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Abstract
Context-free languages allow one to express data with hierarchi-
cal structure, at the cost of losing some of the useful properties of
languages recognized by finite automata on words. However, it is
possible to restore some of these properties by making the structure
of the tree visible, such as is done by visibly pushdown languages,
or finite automata on trees. In this paper, we show that the structure
given by such approaches remains invisible when it is read by a fi-
nite automaton (on word). In particular, we show that separability
with a regular language is undecidable for visibly pushdown lan-
guages, just as it is undecidable for general context-free languages.

Categories and Subject Descriptors F.1.1 [Automata]; F.4.3
[Classes defined by grammars or automata]

Keywords regular languages of trees, visibly pushdown automata,
separability, XML

1. Introduction
Finite automata are a well known formalism for describing the sim-
plest formal languages. Regular languages – ones which are rec-
ognized by finite automata – have very nice closure properties,
such as decidability of most problems such as universality or dis-
jointness, equivalence of deterministic finite automata (DFA) and
non-deterministic finite automata (NFA), and closure under com-
plement.

However, most programming and natural languages have to de-
scribe a hierarchical (tree) structure, and finite automata on words
are no longer appropriate. To capture such a hierarchical struc-
ture, Noam Chomsky proposed the classic notion of context-free
languages. Context-free languages are recognized by context-free
grammars (CFGs), or equivalently by pushdown automata (PDA).

However, context-free languages do not have as good properties
as regular ones – for example, universality and disjointness are no
longer decidable, deterministic PDA are less powerful than non-
deterministic ones, and they are not closed under complement.
These properties fail since, although words from a context-free
language have an underlying tree structure, it is hard to tell what
this structure is just by looking at the word – two completely
different derivation trees can yield a very similar output, consider
for example the English sentences Time flies like an arrow and
fruit flies like a banana, or The complex houses married and single
soldiers and their families – after reading the four first words of
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the latter sentence, one could think that the complex houses is the
subject and married is the verb, while in fact, the complex is the
subject and houses is the verb. This is also a big problem in practical
computer science, since such a possibility of incorrect parsing leads
to many errors – one famous example is the SQL injection attack,
which is based on fabricating SQL queries which will be parsed
incorrectly, allowing unauthorized access to a database.

There are two popular approaches to solve this. The classic ap-
proach is to use the finite automata on trees (TFAs) [5], which work
on trees directly. There are several ways of flattening a tree to a
string in such a way that the tree structure can be unambiguously
read from the output. One common way is the XML encoding; an
XML encoding of a regular language of trees can be viewed as a
context-free grammar where every terminal a ∈ Σ has a matching
closing tag ā, and every production is of form N → aX1 . . . Xkā.
Nowadays, XML [4] is widely used in web services and databases
for the representation of data structures. XML documents are val-
idated with DTDs (document type definitions) [9], which can be
viewed as a special kind of finite automata working on the tree of
the document. Another common way is the functional encoding,
which can be viewed as a CFG where every production is of form
N → a(X1 . . . Xk), where ( and ) are special bracket symbols.

Another approach is to use visibly pushdown automata (VP-
DAs), also known as languages of nested words [2], where every
symbol in our alphabet has a fixed type with respect to the stack
– it either always pushes a new symbol, or always pops a symbol,
or it never pushes or pops symbols – this property allows the tree
structure to be easily read. For example, XML and functional gram-
mars given above can be recognized by VPDAs – opening tags and
brackets always push a symbol on the stack, while closing tags and
brackets always pop.

Since both of these approaches boil down to working on trees
directly in a regular way, they can be seen as equivalent, and
most properties of regular languages of words are retained – non-
deterministic and deterministic VPDAs and finite automata on trees
are equivalent, and universality and intersection problems are de-
cidable. Hence, representing our data as trees, instead of forcing a
linear word structure, definitely solves many problems – both the-
oretical and practical – efficiently.

In this paper, we show that not all problems are solved by
these approaches. In particular, we show that, informally, although
(flattened) TFAs and VPDAs are successful at making the structure
visible to powerful computation models such as Turing machines,
the structure still remains invisible to the simple ones, such as
finite automata on words. We use our technique to show that the
following problem is undecidable, just as in the usual “invisible”
context-free case [8, 12]: given two VPDAs (or TFAs flattened in
some way) accepting languages L1 and L2 such that L1 and L2 are
disjoint, is there a regular languageR such thatR accepts all words
from L1, but no words from L2?

Our proof is a reduction from the context-free case; essentially,
it is shown that the extra structural information can be made in-



visible to all finite automata. We show that this can be done even
when, intuitively, the finite automaton has access to any structural
information that it could reasonably see while traversing the tree –
therefore, our method works not only with VPDAs, but also with
any “reasonable” string encoding of trees, such as XML or func-
tional encoding.

A similar property is also obtained for separating by other
classes of languages, as long as the corresponding problem for
CFGs is undecidable, and the separating class has basic closure
properties and a pumping property – the precise conditions are
listed in the sequel. In [8] it is shown that the separability problem
of context-free languages is undecidable for any class which in-
cludes all definite languages. On the other hand, it has been shown
recently that the problem of separability of CFLs by piecewise
testable languages is decidable [6].

Our method solves the following open problem, which has
appeared on Rajeev Alur’s website in early 2013 [1]:

A Challenging Open Problem
Consider the following decision problem: given two regular
languages L1 and L2 of nested words, does there exist a
regular language R of words over the tagged alphabet such
that Intersection(R,L1) equals L2? [...]

We say that L2 is a regular restriction of L1 iff the above holds.
Since disjoint languages L1 and L2 are separable iff L2 is a regular
restriction of L1 ∪ L2, and separability is undecidable, restriction-
regularity is undecidable too.

Rajeev Alur’s question is inspired by [11], where it is shown
that, for a fully recursive DTD d, it is decidable whether the lan-
guage accepted by d is (regularly) recognizable, that is, there is a
regular language R such that, for any properly structured word w
(in this case, a proper XML document), w is valid with respect to
d iff it is accepted by R. This can be viewed as a special case of
separability – we take DTDs instead of arbitrary finite automata on
trees, and we want to separate L from its complement. For a fully
recursive DTD d, a local automaton (also called standard automa-
ton) Ad is constructed, and it is shown that d is streamable iff it is
validated by Ad. More progress is made in [10], where an attempt
is made to generalize the result to DTDs which are not fully re-
cursive, by introducing the notion of a separating semigroup H for
the DTD d, and allowing the local automaton to acknowledge H .
The existence of such a separating semigroup can be reduced to the
word problem for finite groups; however, this problem is known to
be undecidable.

On the other hand, in [3] it is shown that regular recognizability
is decidable for visibly push-down languages (an input has to rec-
ognize a given language knowing that the input is a well matched
word, that is, symbols that push and pop symbols on the stack
match correctly). The method used in [3] works for VPDAs and
the functional encoding of trees, but it does not extend to the XML
encoding, where every opening tag a has to be matched by a match-
ing closing tag a, potentially providing extra information; and thus,
the problem of recognizability of XML in full generality remains
open, as far as we know (and, although the problem of regularity of
a context-free language is also undecidable, the reduction presented
in this paper does not immediately work in this case either). In the
conclusion of [3], the authors mentioned that they were working on
the regular restriction problem for VPDAs, but as far as we know,
they were not successful.

2. Preliminaries
We remind the basic notions of automata theory; see [7].

For an alphabet Σ, Σ∗ denotes the set of words over Σ, and ε
denotes the empty word.

A deterministic finite automaton (DFA) over Σ is a tuple A =
(Σ, Q, qI , F, δ), where Σ is the alphabet ofA,Q is the set of states,
qI ∈ Q is the initial state,F ⊆ Q is the final state, and δ : Q×Σ→
Q is the transition function. We extend δ to δ : Q×Σ∗ → Q in the
following way: δ(q, ε) = q, δ(q, wx) = δ(δ(q, w), x).

A context-free grammar (CFG) is a tuple G = (V,Σ, R, S),
where V is the set of non-terminal symbols, Σ is the set of terminal
symbols, R is a set of productions of form N → X1 . . . Xk where
N is a non-terminal symbol and and each Xi is either a terminal
or non-terminal symbol, and S ∈ V is the start symbol. The
language accepted by G, L(G) ⊆ Σ∗, is the set of words which
can be obtained from the start symbol S by replacing non-terminal
symbols with words, according to the productions.

A flattened tree grammar (FTG) over Σ is a context-free gram-
mar, whose set of terminal symbols is Σ′ := Σ∪{♦,♦}, and every
production is of form N → t or N → ♦N1N2 . . . Nk♦, where
N1, N2, . . . , Nk are non-terminals, and t is a terminal. A binary
flattened tree grammar (BFG) is a flattened tree grammar which
uses only k ∈ {0, 2}. A BFG corresponds to the XML encoding of
a regular language of binary trees (♦ and♦ correspond to the open-
ing <a> and closing </a> tag, respectively), and languages recog-
nized by flattened tree grammars are visibly pushdown languages.
These two facts are routine to check – we omit this to avoid having
to state the definitions of VPDAs and TFAs; we have decided to use
flattened tree grammars in this paper since they are easier to define
than both of these formalisms.

DEFINITION 2.1. We say that two languages L1 and L2 are sepa-
rable if there is a regular language R such that for each w ∈ L1,
w ∈ R, but for each w ∈ L2, w /∈ R.

PROBLEM 2.2 (CFG-SEPARABILITY).
INPUT Two context-free grammars G1 and G2 such that

L(G1) and L(G2) are disjoint
OUTPUT Are L(G1) and L(G2) separable?

The CFL separation problem is known to be undecidable [8, 12].
For convenience, we include the idea of the proof here. Encode
configurations of a deterministic Turing machine M as words, and
say that w1 → w2 iff a machine in configuration w1 reaches the
configuration w2 in next step. It can be easily shown that (for
simple encodings) the languages {w1#wR2 : w1 → w2} and
{wR1 #w2 : w1 → w2} are context-free, and thus the languages
L1 and L2 below are also context-free.

L1 = {w1#w2# . . . w2k#a2k : w1 = wI , w2i−1 → wR2i}
L2 = {w1#w2# . . . w2k#ak : w1 = wI , w

R
2i → w2i+1}

The languages L1 and L2 are separable iff M terminates from
the initial configuration wI . Indeed, if M terminates after n steps,
then we can recognize whether w ∈ L1 or w ∈ L2 by reading
the configurations wi given by w, until we find one which does not
match the run of M – if i is even, then we know that w /∈ L1, and
if i is odd, then we know that w /∈ L2. If the sequence ends after
l ≤ n configurations, count the number of a’s, and say w /∈ L1

iff there are not exactly 2k of them, and w /∈ L2 if there are not
exactly k of them. Since the run is fixed, this can be done with a
finite automaton (which accepts the word if it proves that w /∈ L2,
and rejects if it proves that w /∈ L1).

On the other hand, ifM does not terminate, consider two words
w,w′ from L1 and L2 respectively where the number of configu-
rations given is 2k, and they correctly describe the run of M , up to
2k steps. The finite automaton A now has to tell whether the num-
ber of a’s is k or 2k. Since for every finite automaton A there is a
number ω ∈ N such that A cannot tell aω from a2ω in any context
(Lemma 4.3 below), A cannot separate the words w, w′ for k = ω.



3. Overview of the main result
PROBLEM 3.1 (BFG-SEPARABILITY, FTG-SEPARABILITY).

INPUT Two BFGs (FTGs) G1 and G2 such that L(G1) and
L(G2) are disjoint

OUTPUT Are L(G1) and L(G2) separable?

Our main result is the following:

THEOREM 3.2. The problems BFG-SEPARABILITY and FTG-
SEPARABILITY are undecidable.

We will prove Theorem 3.2 in both cases by reducing CFG-
SEPARABILITY. We will transform a CFG G into a FTG (BFG)
G′ by adding extra productions and structural symbols ♦, ♦. This
transformation won’t change the structure of the word: if we take
the language L(G′) and remove all the structural symbols, we still
have the language L(G).

Therefore, if L(G1) and L(G2) are separable, then so are
L(G′1) and L(G′2) – a regular language separating L(G1) and
L(G2) can also separate L(G′1) and L(G′2) simply by ignoring
the structural symbols (Lemma 4.1). We still have to show that
if L(G′1) and L(G′2) are separable by some R, then L(G1) and
L(G2) are also separable; in other words, a regular language cannot
use the extra structural information given by the structural symbols.

This is done the following way: take w′ ∈ L(G′i), and the cor-
responding w ∈ L(Gi). Using the fact (Lemma 4.3) that for every
regular language R there is an ω such that R cannot tell vω from
v2ω in any context (they are syntactically equivalent), we construct
the word w′′ which is also in L(G′i), and is syntactically equiv-
alent to T (w), where T (w) is w padded with specific sequences
of structural symbols. This way, we make all the structural infor-
mation contained in w′ invisible for R. If R separates L(G′1) and
L(G′2), we could also separate L(G1) from L(G2) in the follow-
ing way: take w ∈ L(Gi), obtain T (w) by padding; w ∈ L(G1)
iff T (w) ∈ R.

Since BFGs are FTGs, undecidability of separability of FTGs
follows from the undecidability of separability of BFGs. How-
ever, in the next section, we show the undecidability of FTG-
SEPARABILITY separately. This is because the proof is consider-
ably easier in this case. The two proofs differ in how the CFG G is
transformed to G′, and how to construct the padding T , and how to
transform w′ into w′′ syntactically equivalent to T (w). Note that,
since the languages recognized by FTGs are visibly pushdown, un-
decidability of separability of visibly pushdown languages already
follows from undecidability of FTG-SEPARABILITY.

4. Separability of FTGs
In this section, we show that separability is undecidable for FTGs.

We will reduce the problem CFG-SEPARABILITY to FTG-
SEPARABILITY. To do this, we will take two CFGs G1 and G2,
and create two FTGsG′1 andG′2 such thatG′1 andG′2 are separable
iff G1 and G2 are. Without loss of generality, we can assume that
grammars Gi do not accept the empty word, or any word of length
1.

Given a context-free grammar G = (V,Σ, P, S), we will con-
struct a flattened tree grammar G′ = (V ′,Σ′, P ′, S′), in the fol-
lowing way:

• For eachX ∈ V , we have a non-terminalX ′. We also have one
special non-terminal E′. The starting symbol of G′ is S′.

• For each production N → t in P , we have the corresponding
production in P ′:

N ′ → t (1)

• For each production N → N1 . . . Nk in P , we have the corre-
sponding bracketed production in P ′:

N ′ → ♦E′N ′1E′N ′2E′ . . . NkE′♦ (2)

• Where the productions for E′ are as follows:

E′ → ♦♦ (3)
E′ → ♦E′♦ (4)
E′ → ♦E′E′♦ (5)

• For each non-terminal N , we also have the following produc-
tion in P ′:

N ′ → ♦N ′♦ (6)

Consider π : Σ′ → Σ, the homomorphism which simply
removes the structural symbols ♦ and ♦. By applying π to all the
production rules forG′, we obtain a grammar π(G′) which accepts
exactly π(L(G′)). It is straightforward to check that π(G′) is in
fact equivalent to G – the only difference is that E′ is inserted in
some places, but all words generated by E′ reduce to the empty
word after applying π. Therefore, π(L(G′i)) equals L(Gi), which
makes the following straightforward:

LEMMA 4.1. If L(G1) and L(G2) are separable, then so are
L(G′1) and L(G′2).

Proof π−1(R) is a regular language which separates L(G′1)
and L(G′2) – in other words, the automaton separating these two
languages works exactly as the one separating L(G1) and L(G2)
(it just ignores all the closing and structural symbols).

The rest of this section will prove the other direction:

THEOREM 4.2. If L(G′1) and L(G′2) are separable, then so are
L(G1) and L(G2).

Assume that L(G′1) and L(G′2) are separable. Therefore, there
is a finite automaton A such that R = L(A) accepts all words
from L(G′1), but no words from L(G′2). We say that two words
w1, w2 ∈ Σ′∗ are syntactically equivalent with respect to R iff for
any words v, x ∈ Σ′∗, we have vw1x ∈ R iff vw2x ∈ R. Syntactic
equivalence is a congruence with respect to concatenation.

LEMMA 4.3. There is a number ω ∈ N such that for any w ∈ Σ′∗,
wω is syntactically equivalent to w2ω with respect to R.

Proof The set S of all the equivalence classes is a semigroup
with concatenation as the operation. This semigroup is called the
syntactic semigroup of A, and it is finite – if for two words w1 and
w2 we have δ(q, w1) = δ(q, w2) for each q ∈ Q, then they are
syntactically equivalent. For any finite semigroup (S, ·), there is a
number ω ∈ N such that for any s ∈ S, we have s2ω = sω – since
k 7→ sk yields an ultimately periodic sequence with period at most
|S|, ω = |S|! will work.

We say that T : Σ∗ → Σ′∗ is a padding iff there exist
eL, e, eR ∈ (Σ′ − Σ)∗ such that, for any w = t1 . . . tn ∈ Σ∗,
T (w) is the word eLt1et2e . . . etneR.

LEMMA 4.4. For a padding T , the languages L(G1) and L(G2)
are separable, iff T (L(G1)) and T (L(G2)) are.

Proof The forward direction is straightforward, and proven just
as Lemma 4.1 – the automaton simply ignores all the symbols
from Σ′ − Σ (in fact, the stronger version of this lemma where
eL, e, eR ∈ Σ′∗ is also true).



For the backward direction, we take the DFAA′ which separates
T (L(G1)) and T (L(G2)): A′ = (Σ′, Q, qI , F, δ). We can assume
that there are no transitions to the initial state qI in A′ – otherwise,
we create a copy of qI and make it the new initial state.

We construct a new DFAA′′ = (Σ, Q, qI , F
′, δ′) in the follow-

ing way: take δ′(qI , t) = δ(qI , eLt), and δ′(q, t) = δ(q, et) for
q 6= qI . For F ′ we take the set of states q such that δ(q, eR) ∈ F .
The automaton A′′ working on w ∈ Σ∗ simulates the automaton
A′ working on T (w), hence it accepts w iff A′ accepts T (w).

LEMMA 4.5. There is a padding T with the following property: for
each w ∈ L(Gi), there is a word w′ ∈ L(G′i) which is equivalent
to T (w) with respect to R.

This proves Theorem 4.2 and thus Theorem 3.2. Indeed, we will
show that T (L(G1)) and T (L(G2)) are separated by R – then,
after applying Lemma 4.4, we get our claim.

Consider w ∈ L(Gi); we have to show that A accepts T (w) iff
i = 1. From Lemma 4.5 we know that there is some w′ ∈ L(G′i)
which is equivalent to T (w) with respect toR. Therefore, we know
that T (w) ∈ R iff w′ ∈ R, and since w′ ∈ L(G′i), T (w) ∈ R iff
i = 1.

Proof of Lemma 4.5 in the FTG case
We will show that the padding T given by eL = e = eR =

(♦ω♦ω)ω satisfies our claim.
Let w ∈ L(Gi). We know that w = π(w′) for some w′ ∈

L(G′i). We have w′ = e0w1e1w2 . . . ek−1wkek, where each ei ∈
{♦,♦}∗, for i = 0, . . . , k.

We can assume the following facts about ei:

• Each ei starts with ♦ and ends with ♦. This follows from
our productions P ′ (the production 2 puts E′ before and after
each non-terminal, and E′ must start with ♦ and end with ♦,
according to productions 3, 4, 5).

• Let χ(ei) be the number of times ♦♦ appears in ei. Without
loss of generality, we can assume that χ(ei) is divisible by ω
for each i. Indeed, suppose that ei = u♦♦v. Since the only
production in P ′ which could produce ♦♦ is the production
E′ → ♦♦ 3, we could replace the application of that pro-
duction with E′ → ♦E′E′♦ → ♦♦♦E′♦ → ♦♦♦♦♦♦
(productions 4, 5), increasing χ(ei) by 1. Repeat until χ(ei) is
divisible by ω.

• For each production N ′ → ♦N ′1 . . . N ′k♦ in P ′ (where N ′

or any N ′i could be E′), we also have a production N ′ →
♦N ′♦ (productions 4, 6). Therefore, every time we introduce
the structural symbols ♦ and ♦, we can introduce as many
of them as we want (as long as they match). Without loss
of generality, we can assume that each structural symbol is
multiplied ω times. Thus, ei ∈ (♦ω +♦ω)∗.

From these three properties, ei has to be syntactically equivalent
with respect to R to e = eL = eR. Indeed, since syntactic
equivalence is a congruence, and wω is equivalent to w2ω for
any w, ei ∈ (♦ω + ♦ω)∗ has to be syntactically equivalent
to (♦ω♦ω)χ(ei), and since χ(ei) is divisible by ω, it has to be
syntactically equivalent to (♦ω♦ω)ω .

Hence, the word w′ is equivalent to T (w).

5. Separability of BFGs
While the proof above is sufficient to solve the problem for visibly
pushdown languages, and for XML encoding of trees, it leaves us
with a craving for more, for the following reasons.

First, if we consider languages of terms, it is natural to consider
different symbols for nodes with different arities (numbers of chil-
dren) – while the proof above heavily uses the fact that the XML
encoding cannot tell whether♦ comes from the structurally signif-
icant production N → ♦E′X1E

′X2 . . . XkE
′♦, or it is a fake

inserted by the X → ♦X♦ or E′ → ♦E′E′♦ productions. Since
the arities here are respectively 2k + 1, 1 and 2, this fails if the
automaton sees them.

Moreover, if we consider the process of flattening a tree as
the result of an automaton which traverses the tree recursively
and react to what it is seeing on its path, it is natural to assume
that such an automaton sees the arity, and moreover, between re-
turning from the i-th child of v and progressing to the (i + 1)-
th child, the automaton should see that i of n children are pro-
gressed. This corresponds to flattening productions of form N →
♦k0X1♦k1X2♦k2X3 . . . Xk♦kk.

Restricting ourselves to the binary case allows us to solve the
problem in full generality – while the encoding in the definition of
BFG does not explicitely say whether ♦ comes from the “empty
leaf” production E′ → ♦♦ or from one of the binary branching
rules, a finite automaton can easily tell which one is the case by
looking at the neighborhood. Also, while we do not write the infix
structural symbols ♦2

1 explicitely, the automaton can tell that it is
at such a branching point iff the last symbol was ♦, and the next
one is ♦.

The rest of this section shows that separability is undecidable
even when restricted to BFGs.

Proof of Theorem 3.2 in the BFG case
The general structure of the proof is the same as of the proof of

the FTG case, given in Section 4.
We have to adjust the productions P ′ so that we obtain a BFG.

As in the proof of the FTG case, we can assume that grammars Gi
do not accept the empty word, or any word of length 1. We can also
assume that these grammars are in the Chomsky normal form, that
is, each production is of formN → N1N2 orN → t, whereN ,N1

and N2 are non-terminals, and t is a terminal. It is well known that
any context-free grammar is effectively equivalent to a grammar in
Chomsky normal form [7].

Given a context-free grammar G = (V,Σ, P, S) in Chomsky
normal form, we will construct a binary flattened tree grammar
G′ = (V ′,Σ′, P ′, S′), in the following way:

• For eachX ∈ V , we have a non-terminalX ′. We also have one
special non-terminal E′. The starting symbol of G′ is S′.

• For each production N → t in P , we have the corresponding
production in P ′:

N ′ → t (7)
• For each productionN → N1N2 inP , we have the correspond-

ing bracketed production in P ′:

N ′ → ♦N ′1N ′2♦ (8)

• For each X ∈ V , we also have the following productions for
X ′:

X ′ → ♦E′X ′♦ (9)
X ′ → ♦X ′E′♦ (10)

• Where the productions for E′ are as follows:

E′ → ♦♦ (11)
E′ → ♦E′E′♦ (12)

Lemmas 4.1, 4.3, and 4.4 are proven exactly in the same way as
in the FTG case. It is sufficient to prove the counterpart of Lemma
4.5 to prove Theorem 4.2, and thus Theorem 3.2.



Proof of Lemma 4.5 in the BFG case
Let ♥ = ♦♦♦, ♥ = ♦♦♦. Thus, for any non-terminal

N ′ ∈ V ′, by applying one of productions ( 9, 10 or 12) and
then (11), we have N ′ →∗ ♥N ′♦ and N ′ →∗ ♦N ′♥. Also, let
ν = ω − 1.

By applying the above many times to non-terminals K′ and L′,
we get K′ →∗ b1K′b2 and L′ →∗ c1L′c2, where:

b1 = (♦ν♥ν)ω♦ν (13)

b2 = ♥ν(♦ν♥ν)ω (14)
c1 = ♥ν(♥ν♦ν)ω (15)

c2 = (♥ν♦ν)ω♦ν (16)

Now, whenever we have a production N → KL in P , we can
do the following in P ′:

N ′ → ♦K′L′♦ →∗ ♦b1K′b2c1L′c2♦ (17)

This can be written as N ′ → eLK
′eL′eR, where:

eL = ♦b1 (18)
e = b2c1 (19)

eR = c2♦ (20)

We claim that the padding T given by the words eL, e, eR
defined above satisfies our claim.

Indeed, take w ∈ L(Gi). Consider the derivation tree of w in
Gi; repeat this derivation in G′i, replacing each production N →
KL withN ′ → eLK

′eL′eR according to the chain of productions
(17) above, and each production N → t with N ′ → t (7). In
the end, for w = t1 . . . tn, we obtain the word w′ ∈ L(G′i),
which contains the symbols t1, . . . , tn separated with e, possibly
accompanied by eL’s on the right side and eR’s on the left side,
and with at least one eL before t1 and at least one eR after tN . In
other words,

w′ = el1L t1e
r1
R ee

l2
L t2e

r2
R ee

l3
L . . . tne

rN
R

where all li, ri are integers, and l1, rn ≥ 1. Let≡ be the relation
of syntactic equivalence with respect to R; note that wω ≡ w2ω

for any w ∈ Σ′∗, and that ≡ is a congruence with respect to
concatenation. Remembering that ♦ is a left factor of ♥ and thus
♦ω+ν♥ ≡ ♦ν♥, and similarly♥♦ω+ν ≡ ♥♦ν , it can be checked
that the following equivalences (*) hold:

• eLeL is equivalent to eL:

eLeL = ♦b1♦b1 =

= ♦(♦ν♥ν)ω♦ν♦(♦ν♥ν)ω♦ν ≡
≡ ♦(♦ν♥ν)ω♦ω(♦ν♥ν)ω♦ν ≡
≡ ♦(♦ν♥ν)ω(♦ν♥ν)ω♦ν ≡ ♦(♦ν♥ν)ω♦ν = ♦b1 = eL

• eReR is equivalent to eR:

eReR = c2♦c2♦ =

= (♥ν♦ν)ω♦ν♦(♥ν♦ν)ω♦ν♦ ≡
≡ (♥ν♦ν)ω♦ω(♥ν♦ν)ω♦ν♦ ≡
≡ (♥ν♦ν)ω(♥ν♦ν)ω♦ν♦ ≡ (♥ν♦ν)ω♦ν♦ = c2♦ = eR

• eeL is equivalent to e:

eeL = b2c1♦b1 =

= b2♥ν(♥ν♦ν)ω♦(♦ν♥ν)ω♦ν ≡
≡ b2♥ν(♥ν♦ν)ω♦♦ν(♥ν♦ν)ω ≡
≡ b2♥ν(♥ν♦ν)ω(♥ν♦ν)ω ≡ b2♥ν(♥ν♦ν)ω = b2c1 = e

• eRe is equivalent to e:

eRe = c2♦b2c1 =

= (♥ν♦ν)ω♦ν♦♥ν(♦ν♥ν)ωc1 ≡
≡ (♥ν♦ν)ω♥ν(♦ν♥ν)ωc1 ≡
≡ (♥ν♦ν)ω(♥ν♦ν)ω♥νc1 ≡ (♥ν♦ν)ω♥νc1 = b2c1 = e

These rules allow us to reduce all li and ri to zeros (except
l1 and rn, which can be reduced to 1). Hence, the word w′ is
equivalent to T (w).

Remark. The appropriate words e, eL, eR which work in
Lemma 4.5 in the BFG case have been found with a computer
program. The approach which yielded the answer was to assume a
fixed value of ω, consider uvωw to be equivalent to uv2ωw, and
exhaustively search for the words eL, e, eR such that eLK′eL′eR
can be derived from N ′, and the required equivalences (*) hold.
By looking at the words obtained for ω = 2, 3, one could guess
the general formula. The previous approach was to use a computer
program to search for a solution where the words eL, e, eR are
equal, just as it works in the non-binary case; however, no such so-
lution was found in the binary case (even when considering a fixed
finite syntactic semigroup instead of just a fixed ω, which ensured
that the program had a finite amount of cases to check, and thus
find an answer if one existed); however, this previous approach has
shown that the weaker, but still sufficient, equivalences (*) should
be possible to obtain.

6. Conclusion
We can also consider the separation problem for other classes of
languages – that is, is it decidable whether languages accepted
by two BFGs are separable by a language of class C? From the
proof above, this problem is undecidable for class C, as long as the
following conditions are satisfied:

• The respective problem for CFGs is undecidable.
• The class C has the following pumping property: for anyL ∈ C,

there exists some ω such that for any words v, w, x, vwωx ∈ L
iff vw2ωx ∈ L. (This is Lemma 4.3, and it is used in the proof
of Lemma 4.5.)

• If π is a homomorphism which ignores a subset of symbols, and
L ∈ C, then π−1(L) ∈ C. (Used in the proofs of Lemma 4.1
and 4.4.)

• For a padding T (t1 . . . tk) = eLt1et2e . . . etkeR, T (L1) and
T (L2) are separable iff L1 and L2 are. (This is Lemma 4.4.)

Hence, the separability problem is also undecidable for other
classes of languages, such as the class of languages recognizable
by first-order logic.
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