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Deterministic finite automaton

a

b

b

b

a

a

b

a

ab

used to recognize languages L ⊆ Σ∗, i.e., sets of words using
letters from the set Σ = {a, b}

a ∈ L, ab /∈ L, aba ∈ L, . . .
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Regular languages

Deterministic finite automaton = a simplest automaton which
performs some computation
Regular languages = those that can be recognized by deterministic
finite automata
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Regular languages

Deterministic finite automaton = a simplest automaton which
performs some computation
Regular languages = those that can be recognized by deterministic
finite automata

Regular languages can be also defined

algebraically (recognized by a finite monoid)

using regular expressions: regular languages can be obtained
from very simple languages (∅, a) using concatenation, union,
or Kleene star
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Deterministic finite automaton = a simplest automaton which
performs some computation
Regular languages = those that can be recognized by deterministic
finite automata

Regular languages can be also defined

algebraically (recognized by a finite monoid)

using regular expressions: regular languages can be obtained
from very simple languages (∅, a) using concatenation, union,
or Kleene star
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Non-determinism

In some states the automaton has a choice of where it will go
We assume that the automaton always makes the choice which
leads to acceptance
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Non-determinism

In some states the automaton has a choice of where it will go
We assume that the automaton always makes the choice which
leads to acceptance

a

a

a

b

Not very realistic, but theoretically very useful
subset construction: n non-det states → 2n det states
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But what is non-determinism?

We can also define languages with logical formulae

∃i i ∈ A

(there is a in the word: Σ∗aΣ∗)
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But what is non-determinism?

We can also define languages with logical formulae

∃i i ∈ A

(there is a in the word: Σ∗aΣ∗)

∃i ∃j i ∈ A ∧ j ∈ B ∧ j > i

(there are letters a and b in the word, and b is after a)
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But what is non-determinism?

We can also define languages with logical formulae

∃i i ∈ A

(there is a in the word: Σ∗aΣ∗)

∃i ∃j i ∈ A ∧ j ∈ B ∧ j > i

(there are letters a and b in the word, and b is after a)

In terms of logic, non-determinism corresponds to disjunction and
existential quantification
In terms of regular expressions, non-determinism allows to express
union, concatenation, and Kleene star easily
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More about formulae

What languages can we express using first order logic (FO)?

∃i ∀i i = j i < j i ∈ A ¬ ∨ ∧
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Eryk Kopczyński From deterministic finite automata to infinite games



6/39

Automata
Infinite computations

Infinite games on graphs

Deterministic
Non-deterministic
Alternation

More about formulae

What languages can we express using first order logic (FO)?

∃i ∀i i = j i < j i ∈ A ¬ ∨ ∧

We can express for example (oe)∗

Answer: starfree languages ( regular languages

To get all regular languages, we also need ∃O∃E (MSO logic)

Eryk Kopczyński From deterministic finite automata to infinite games
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Non-deterministic automata: what about negation?

Non-deterministic automata can easily express ∃ and ∨.
But what about ¬, ∧, and ∀?
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Non-deterministic automata: what about negation?

Non-deterministic automata can easily express ∃ and ∨.
But what about ¬, ∧, and ∀?

Impossible to do effectively: we have to determinize the automaton
(thus 2n states)

Maybe we can do something to do it effectively?

A try: Accept all paths – we can express ∧, but not ∨
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Solution: using games

The sequence (an) is convergent

∃l ∀ǫ ∃m ∀n (n < m ∨ |an − l | < ǫ)
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Solution: using games

The sequence (an) is convergent

∃l ∀ǫ ∃m ∀n (n < m ∨ |an − l | < ǫ)

Eva chooses l

Adam chooses ǫ

Eva chooses m

Adam chooses n
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The sequence (an) is convergent

∃l ∀ǫ ∃m ∀n (n < m ∨ |an − l | < ǫ)

Eva chooses l

Adam chooses ǫ

Eva chooses m

Adam chooses n

Eva chooses whether we test n < m or |an − l | < ǫ

Eva wins if true, Adam wins if false
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Solution: using games

The sequence (an) is convergent

∃l ∀ǫ ∃m ∀n (n < m ∨ |an − l | < ǫ)

Eva chooses l

Adam chooses ǫ

Eva chooses m

Adam chooses n

Eva chooses whether we test n < m or |an − l | < ǫ

Eva wins if true, Adam wins if false

If both players play perfectly and Eva wins, then the sequence is
convergent
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Alternating automata
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Alternation in complexity theory

What problems can be solved by a machine running in polynomial
time?

deterministic P
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Alternation in complexity theory

What problems can be solved by a machine running in polynomial
time?

deterministic P
non-deterministic NP
only universal states co-NP
only existential, then only universal ΣP

2

only universal, then only existential ΠP
2

a fixed number of alternations PH
any number of alternations AP = PSPACE

The order of quantifiers matters!
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Alternating automata

Not so useful in case of finite automata

The order of quantifiers matters, and this makes some
constructions (e.g. quantifiers, negation) not as easy as we
would like
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Alternating automata

Not so useful in case of finite automata

The order of quantifiers matters, and this makes some
constructions (e.g. quantifiers, negation) not as easy as we
would like

By using the subset construction we get a NFA with 2n states,
we have to determinize again to get a DFA with 22

n

states

Also we can obtain DFA running in reverse with 2n states
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Alternating automata

Not so useful in case of finite automata

The order of quantifiers matters, and this makes some
constructions (e.g. quantifiers, negation) not as easy as we
would like

By using the subset construction we get a NFA with 2n states,
we have to determinize again to get a DFA with 22

n

states

Also we can obtain DFA running in reverse with 2n states

Still an useful notion
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Infinite cycles

What happens if we get into an infinite cycle?

Usually we assume infinite computations to be non-accepting
But in terms of games this means Eva loses – that’s not fair!
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Eryk Kopczyński From deterministic finite automata to infinite games



13/39

Automata
Infinite computations

Infinite games on graphs
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Infinite computations in nature

Maybe we want infinite computations?
Operating systems, control systems, and hardware run potentially
forever

We actually want the computation to be infinite, but it is required
to satisfy some property φ, for example:

for every request there is a response

there is no response if it was not requested

no deadlocks, no starvation...

We want Eva to win the game iff φ is satisfied
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Infinite games in nature

How do other games solve the problem?

Chess – the game is considered a draw after 50 moves
(without an irreversible action such as moving a pawn or
capturing)

Go – ko rule

But we don’t want draws!
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Pick a set Z ⊆ R
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Infinite games in mathematics

Banach-Mazur game (1930)
Pick a set Z ⊆ R

Adam chooses an open interval I1 ⊆ R

Eva chooses I2 ⊆ I1

Adam chooses I3 ⊆ I2

Eva chooses I4 ⊆ I3

...
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Banach-Mazur game (1930)
Pick a set Z ⊆ R

Adam chooses an open interval I1 ⊆ R

Eva chooses I2 ⊆ I1

Adam chooses I3 ⊆ I2

Eva chooses I4 ⊆ I3
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Eva wins if the intersection of all intervals is a subset of Z
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Eva chooses I2 ⊆ I1

Adam chooses I3 ⊆ I2

Eva chooses I4 ⊆ I3

...

Eva wins if the intersection of all intervals is a subset of Z

Question: for which sets Z Eva has a winning strategy?
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Infinite games in mathematics

Banach-Mazur game (1930)
Pick a set Z ⊆ R

Adam chooses an open interval I1 ⊆ R

Eva chooses I2 ⊆ I1

Adam chooses I3 ⊆ I2

Eva chooses I4 ⊆ I3

...

Eva wins if the intersection of all intervals is a subset of Z

Question: for which sets Z Eva has a winning strategy?

Answer: Eva has a winning strategy iff R− Z is a meager set

Eryk Kopczyński From deterministic finite automata to infinite games
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Determinacy

What does it mean that a player has a winning strategy?
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should do in given situation (i.e. a function from situations to
moves)

A winning strategy = a strategy such that the player using that
strategy will always win, no matter what the opponent is doing

Impossible for both players to have winning strategies

In finite games, one of the players will have a winning strategy (the
game is determined)

We can use the axiom of choice to construct infinite games which
are not determined
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Motivation
Overview of infinite games
Acceptance conditions

Determinacy

What does it mean that a player has a winning strategy?

A strategy = a decision procedure which tells which move a player
should do in given situation (i.e. a function from situations to
moves)

A winning strategy = a strategy such that the player using that
strategy will always win, no matter what the opponent is doing

Impossible for both players to have winning strategies

In finite games, one of the players will have a winning strategy (the
game is determined)

We can use the axiom of choice to construct infinite games which
are not determined

But reasonable infinite games are determined (Martin ’75 - Borel
determinacy)

Eryk Kopczyński From deterministic finite automata to infinite games
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A non-determined game

XOR function:

X : {0, 1}∗ → {0, 1}

such that

X (0∗) = 0
X (u0v) 6= X (u1v)

A well known function

Eryk Kopczyński From deterministic finite automata to infinite games
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Non-determined game

Infinite XOR function:

X : {0, 1}ω → {0, 1}

such that

X (0ω) = 0
X (u0v) 6= X (u1v)

Existence follows from the Axiom of Choice

Eryk Kopczyński From deterministic finite automata to infinite games
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Non-determined game

Infinite XOR game

Eva chooses a finite sequence of bits w1

Adam chooses w2

Eva chooses w3

Adam chooses w4

...

Eva wins if X (w1w2w3w4 . . .) = 1
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Non-determined game

Infinite XOR game

Eva chooses a finite sequence of bits w1

Adam chooses w2

Eva chooses w3

Adam chooses w4

...

Eva wins if X (w1w2w3w4 . . .) = 1

Eva chooses w1

Adam chooses w ′
2w3

Eva chooses w4

Adam chooses w5

...

Adam will win!

Eryk Kopczyński From deterministic finite automata to infinite games
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Back to computations: how to express φ?

In terms of logic (FO, MSO): no problem (∀i now quantifies not
over a finite set of positions in a word, but an infinite set of
integers N); there are also special logics for that (e.g. LTL)
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Overview of infinite games
Acceptance conditions

Back to computations: how to express φ?

In terms of logic (FO, MSO): no problem (∀i now quantifies not
over a finite set of positions in a word, but an infinite set of
integers N); there are also special logics for that (e.g. LTL)

In terms of ω-languages: we speak about subsets of Σω instead of
Σ∗

In terms of ω-regular expressions: for L ∈ Σ∗ we add an
operation Lω

Σω ∋ baabbaabb(ab)ω

Eryk Kopczyński From deterministic finite automata to infinite games
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What about automata?

ω-regular expressions and MSO logic express the same class of
languages (called ω-regular languages)
But what about automata?
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What about automata?

ω-regular expressions and MSO logic express the same class of
languages (called ω-regular languages)
But what about automata?

The simplest approach: make all infinite computations false/losing
(or true/winning) – not powerful enough, we cannot express
aω ∈ {a, b}ω

We need to use some acceptance condition (or winning condition)
to tell which infinite runs are accepted

Eryk Kopczyński From deterministic finite automata to infinite games
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Büchi automata (’60)

We again use F - the set of accepting states, but now the infinite
computation is accepting if it visits the states in F infinitely often
(Büchi condition)

acω ∪ (baΣ∗)ω

a
b

c a

b
Σ
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Büchi automata (’60)

We again use F - the set of accepting states, but now the infinite
computation is accepting if it visits the states in F infinitely often
(Büchi condition)

acω ∪ (baΣ∗)ω

a
b

c a

b
Σ

K1L
ω
1 ∪ K2L

ω
2
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Büchi automata cont

Languages recognized by non-deterministic Büchi automata
are exactly ω-regular languages
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Büchi automata cont

Languages recognized by non-deterministic Büchi automata
are exactly ω-regular languages

Deterministic Büchi automata cannot recognize (a + b)∗aω
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Motivation
Overview of infinite games
Acceptance conditions

Büchi automata cont

Languages recognized by non-deterministic Büchi automata
are exactly ω-regular languages

Deterministic Büchi automata cannot recognize (a + b)∗aω

Negation is not straightforward
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Muller automata (’63)

We use F ⊆ P(Q)
Run is accepted iff the set of states appearing infinitely often
during the play is in F
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Automata
Infinite computations

Infinite games on graphs

Motivation
Overview of infinite games
Acceptance conditions

Muller automata (’63)

We use F ⊆ P(Q)
Run is accepted iff the set of states appearing infinitely often
during the play is in F

Deterministic Muller automata recognize all ω-regular
languages

Negation is straightforward

But the description is long (we have to define acceptance for
each subset of Q)
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Parity condition: motivation

Büchi conditions allows us to define a good thing that has to
happen infinitely often in order to make Eva a winner.
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Parity condition: motivation

Büchi conditions allows us to define a good thing that has to
happen infinitely often in order to make Eva a winner.
In practice, both good and bad things could happen...

the program seems to do its job
the program uses too much resources
the program hangs
the program works as it should
we lose some money
we break our moral rules
we earn some money
we become rich
newspapers write about us
we go to jail
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Parity condition: motivation

Büchi conditions allows us to define a good thing that has to
happen infinitely often in order to make Eva a winner.
In practice, both good and bad things could happen...

the program seems to do its job 0
the program uses too much resources 1
the program hangs 1
the program works as it should 2
we lose some money 3
we break our moral rules 3
we earn some money 4
we become rich 4
newspapers write about us 4
we go to jail 5
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Parity condition

We use rank : Q → N

Run is accepted (Eva wins) if the greatest rank appearing infinitely
often during the play is even, not accepted (Adam wins) if it is odd
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Automata
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Infinite games on graphs

Motivation
Overview of infinite games
Acceptance conditions

Parity condition

We use rank : Q → N

Run is accepted (Eva wins) if the greatest rank appearing infinitely
often during the play is even, not accepted (Adam wins) if it is odd

Deterministic parity automata recognize all ω-regular
languages (a nice translation from the Muller condition, LAR)

Negation straightforward

Effective description
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More than words: ω-trees

In an ω-word, each position has one successor

In an ω-tree, a position can have many successors

a

a b

b b a a
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Motivation
Overview of infinite games
Acceptance conditions

More than words: ω-trees

In an ω-word, each position has one successor

In an ω-tree, a position can have many successors

a

a b

b b a a

A tree can represent e.g. all possible runs of an operating system
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Motivation
Parity games
Other infinite games and results

Infinite game

Alternating automaton = a transition system, where transitions
depends on decisions of two players and input
What happens if we remove the input?

7 2 8

9 5 4
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Motivation I-II

We can encode the input inside our automaton, getting an
infinite game without input (for infinite “irregular” inputs this
leads to an infinite transition system)
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Motivation I-II

We can encode the input inside our automaton, getting an
infinite game without input (for infinite “irregular” inputs this
leads to an infinite transition system)

We cannot run automata on infinite input in practice; but we
want to solve problems like:

Given φ - a property that we want our program to satisfy
during its execution
Given M - a model of our program
Question: does M satisfy φ? (model checking)

For φ in modal µ calculus, this reduces to a parity game
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Motivation III

Our game models a system whose task is to provide outputs for
given inputs

States Q model possible states of our system

Adam’s moves model possible inputs

Eva’s moves model possible outputs

The winning condition models whether Eva responded
according to our needs (given by a formula φ)

If Eva wins such a game, then it is possible to implement a system
which works according to φ
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Parity games

Given: a parity game (an infinite game using the parity acceptance
condition)

1 2 3

4 5 6

Question: who has a winning strategy?
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Positional determinacy

A winning condition is determined if one of the players has a
winning strategy
Reasonable winning conditions (parity, Muller, etc) are determined
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Positional determinacy

A winning condition is determined if one of the players has a
winning strategy
Reasonable winning conditions (parity, Muller, etc) are determined

A winning condition is positionally determined if one of the players
has a positional strategy: always makes the same move in each of
his positions
Parity condition is positionally determined
(Emerson, Jutla ’91; Mostowski ’91; McNaughton ’93)
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Positional determinacy

A winning condition is determined if one of the players has a
winning strategy
Reasonable winning conditions (parity, Muller, etc) are determined

A winning condition is positionally determined if one of the players
has a positional strategy: always makes the same move in each of
his positions
Parity condition is positionally determined
(Emerson, Jutla ’91; Mostowski ’91; McNaughton ’93)

Even on infinite arenas (useful theoretically, e.g. when
complementing automata on ω-trees)
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Parity games: algorithms

Let n - the number of states, d - the number of ranks in the parity
condition

Solving parity games is in NP (we guess Eva’s positional
strategy, and obtain a single player game, which is easy to
solve)
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Parity games: algorithms

Let n - the number of states, d - the number of ranks in the parity
condition

Solving parity games is in NP (we guess Eva’s positional
strategy, and obtain a single player game, which is easy to
solve)

Solving parity game is also in co-NP (we could also guess
Adam’s positional strategy)
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Parity games: algorithms

Let n - the number of states, d - the number of ranks in the parity
condition

Solving parity games is in NP (we guess Eva’s positional
strategy, and obtain a single player game, which is easy to
solve)

Solving parity game is also in co-NP (we could also guess
Adam’s positional strategy)

O(nd/2) (Jurdziński ’00)
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Parity games: algorithms

Let n - the number of states, d - the number of ranks in the parity
condition

Solving parity games is in NP (we guess Eva’s positional
strategy, and obtain a single player game, which is easy to
solve)

Solving parity game is also in co-NP (we could also guess
Adam’s positional strategy)

O(nd/2) (Jurdziński ’00)

strategy improvement algorithms (Jurdziński, Vöge ’00)
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Parity games: algorithms

Let n - the number of states, d - the number of ranks in the parity
condition

Solving parity games is in NP (we guess Eva’s positional
strategy, and obtain a single player game, which is easy to
solve)

Solving parity game is also in co-NP (we could also guess
Adam’s positional strategy)

O(nd/2) (Jurdziński ’00)

strategy improvement algorithms (Jurdziński, Vöge ’00)

nO(
√
n) (Jurdziński, Paterson, Zwick ’06)
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Parity games: algorithms

Let n - the number of states, d - the number of ranks in the parity
condition

Solving parity games is in NP (we guess Eva’s positional
strategy, and obtain a single player game, which is easy to
solve)

Solving parity game is also in co-NP (we could also guess
Adam’s positional strategy)

O(nd/2) (Jurdziński ’00)

strategy improvement algorithms (Jurdziński, Vöge ’00)

nO(
√
n) (Jurdziński, Paterson, Zwick ’06)

O(nd/3) (Schewe ’07)
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Parity games: algorithms

Let n - the number of states, d - the number of ranks in the parity
condition

Solving parity games is in NP (we guess Eva’s positional
strategy, and obtain a single player game, which is easy to
solve)

Solving parity game is also in co-NP (we could also guess
Adam’s positional strategy)

O(nd/2) (Jurdziński ’00)

strategy improvement algorithms (Jurdziński, Vöge ’00)

nO(
√
n) (Jurdziński, Paterson, Zwick ’06)

O(nd/3) (Schewe ’07)

No polynomial algorithm known yet
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Mean payoff game

-3

-3

+20

-2

-1
-2

-1

-1

-3

+10

-2

-1
+5
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Muller game

a b

Eva wants both a and b to appear infinitely often
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Muller game

a ba b

Eva wants both a and b to appear infinitely often
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Muller game via LAR (DJW ’97)

In Muller games we have winning strategies with finite memory:

Eva has a deterministic finite automaton which changes memory
states depending on what happens in the game (i.e., the sequence
of game states), and her move depends only on the current game
state and the current memory state
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Muller game via LAR (DJW ’97)

In Muller games we have winning strategies with finite memory:

Eva has a deterministic finite automaton which changes memory
states depending on what happens in the game (i.e., the sequence
of game states), and her move depends only on the current game
state and the current memory state

Strategies using a small amount of memory are good in practice
(useful for automatic synthesis)
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More infinite games

each move is assigned a color from a finite subset C
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More infinite games

each move is assigned a color from a finite subset C

the winning condition is given as an ω-regular language
W ⊆ Cω
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More infinite games

each move is assigned a color from a finite subset C

the winning condition is given as an ω-regular language
W ⊆ Cω

Question: for a winning condition, what is the smallest
possible size of an automaton M over C such that whenever
Eva can win a game using W as a winning condition, she can
win using M as memory?
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More infinite games

each move is assigned a color from a finite subset C

the winning condition is given as an ω-regular language
W ⊆ Cω

Question: for a winning condition, what is the smallest
possible size of an automaton M over C such that whenever
Eva can win a game using W as a winning condition, she can
win using M as memory?

three transition systems come into play

. arena W M .
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More infinite games

each move is assigned a color from a finite subset C

the winning condition is given as an ω-regular language
W ⊆ Cω

Question: for a winning condition, what is the smallest
possible size of an automaton M over C such that whenever
Eva can win a game using W as a winning condition, she can
win using M as memory?

three transition systems come into play

. arena W M .

solvable in single polynomial time
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Research problems

Given a winning condition W , how to effectively decide who
wins the game on given arena?

Can the winner win using a simple strategy (positional, small
memory)?

Are there any characterizations which allow us to immediately
tell that games using given winning condition are positionally
determined?
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Conclusion

Summary

non-deterministic automata, FO and MSO logic

alternating automata

ω-regular languages

infinite games

parity games

thank you
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