraz z ortogonalności $\Phi_{0,m}$ i $\Phi_{0,n}$ dla $m \neq n$, łatwo jest udowodnić następujący fakt:

Fakt 2.6 Niech $j_0 \in \mathbb{Z}, j_0 \geq 0$. Niech Ψ i Φ będzie falką i odpowiadającą jej funkcją skalującą i obie należą do $L^1(\mathbb{R})$. Funkcje $\mathcal{O}\Phi_{j_0,m}$ dla $m \in \mathbb{Z}_{2^j}$ oraz $\mathcal{O}\Psi_{j,m}$ dla $j \in \mathbb{Z}, j \geq j_0, m \in \mathbb{Z}_{2^j}$ należą wówczas do $L_2[0,1]$ i stanowią razem jej bazę ortonormalną.

Układ ortonormalny na $L_2[0,1]$ możemy przenieść na $L_2(\mathbb{T})$ przy użyciu izometrii $\mathcal{A}: L_2[0,1] \to L_2(\mathbb{T})$ zadanej wzorem

$$\mathcal{A}f(e^{2\pi it}) = (2\pi)^{-1/2}f(t). \tag{2.1}$$

2.3. Przestrzeń Radona

Do konstrukcji ridgeletów potrzebujemy jeszcze kilku elementów.

Definicja 2.7 Niech $X_{t,u}$ będzie płaszczyzną prostopadłą do wektora u i odległą od 0 o t: $X_{t,u} = \{x : x \cdot u = t\}$. Transformatą Radona funkcji $f \in L^2(\mathbb{R}^d)$ jest funkcja $Rf : \mathbb{R} \times S^{d-1} \to \mathbb{R}$, zadana wzorem

$$Rf(t,u) = \int_{X_{t,u}} f(x)dx.$$
(2.2)

Rf(t, u) jest całką z f po hiperpowierzchni $x \cdot u = t$.

Transformata Radona jest operatorem nieograniczonym, w związku z czym jest określona nie dla wszystkich $f \in L^2(\mathbb{R}^d)$. Jest ona określona tylko dla tych f, które są całkowalne dla prawie wszystkich hiperpowierzchni $X_{t,u}$ oraz Rf zadana powyższym wzorem należy do $L^2(\mathbb{R} \otimes S^{d-1})$.

Transformatę Radona wygodnie się zapisuje przy użyciu delty Diraca δ :

$$Rf(t,u) = \int_{\mathbb{R}^d} f(x)\delta(x \cdot u - t) \, dx.$$
(2.3)

Nie każda funkcja z $L_2(\mathbb{R} \times S^{d-1})$ może być transformatą Radona jakiejś funkcji f. Jest bowiem spełniony warunek Rf(-t, -u) = Rf(t, u).

Definicja 2.8 Przestrzenią Radona \mathcal{R} nazywamy podprzestrzeń funkcji z $L_2(\mathbb{R} \times S^{d-1})$ spełniających warunek f(-t, -u) = f(t, u).

Latwo sprawdzić, że operator $\mathcal{P}: L_2(\mathbb{R} \times S^{d-1}) \to \mathcal{R}$ zadany wzorem $\mathcal{P} = (I + \mathbb{Q} \otimes \mathbb{Q})/2$ jest rzutem (ortogonalnym) na \mathcal{R} .

Istnieje prosta izometria C z przestrzeni Radona w $L_2(\mathbb{R}^d)$. Każdy punkt przestrzeni \mathbb{R}^d (oprócz 0) można wyrazić jako iloczyn punktu $u \in S^{d-1}$ i $\omega \in \mathbb{R}$ (przypomina to układ biegunowy). Izometria ta jest zadana wzorem

$$Ch(\omega u) = \sqrt{2}|\omega|^{-(d-1)/2}h(\omega, u).$$
 (2.4)

Wartość h w punkcie (ω, u) jest reprezentowana przez wartość Ch w punkcie ωu . Wartość $|\omega|^{-(d-1)/2}$ jest pierwiastkiem z jakobianu, a $\sqrt{2}$ wynika stąd, że każdy punkt liczymy dwa razy, jako ωu i $(-\omega)(-u)$ (z definicji przestrzeni Radona wynika, że wartość $Ch(\omega u)$ nie zależy od tego, którą reprezentację wybierzemy).

Fakt 2.9 Niech $R^* : \mathcal{R} \to L^2(\mathbb{R}^n)$ będzie operatorem zadanym wzorem

$$R^*h(x) = \int_{S^{d-1}} h(x \cdot u, u) du.$$
 (2.5)

Podobnie jak dla transformaty Radona, jest on określony tylko dla tych funkcji h, dla których prawa strona jest określona dla prawie wszystkich x oraz funkcja \mathbb{R}^*h zadana powyższym wzorem jest klasy L^2 . Jeśli $f \in L^2(\mathbb{R}^n)$ i $h \in \mathcal{R}$ są funkcjami, dla których określone są odpowiednio operatory \mathbb{R} i \mathbb{R}^* , to mamy $\langle \mathbb{R}f, h \rangle = \langle f, \mathbb{R}^*h \rangle$. Dowód.

$$\langle Rf,h\rangle = \int_{S^{d-1}} \int_{-\infty}^{\infty} Rf(t,u)h(t,u)dtdu =$$
(2.6)

$$= \int_{S^{d-1}} \int_{-\infty}^{\infty} \int_{\mathbb{R}^d} f(x)\delta(x \cdot u - t)h(t, u)dxdtdu =$$
(2.7)

$$= \int_{S^{d-1}} \int_{\mathbb{R}^d} f(x)h(x \cdot u, u)dxdu =$$
(2.8)

$$= \int_{\mathbb{R}^d} f(x) \int_{S^{d-1}} h(x \cdot u, u) du dx =$$
(2.9)

$$= \int_{\mathbb{R}^d} f(x)R^*h(x)dx = \langle f, R^*h \rangle.$$
(2.10)

2.4. Baza ortonormalna na \mathbb{R}^d

Mając bazy ortonormalne $(t_{\tau})_{\tau \in \mathcal{T}}$ na $L_2(\mathbb{R})$ i $(s_{\sigma})_{\sigma \in \mathcal{S}}$ na $L_2(S^{d-1})$ oraz przestrzeń Radona \mathcal{R} , możemy przystąpić do ogólnej konstrukcji bazy ortonormalnej na \mathbb{R}^d , której szczególnym przypadkiem są ridgelety. Nie każda baza ortonormalna (t_{τ}) i (s_{σ}) jest dobra. Układ (t_{τ}) musi spełniać następujący

Warunek 2.10 Wyrazy (t_{τ}) można połączyć w pary $(\tau, q(\tau)), \tau \neq q(\tau)$, takie, że $Q(t_{\tau}) = \pm t_{q(\tau)}$ (znak \pm nie ma znaczenia; Q to operator odbicia Qf(x) = f(-x)). Taki sam warunek musi spełniać układ (s_{σ}) .

Przez S' oznaczamy taki podzbiór S, do którego należy dokładnie jeden element każdej pary $(\sigma, q(\sigma))$.

Na przestrzeni $L_2(\mathbb{R} \times S^{d-1})$ mamy tensorową bazę ortonormalną $(t_\tau \otimes s_\sigma)_{(\tau,\sigma) \in \mathcal{T} \times \mathcal{S}}$. Oznaczmy

$$W_{\tau,\sigma} = \sqrt{2}\mathcal{P}(t_\tau \otimes s_\sigma). \tag{2.11}$$

Korzystając z warunku 2.10 i wzoru $\mathcal{P} = (I + Q \otimes Q)/2$, mamy

$$W_{\tau,\sigma} = (\sqrt{2/2})(t_\tau \otimes s_\sigma \pm t_{q(\tau)} \otimes s_{q(\sigma)}).$$
(2.12)

Łatwo pokazać, że $(W_{\tau,\sigma})_{\tau\in\mathcal{T},\sigma\in\mathcal{S}'}$ jest bazą ortonormalną przestrzeni \mathcal{R} (wyrzuciliśmy tutaj duplikaty, biorąc \mathcal{S}' zamiast \mathcal{S}).

Niech $\mathcal{I} : \mathcal{R} \to L_2(\mathbb{R}^2)$ będzie operatorem zadanym wzorem (indeksy przy \mathcal{F} oznaczają tutaj wymiar przestrzeni, na której działa transformata Fouriera)

$$\mathcal{I} = \mathcal{F}_d^{-1} C(\mathcal{F}_1 \otimes I). \tag{2.13}$$

Oznaczmy $\rho_{\tau,\sigma} = \mathcal{I}W_{\tau,\sigma}$. Operator \mathcal{I} jest izometrią (bo transformata Fouriera i C są izometriami), więc $(\rho_{\lambda})_{\lambda \in \mathcal{T} \times S'}$ jest bazą ortonormalną w przestrzeni \mathbb{R}^d . Transformata Fouriera $\rho_{\tau,\sigma}$ zapisuje się wzorem

$$\widehat{\rho}_{\tau,\sigma}(\omega u) = |\omega|^{-(d-1)/2} (\widehat{t_{\tau}}(\omega) s_{\sigma}(u) + \widehat{t_{\tau}}(-\omega) s_{\sigma}(-u)).$$
(2.14)

Interesujące jest zapisanie izometrii \mathcal{I} w inny sposób.

Definicja 2.11 Operatorem ułamkowego różniczkowania Riesza $\Delta : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ nazywamy operator $\Delta = \mathcal{F}^{-1}Y^+\mathcal{F}$, gdzie $Y^+g(\omega) = |\omega|^{1/2}g(\omega)$. Operator ten jest nieograniczony i określony tylko dla tych f, dla których $Y^+\mathcal{F}f \in L^2(\mathbb{R})$.

Z własności transformaty Fouriera wiemy, że gdybyśmy we wzorze na Y^+f mnożyli przez ω zamiast przez $|\omega|^{1/2}$, byłby to zwykły operator różniczkowania (z dokładnością do mnożenia przez *i*). Biorąc pierwiastek z ω , otrzymujemy "ułamkowe" różniczkowanie.

Fakt 2.12 Niech $f \in \mathcal{R}$, $g = (\mathcal{F}_1 \otimes I)f$, h = Cg, $j = \mathcal{F}_d^{-1}h$ (czyli $j = \mathcal{I}f$). Jeśli funkcje h i $f(\cdot, u)$ są całkowalne oraz operatory R^* i Δ^{d-1} są określone dla odpowiednich funkcji, to dla pewnego współczynnika α_d

$$j = \mathcal{I}f = \alpha_d R^* (\Delta^{d-1} \otimes I)f.$$
(2.15)

Dowód. Oznaczmy $\Pi = ((2\pi)^{-1/2}).$

$$j(x) = \Pi^d \int_{\mathbb{R}^d} e^{i\nu \cdot x} h(\nu) d\nu =$$
(2.16)

$$= 2^{-1} \Pi^d \int_{S^{d-1}} \int_{-\infty}^{\infty} e^{i\omega u \cdot x} |\omega|^{d-1} h(\omega u) d\omega du =$$
(2.17)

$$= 2^{-1/2} \Pi^d \int_{S^{d-1}} \int_{-\infty}^{\infty} e^{i\omega u \cdot x} |\omega|^{d-1} |\omega|^{-(d-1)/2} g(\omega, u) d\omega du =$$
(2.18)

$$= 2^{-1/2} \Pi^{d+1} \int_{S^{d-1}} \int_{-\infty}^{\infty} e^{i\omega u \cdot x} |\omega|^{(d-1)/2} \int e^{-i\omega t} f(t, u) dt d\omega du = (2.19)$$

$$= 2^{-1/2} \Pi^{d-1} \int_{S^{d-1}} (\Delta^{d-1} \otimes I) f(u \cdot x, u) du =$$
 (2.20)

$$= 2^{-1/2} \Pi^{d-1} (R^* (\Delta^{d-1} \otimes I) f)(x).$$
(2.21)

Fakt 2.13 Załóżmy, że założenia faktu 2.12 są spełnione dla $f = W_{\tau,\sigma}$ i operator Δ^{d-1} jest określony dla t_{τ} ; oznaczmy $t_{\tau}^+ = \Delta^{d-1}t_{\tau}$. Mamy wówczas

$$\rho_{\tau,\sigma}(x) = \sqrt{2}\alpha_d \int_{S^{d-1}} t_{\tau}^+(x \cdot u) s_{\sigma}(u) du.$$
(2.22)

Dowód. Łatwo sprawdzić, że $R^*(Q \otimes Q) = R^*$ i, że operator Q jest przemienny z Δ . Ze wzoru 2.15 otrzymujemy

$$\rho_{\tau,\sigma}(x) = \alpha_d R^*(\Delta^{d-1} \otimes I)(\sqrt{2}/2)(I + \mathbf{Q} \otimes \mathbf{Q})(t_\tau \otimes s_\sigma) =$$
(2.23)

$$= (\sqrt{2}/2)\alpha_d R^* (I + \mathbf{Q} \otimes \mathbf{Q}) (\Delta^{d-1} \otimes I) (t_\tau \otimes s_\sigma) =$$
(2.24)

$$= \sqrt{2\alpha_d R^*(t_\tau^+ \otimes s_\sigma)} = \tag{2.25}$$

$$= \sqrt{2\alpha_d} \int_{S^{d-1}} t_\tau^+(x \cdot u) s_\sigma(u) du.$$
(2.26)

2.5. Konstrukcja ridgeletów

Baza ortonormalnych ridgeletów powstaje przez zastosowanie konstrukcji z podrozdziału 2.4 (w wymiarze d = 2) do bazy falkowej na prostej (same falki Meyera, bez funkcji skalujących) skonstruowanej w 2.1 oraz bazy falkowej na okręgu, skonstruowanej w 2.2.

Jako bazę ortonormalną na prostej przyjmujemy falki Meyera, czyli (Ψ jest oczywiście falką Meyera)

$$\mathcal{T} = \{ (j,k) : j \in \mathbb{Z}, \ k \in \mathbb{Z} \}, \ t_{j,k} = \Psi_{j,k}.$$
(2.27)

Baza ortonormalna na okręgu jest bazą wynikającą z faktu 2.6, przeniesioną na \mathbb{T} przy użyciu operatora \mathcal{A} (2.1). Ustalamy liczbę $i_0 \in \mathbb{Z}, i_0 \geq 1$. Przyjmujemy

$$\mathcal{S} = \{ (0, i_0, l) : l \in 2^{i_0} \} \cup \{ (1, i, l) : i \ge i_0, i \in \mathbb{Z}, l \in \mathbb{Z}_{2^i} \},$$

$$s_{0, i_0, l} = \mathcal{AO}\Phi_{i_0, l}, \ s_{1, i, l} = \mathcal{AO}\Psi_{i, l}.$$
(2.28)

Za Ψ bierzemy falkę Meyera, a za Φ odpowiadającą jej funkcję skalującą.

Bazy te spełniają warunek 2.10: $Qt_{j,k} = -t_{j,-1-k}$ (z ostatniego punktu definicji falki Meyera), $Qs_{\epsilon,i,l} = s_{\epsilon,i,l+2^{i-1}}$. Stąd wynika kojarzenie w pary q. Za \mathcal{S}' można wziąć $\{(\epsilon, i, l) \in \mathcal{S} : l < 2^{i-1}\}$. Możemy więc zastosować konstrukcję 2.4.

Przedstawiona powyżej konstrukcja została trochę uproszczona w stosunku do konstrukcji Donoho. Jeśli bazą przestrzeni Hilberta V jest $(v_{\tau})_{\tau}$, i dla każdego τ mamy jakąś bazę $(w_{\sigma}^{\tau})_{\sigma}$ przestrzeni Hilberta W (tej samej dla każdego τ), to $(v_{\tau} \otimes w_{\sigma}^{\tau})_{\tau,\sigma}$ jest bazą przestrzeni $V \otimes W$. Możemy więc, tworząc bazę dla iloczynu tensorowego przestrzeni $L_2(\mathbb{R}) \otimes L_2(\mathbb{T})$, zamiast brać ustaloną bazę przestrzeni $L_2(\mathbb{T})$, dobierać ją oddzielnie dla każdego elementu bazy $L_2(\mathbb{R})$.

W naszym przypadku baza ortonormalna (s_{σ}) na $L_2(\mathbb{T})$ jest sparamateryzowana wartością $i_0 \geq 0$; Donoho przyjmuje $i_0 = \min(i'_0, k(\tau))$. Nie zaburza to warunku 2.10.

Definicja 2.14 Ridgeletami nazywamy bazę ortonormalną złożoną z funkcji $\rho_{\epsilon,i,l,j,k}$ zadanych wzorem (2.14) dla układów $(t_{j,k})$ i $(s_{\epsilon,i,l})$ zdefiniowanych wzorami (2.27) i (2.28).

Dla falek Meyera operator Δ jest określony (ze względu na zwarty nośnik ich transformaty Fouriera); pozostałe założenia faktu 2.13 również łatwo sprawdzić, zatem zachodzi wzór (2.22). Wynika z niego, że $\rho_{\tau,\sigma}$ jest "średnią" funkcji grzbietowych (*ridge function*) $t_{\tau}^+(x \cdot u)$ (współczynniki tej "średniej" nie muszą być dodatnie). Jeśli wartości s_{σ} są małe poza okolicami pewnego kierunku u (w przypadku falek okresowych oznacza to, że współczynnik skalowania ma dużą wartość), to funkcja $\rho_{\tau,\sigma}$ jest dobrym przybliżeniem funkcji grzbietowej. Uzasadnia to nazwę *ridgelety ortonormalne* dla skonstruowanych przez nas obiektów.

Fakt 2.15 Jeśli $j \in L^2(\mathbb{R}^d)$, transformata Radona jest określona dla j i operator $\Delta^{d-1} \otimes I$ jest określony dla Rj, to $\mathcal{I}^{-1}j = \alpha_d(\Delta^{d-1} \otimes I)Rj$.

Dowód. Fakt ten wynika stąd, że \mathcal{I} jako izometria jest operatorem unitarnym i stąd, że Y^+ jest operatorem symetrycznym. Dla każdego $f \in \mathcal{R}$ spełniającego założenia faktu 2.12 (funkcje takie są gęste w \mathcal{R} , bo zawierają przestrzeń liniową rozpinaną przez $W_{\tau,\sigma}$) mamy:

$$\langle f, \mathcal{I}^{-1}j \rangle = \langle If, j \rangle = \langle \alpha_d R^*(\Delta^{d-1} \otimes I)f, j \rangle =$$
 (2.29)

$$= \left\langle ((\mathcal{F}(Y^+)^{d-1}\mathcal{F}^{-1}) \otimes I)f, \alpha_d R j \right\rangle =$$
(2.30)

$$= \left\langle f, \alpha_d (\mathcal{F}^{-1}(Y^+)^{d-1} \mathcal{F} \otimes I) R j \right\rangle =$$
(2.31)

$$= \left\langle f, \alpha_d (\mathcal{F}^{-1} \mathbf{Q} (Y^+)^{d-1} \mathbf{Q} \mathcal{F} \otimes I) R j \right\rangle =$$
(2.32)

$$= \left\langle f, \alpha_d (\mathcal{F}(Y^+)^{d-1} \mathcal{F}^{-1} \otimes I) R j \right\rangle =$$
(2.33)

$$= \left\langle f, \alpha_d (\Delta^{d-1} \otimes I) R j \right\rangle.$$
(2.34)

Zatem $\mathcal{I}^{-1}j = \alpha_d (\Delta^{d-1} \otimes I)Rj.$

Fakt 2.15 jest powodem, dla którego ridgelety tak dobrze nadają się do aproksymacji funkcji z osobliwościami na odcinkach. Jak sobie dość łatwo wyobrazić, transformata Radona przekształca osobliwości na odcinkach na osobliwości punktowe w przestrzeni Radona. (Niestety, słabo nadają się do aproksymacji funkcji z osobliwościami punktowymi, gdyż osobliwości punktowe stają się osobliwościami na krzywych.) Pełny dowód tych własności można znaleźć w pracy [Dono00].

Brak ridgeletów dla wymiarów d > 2 wynika z braku dobrych ortonormalnych baz falkowych na S^{d-1} dla d > 2. Warto zauważyć, że w wymiarze d > 2 mogą nas interesować osobliwości dowolnych wymiarów od 0 do d-1. W pracy [Dono99] została przedstawiona konstrukcja krat sztywnych, które mogłyby dobrze aproksymować takie osobliwości (konstrukcja używa m.in. rozmaitości Grassmana). (*Kratą sztywną* nazywamy układ funkcji $(f_n) \le L^2$ taki, że dla każdego $h \in L^2$ mamy $h = C \cdot \sum \langle h, f_n \rangle f_n$ dla pewnej stałej $C \in \mathbb{R}$; przykładem kraty sztywnej nie będącej bazą jest układ funkcji powstający po połączeniu dwóch różnych baz ortonormalnych.)

Rozdział 3

Kształt ridgeletów

W tym rozdziale zajmujemy się własnościami ridgeletów (opartych na falkach Meyera, na płaszczyźnie). Baza ortogonalna ridgeletów jest indeksowana pięcioma liczbami:

- k skala falki na prostej. Jak łatwo zauważyć, zmiana tego parametru oznacza po prostu skalowanie ridgeletu, zatem dla wygody przyjmiemy, że ma on wartość 0 (fakty łatwo będzie przenieść na dowolne k).
- *l* jak bardzo falka Meyera jest oddalona od punktu 0. Šrodek układu współrzędnych ma duże znaczenie w konstrukcji ridgeletów, zatem parametr ten dość mocno wpływa na kształt.
- ϵ określa, z którą częścią bazy ortonormalnej $L_2(\mathbb{T})$ mamy do czynienia: z funkcjami skalującymi na poziomie i_0 (0), czy z falkami na poziomie $i \ge i_0$ (1).
- i skala falki lub funkcji skalującej na okręgu. Ma wpływ na kształt ridgeletu (zasięg kątowy), podobnie jak l.
- j obrót falki lub funkcji skalującej na okręgu. Zmiana tego parametru powoduje obrócenie ridgeletu, zatem, podobnie jak dla k, będziemy przyjmowali, że ma on ustaloną wartość. Funkcja s_{σ} jest symetryczna; aby środkiem symetrii było 0, przyjmujemy j = 1/2.

Rysunki 3.1 i 3.2 przedstawiają wyliczone numerycznie wykresy ridgeletów odpowiednio dla falek Ψ_A i Ψ_C . Jasność punktu określa $|\rho(x, y)|$; skala odcieni szarości przedstawiona jest pod wykresem na rysunku 3.3 (1 oznacza $||\rho||_1$). Współrzędne x i y przebiegają na każdym wykresie od -64 do 64.

Na wszystkich wykresach $\epsilon = 1$, i = 7 poza przedostatnim, na którym $\epsilon = 0$, i = 8. Pierwsze cztery wykresy różnią się wartością parametru l. Ostatni wykres przedstawia η — przybliżenie ρ , które jest opisane później. Wartość l jest tu równa 0 — wykresy η dla różnych wartości l różnią się tylko przesunięciem.

Rysunek 3.3 to powiększenie wykresu dla l = 10 (współrzędne przebiegają tutaj od -32 do 32). Funkcja ρ jest oscylująca; widoczne na rysunku grzbiety są na przemian dodatnie i ujemne — po drugiej każdej białej pionowej linii oraz każdej białej linii krzywej znak się odwraca. Okres regularnych oscylacji poziomych (białe pionowe linie) jest mniej więcej równy 1.

Rysunek 3.1: Wykresy ρ dla różnych wartości l,oraz η (Ψ_A jako falka na prostej).

Rysunek 3.2: Wykresy ρ dla różnych wartości l,oraz η (Ψ_C jako falka na prostej).

Rysunek 3.3: Powiększenie wykresu ρ dla $\Psi_A, l=10,\ \epsilon=0,\ i=7,$ oraz skala szarości.

3.1. Przybliżenie

Poniższe przybliżenie nie nadaje się szacowania wartości $\rho_{l,1,i}(x, y)$ (nieznaczące indeksy j i k pomijamy) i pochodnych — chociaż można próbować policzyć drugą normę różnicy między ρ a przybliżeniem — ale daje się dosyć dobrze policzyć i dosyć dobrze oddaje kształt, szczególnie dla większych i.

Jak pamiętamy z konstrukcji (2.14), wartość transformaty Fouriera funkcji $\hat{\rho}_{l,1,i}$ w punkcie $\omega u, u = e^{i\phi}$, zadana jest wzorem

$$\widehat{\rho}(\omega u) = |\omega|^{-1/2} (\widehat{t_{\tau}}(\omega) s_{\sigma}(u) + \widehat{t_{\tau}}(-\omega) s_{\sigma}(-u)).$$
(3.1)

Funkcja $s_{1,i,1/2}$ jest określona na okręgu $(u = e^{i\theta})$. Jeśli *i* jest duże, to funkcja $s_{1,i,1/2}$ jest mała w punktach określonych przez duże θ . Przybliżenie opiera się na zastąpieniu $u = e^{i\theta}$ przez $u = 1 + i\theta$, co (po przyjęciu $s_{\sigma}(-u) = 0$) prowadzi do:

$$\widehat{\eta}(\omega,\nu) = |\omega|^{-1/2} (\widehat{t}_{\tau}(\omega) \widetilde{s}_{\sigma} (1 + i(\nu/\omega)))$$
(3.2)

Funkcję $s_{\sigma}(e^{it})$ zdefiniowaliśmy wzorem $s_{\sigma}(e^{it}) = \sum_{k} (2\pi)^{-1/2} \Psi_{i,0}(k+t/2\pi)$, zatem na potrzeby przybliżenia $\tilde{s}_{\sigma}(1+i(\nu/\omega)) = (2\pi)^{-1/2} \Psi_{i,0}(\nu/2\pi\omega)$. Rysunek 3.4 schematycznie ukazuje, czym się różni kształt $\hat{\rho}$ i $\hat{\eta}$.

Rysunek 3.4: Schematyczne wykresy $\hat{\rho}$ (z lewej) i $\hat{\eta}$ (z prawej).

Przejście od $\hat{\eta}$ do η jest łatwiejsze do obliczenia niż dla ρ . Niech $\eta_1 = (I \otimes \mathcal{F}^{-1})(\hat{\eta})$; mamy $\eta = (\mathcal{F}^{-1} \otimes I)\eta_1$. Niech $\tilde{y} = 2\pi y/2^i$. Wykonując różniczkowanie najpierw po y (przejście z $\hat{\eta}$ do η_1), a następnie po x (przejście z η_1 do η) otrzymujemy:

$$\widehat{\eta}(\omega,\nu) = |2\pi\omega|^{-1/2} \widehat{t}_{\tau}(\omega) \Psi_i(\nu/2\pi\omega)$$
(3.3)

$$\eta_1(\omega, y) = (2\pi)^{-1/2} |2\pi\omega|^{+1/2} \widehat{t_{\tau}}(\omega) \widehat{\Psi_i}(2\pi\omega y)$$
(3.4)

$$\eta_1(\omega, y) = (2\pi)^{-1/2} |2^{i+1}\pi\omega|^{+1/2} \widehat{t_{\tau}}(\omega) \widehat{\Psi}(2\pi\omega y/2^i)$$
(3.5)

$$\eta(x,y) = (2\pi)^{-1} (2^{i+1}\pi)^{1/2} \int_{-\infty}^{\infty} |\omega|^{1/2} \gamma(\omega) \gamma(\tilde{y}\omega) e^{i\omega(x-l+1/2)} d\omega$$
(3.6)

Z ostatniego wzoru widać, że $\eta(x, y) = 0$, jeśli $|\tilde{y}|$ jest mniejsze niż 1/4 lub większe niż 4 (nośniki $\gamma(\omega)$ i $\gamma(\tilde{y}\omega)$ są wówczas rozłączne). (Wykresy η na rysunkach 3.1 i 3.2 nie są zerowe w tych przedziałach (są lekko szare); wynika to z błędów przybliżeń w obliczeniach numerycznych.) Należy się spodziewać, że η osiąga największą wartość dla x - l + 1/2 = 0oraz $\tilde{y} = 1$.

Porównanie wykresów prawdziwych ridgeletów i przybliżeń pokazuje, że prawdziwe ridgelety trochę zakręcają wokół 0. Poza tym, wykresy są dość podobne. Z własności transformaty Fouriera wynika, że dla prawdziwych ridgeletów wartości ρ dla za małych i za dużych |y| nie mogą być równe 0, chociaż są rzeczywiście małe.

Układ funkji η jest nie tylko przybliżeniem ridgeletów ρ , ale jest także interesującym układem funkcji, o własnościach zbliżonych do własności ridgeletów. Jest to baza ortonormalna. Konstrukcja η daje się łatwo uogólnić na większą liczbę wymiarów. Ridgelety były zadane przez izometrię (patrz wzory 2.13 i 2.15)

$$\mathcal{I} = \mathcal{F}_d^{-1} C(\mathcal{F}_1 \otimes I) = \alpha_d R^*(\Delta^{d-1} \otimes I), \tag{3.7}$$

gdzie R^* jest operatorem sprzężonym do transformaty Radona; dla "pseudorid
geletów" η odpowiednią izometrię można zapisać jako

$$\widetilde{\mathcal{I}} = \mathcal{F}_d^{-1} \widetilde{C}(\mathcal{F}_1 \otimes I) = \beta_d E^*(\Delta^{d-1} \otimes I),$$
(3.8)

gdzie $(x \in \mathbb{R}, y \in \mathbb{R}^{d-1})$

$$E^*f(x,y) = \int_{\mathbb{R}^{d-1}} f(x+z \cdot y, z) dz.$$
 (3.9)

Operator sprzężony do E^* jest postaci

$$Ef(x,y) = \int_{\mathbb{R}^{d-1}} f(x-z \cdot y, z) dz; \qquad (3.10)$$

podobnie jak dla transformaty Radona, mamy tutaj całki po hiperpłaszczyznach, z tym, że hiperpłaszczyzny są tu inaczej rozłożone.

Funkcje η mogłyby być pod pewnymi względami lepsze od ridgeletów ρ . W przypadku η wszystkie cztery parametry i, j, k i l wpływają na kształt funkcji w bardzo prosty sposób (przekształcenia afiniczne), a w przypadku ρ tylko j i k, co mogłoby mieć znaczenie praktyczne (wystarczy policzyć tylko jedną). Uogólnienie ridgeletów na wyższe wymiary natrafiło na problem z brakiem falek na sferze; w przypadku η zamiast sfery mamy hiperpłaszczyznę, na której falki są znane. Wadą funkcji η jest to, że nie wszystkie kierunki są równoważne (kierunek poziomy jest wyróżniony).

3.2. Oszacowanie ρ w pobliżu 0

Na wykresach dla $\epsilon = 1$ widzimy, że $\rho(x)$ jest małe dla punktów $x \in \mathbb{R}^2$ bliskich 0. W tej części podamy wyjaśnienie tego faktu.

Jest to prawda tylko dla $\epsilon = 1$. Wartość funkcji ρ w zerze jest bowiem równa $t_{\tau}^+(0) \int_{\mathbb{T}} s_{\sigma}(u) du$ (ze wzoru 2.22); jeśli $\epsilon = 0$, to całka $\int_{\mathbb{T}} s_{\sigma}(u) du$ jest niezerowa (jako całka z funkcji skalującej); $t_{\tau}(0)$ zazwyczaj również jest niezerowe.

Ze wzoru (2.22) wiemy, że $\rho_{\tau,\sigma} = L_{\sigma}(t_{\tau}^+)$, gdzie operator $L_{\sigma} : L_2(\mathbb{R}) \to L_2(\mathbb{R}^2)$ zadany jest wzorem ($\alpha'_2 = \alpha_2 \sqrt{2}$)

$$L_{\sigma}(f)(x) = \alpha'_2 \int_{\mathbb{T}} f(x \cdot u) s_{\sigma}(u) du.$$
(3.11)

Z definicji funkcji $s_{1,i}$ mamy, że (punktxzapisujemy w biegunowym układzie współrzędnych jako $x = re^{i\theta}$)

$$L_{\sigma}(f)(x) = \alpha'_2 \int_0^{2\pi} f(r\cos(\theta - \phi)) s_{\sigma}(e^{i\phi}) d\phi \qquad (3.12)$$

$$= \alpha_2'(2\pi)^{-1/2} \int_{-\infty}^{\infty} f(r\cos(\theta - \phi)) \Psi_{i,0}(\phi/2\pi) d\phi \qquad (3.13)$$

Jeśli $f(t) = t^k$, to przez zapisanie funkcji $\cos^k \alpha$ w postaci sum
y $\sum_{l=-k}^k A_l e^{il\alpha}$ mamy:

$$L(f)(x) = \alpha'_{2}(2\pi)^{-1/2} \int_{-\infty}^{\infty} (r\cos(\theta - \phi))^{k} \Psi_{i,0}(\phi/2\pi) d\phi$$
(3.14)

$$= \alpha_{2}'(2\pi)^{-1/2} r^{k} \sum_{l} A_{l} \int_{-\infty}^{\infty} e^{il(\theta-\phi)} \Psi_{i,0}(\phi/2\pi) d\phi \qquad (3.15)$$

$$= \alpha_2'(2\pi)^{+1/2} r^k \sum_l A_l e^{il\theta} \int_{-\infty}^{\infty} e^{i2\pi l(\phi/2\pi)} \Psi_{i,0}(\phi/2\pi) d\phi/2\pi \qquad (3.16)$$

$$= \alpha_2'(2\pi)^{+1/2} r^k \sum_l A_l e^{il\theta} \widehat{\Psi}_{i,0}(2\pi l)$$
(3.17)

Z definicji falek Meyera wiemy, że $\widehat{\Psi}_{i,0}(2\pi l)$ jest równe 0 dla $|2\pi l| < 2^{i+1}\pi/3$. Zatem L(f) = 0dla funkcji f będących wielomianami stopnia $m \le 2^i/3$. Ze wzoru (3.11) widać, że

$$|L(f-g)(x)| \le \alpha_2' ||f-g||_{\infty} ||s_{1,i}||_1,$$
(3.18)

gdzie przez $||f - g||_{\infty}$ rozumiemy normę supremum na odcinku [-r, r], bo $x \cdot u$ zawsze należy do tego odcinka $(x = re^{i\theta})$. Należy więc oszacować $E_m(t_{0,l}^+)$, czyli błąd oszacowania funkcji $t_{0,l}^+$ przez wielomian f stopnia $m \le 2^i/3$ na odcinku [-r, r]. W tym celu skorzystamy z następującego tw. Jacksona [Pleś00]:

Twierdzenie 3.1 (Jackson) Jeśli f jest klasy C^k na przedziale [-r, r] oraz m > k, to

$$E_m(f) \le \left(\frac{\pi}{2}\right)^k \frac{r^k ||f^{(k)}||_{\infty}}{(m+1)^k},\tag{3.19}$$

 $qdzie \ a^{\underline{k}} = a(a-1)(a-2)\cdots(a-k+1).$

Pochodne t^+ można łatwo oszacować z transformaty Fouriera:

$$||(t^{+})^{(k)}||_{\infty} \leq (2\pi)^{-1/2} \int_{-\infty}^{\infty} |\mathcal{F}((t^{+})^{(k)})(\omega)| d\omega = \int_{-\infty}^{\infty} |\gamma(\omega)\omega^{k}|\omega|^{1/2} d\omega \quad (3.20)$$

$$\leq 2(2\pi)^{-1/2} \int_0^{\frac{8\pi}{3}} (2\pi)^{1/2} |\omega|^{k+1/2} d\omega \qquad (3.21)$$

$$\leq \frac{2}{k+3/2} \left(\frac{8\pi}{3}\right)^{k+3/2} \tag{3.22}$$

Po podstawieniu wzorów 3.19 i 3.22 do 3.18 otrzymujemy:

Twierdzenie 3.2 Dla każdych k i m spełniających $k < m < 2^i/3$

$$\rho_{0,l,1,i,j}(re^{i\theta}) \leq \alpha_2' ||s_{1,i}||_1 \left(\frac{\pi}{2}\right)^k r^k \frac{2\left(\frac{8\pi}{3}\right)^{k+3/2}}{(k+\frac{3}{2})(m+1)\underline{k}}$$
(3.23)

$$\leq 16 \left(\frac{\pi}{3}\right)^{3/2} \alpha_2' ||s_{1,i}||_1 \frac{\left(\frac{4\pi^2 r}{3}\right)^n}{(k+\frac{3}{2})(m+1)\underline{k}}.$$
(3.24)

Oszacowanie jest tym lepsze, im większe jest m; najlepsze jest zatem dla $m = \lfloor 2^i/3 \rfloor$ (najmniejszej liczby całkowitej nie przekraczającej $2^i/3$).

Jeśli chodzi o k, to najlepsze oszacowanie otrzymujemy dla największego k, dla którego $m + 2 - k \geq \frac{4\pi^2 r}{3} (m + 2 - k$ jest nowym czynnikiem dochodzącym do mianownika przy zwiększeniu k, a $\frac{4\pi^2 r}{3}$ — nowym czynnikiem dochodzącym do licznika; dla uproszczenia nie uwzględniamy zmieniającego się czynnika $k + \frac{3}{2}$). Mamy zatem $k \leq m + 2 - \frac{4\pi^2 r}{3}$ i jednocześnie k < m (warunek z Twierdzenia 3.1). Jeśli r jest małe ($\frac{4\pi^2 r}{3} < 3$), to możemy przyjąć k = m - 1 (mamy wówczas $(m + 1)^{\underline{k}} = (m + 1)!/2$), w przeciwnym razie największe możliwe jest $k = \lfloor m + 2 - \frac{4\pi^2 r}{3} \rfloor$.

3.3. Oszacowanie ρ daleko od 0

Ograniczenie na $\rho(x)$ dla dużych wartości |x| wynika z własności transformaty Fouriera.

Fakt 3.3 Jeśli $\hat{t_{\tau}}$ jest funkcją klasy C_l , to dla pewnej stałej $C \ \rho_{\tau,\sigma}(x) \leq C|x|^{-l}$.

Dowód. Jeśli pochodna $\hat{\rho}$ po ω_k istnieje i jest funkcją całkowalną, to

$$\mathcal{F}^{-1}\left(\frac{d\widehat{\rho}}{d\omega_k}\right)(x) = ix_k\rho(x). \tag{3.25}$$

Ze wzoru na $\hat{\rho}$ wynika, że jeśli funkcje s_{σ} i $\hat{t_{\tau}}$ są klasy C^l , to $\hat{\rho}$ również. Funkcja s_{σ} jest klasy C^{∞} (jako falka Meyera). Ze wzoru 3.25 oraz tego, że $||f||_{\infty} \leq (2\pi)^{-d/2} ||\hat{f}||_1$ łatwo można wywnioskować, że $x_1^{l_1} x_2^{l_2} \dots x_d^{l_d} \rho(x_1 \dots x_d)$ szacuje się przez normę L_1 odpowiedniej pochodnej $\hat{\rho}$.

Bibliografia

- [Cand98] E. J. Candès, *Ridgelets: Theory and Applications*. Ph. D. Thesis, Stanford University.
- [Cand01] E. J. Candès, New Ties between Computational Harmonic Analysis and Approximation Theory, 2001.
- [Dono99] D. L. Donoho, Tight frames of k-plane Ridgelets and the problem of representing objects which are smooth away from d-dimensional singularities in \mathbb{R}^n , Proc. Natl. Acad. Sci. USA 96 (1999), 1828-1833.
- [Dono00] D. L. Donoho, Orthonormal ridgelets and linear singularities, SIAM J. Math. Anal. 31 (2000), 1062-1069.
- [Dono01] D. L. Donoho, Ridge functions and orthonormal ridgelets, J. Approx. Theory 111 (2001), 143-179.
- [Pleś00] W. Pleśniak, Wykłady z teorii aproksymacji, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków 2000.
- [Wojt00] P. Wojtaszczyk, Teoria falek, Wydawnictwo Naukowe PWN SA, Warszawa 2000.

Wszystkie wymienione prace E. J. Candèsa i D. L. Donoho są dostępne na ich stronach internetowych.