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Eve wins iff the greatest number appearing infinitely often during
an infinite play is even.



example: parity...

We create a computer program for our business. Good or bad
things could happen...
the program uses too much resources
the program hangs
the program works as it should
we lose some money
we break our moral rules
we earn some money
we become rich
newspapers write about us
we go to jail



example: parity...

We create a computer program for our business. Good or bad
things could happen...
the program uses too much resources 1
the program hangs 1
the program works as it should 2
we lose some money 3
we break our moral rules 3
we earn some money 4
we become rich 4
newspapers write about us 4
we go to jail 5



Games

C = set of colors

Game = arena + winning condition

Arena:
G = (PosA,PosE ,Mov) where Pos = PosA ∪ PosE ,
Mov ⊆ Pos × Pos × (C ∪ {ε})

Winning condition:
Subset W ⊆ Cω; we assume that it is prefix independent, i.e.
u ∈ W ⇐⇒ cu ∈ W



Plays and strategies

A play π is a sequence of moves such that
source(πn+1) = target(πn).

A strategy for Eve (Adam) is a partial function
s : Pos ∪ Mov∗ → Mov which tells Eve (Adam) what they should
do in a given situation (the current position, history so far).

A strategy s is winning for X if each play consistent with s is
winning for X.

A strategy s is positional if s(π) depends only on target(π).



Determinacy

Definition

A game (G ,W ) is determined if for each starting position one of
players has a winning strategy. (Not all games are determined.) If
the game is determined, we have Pos = WinE ∪ WinA and
strategies sE and sA such that each play π with source(π) ∈ WinX

and consistent with sX is winning for X .



Determinacy types

Definition

A determinacy type is given by three parameters:

admissible strategies for Eve: positional or arbitrary

admissible strategies for Adam: positional or arbitrary

admissible arenas: finite or infinite

Definition

A winning condition W is (α, β, γ)-determined, if for each γ-arena
G the game (G ,W ) is (α, β)-determined, i.e. for each starting
position either Eve has a winning α-strategy or Adam has a
winning β-strategy.



Half-positional conditions

For short, we call (positional, arbitrary, infinite)-determined
conditions half-positional, and (positional, arbitrary,
finite)-determined conditions finitely half-positional.

We will focus on half-positional and finitely half-positional winning
conditions.



Büchi and co-Büchi conditions

Definition

Büchi condition: WBS = C ∗(SC )ω

Eve wants colors from S to appear infinitely often.
co-Büchi condition: WB ′

S = C ∗(C − S)ω

Eve wants colors from S to appear finitely often.

Both of these classes winning conditions are positional.



. . . and their union

Example

C = {a, b, c},W = WB ′
{a} ∪ WB ′

{b}. Eve wants at least one of a
and b to appear only finitely often.
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. . . and their union

Example

C = {a, b, c},W = WB ′
{a} ∪ WB ′

{b}. Eve wants at least one of a
and b to appear only finitely often.

Why half-positional: If Eve can win, then ultimately she always
can avoid one of the letters. This can be done with a positional
strategy.

Witness for non-positionality: One Adam’s position with two
moves, a and b.



n letters a in a row
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C = {a, b}, Eve wants an to appear only finitely often.
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positional strategy.



n letters a in a row

Example

C = {a, b}, Eve wants an to appear only finitely often.

Why half-positional: Eve can always assume the worst case (the
greatest possible number of a so far). This can be done with a
positional strategy.

Witness for non-positionality: One Adam’s position with two
moves, an−1b and ban−1.



Applications

automata theory (automata on infinite structures)

modal µ-calculus

model checking

interactive systems



Facts about determinacy

Theorem (Martin, 1975)

All Borel winning conditions are determined.



Facts about determinacy

Theorem (Martin, 1975)

All Borel winning conditions are determined.

Theorem (Emerson-Jutla, Mostowski 1991)

The parity condition

WPn = {w ∈ {0, . . . , n}ω : 2| lim sup
n→∞

wn} (1)

is positionally determined.



Facts about determinacy

Theorem (Ehrenfeucht, Mycielski 1979)

The mean payoff games are finitely positionally determined.



Facts about determinacy

Theorem (Ehrenfeucht, Mycielski 1979)

The mean payoff games are finitely positionally determined.

Theorem (Klarlund 1992)

The Rabin condition is half-positional.



Facts about determinacy

Any Borel winning condition (arbitrary, arbitrary, infinite)
Parity condition (positional, positional, infinite)
Mean payoff (positional, positional, finite)
Rabin condition (positional, arbitrary, infinite)

Remark

If W is (α, β, γ)-determined, then Cω −W is (β, α, γ)-determined.
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Positional determinacy characterizations

Theorem (Colcombet, Niwiński 2006)

A (prefix independent) winning condition W ⊆ Cω is positional iff
it is a generalized parity condition, i.e. there is a mapping
h : C → {0, 1, . . . , n} such that u ∈ W iff h(u) ∈ WPn.

Note: this theorem requires edge-colored (B) or epsilon-arenas (C)
— if we restrict to position-colored arenas (A) there are more
positional winning conditions, for example C ∗(ab)∗ or min-parity.



Positional determinacy characterizations

Theorem (Colcombet, Niwiński 2006)

A (prefix independent) winning condition W ⊆ Cω is positional iff
it is a generalized parity condition, i.e. there is a mapping
h : C → {0, 1, . . . , n} such that u ∈ W iff h(u) ∈ WPn.

Note: this theorem requires edge-colored (B) or epsilon-arenas (C)
— if we restrict to position-colored arenas (A) there are more
positional winning conditions, for example C ∗(ab)∗ or min-parity.

Theorem (Gimbert, Zielonka 2005)

A winning condition W ⊆ Cω is finitely positional iff the winner
can win positionally for all arenas where all positions belong to the
same player.



Examples of

half-positional

winning conditions



Concavity

Definition

A winning condition W is convex if for all sequences of words (un),
un ∈ C ∗, if

u1u3u5u7 . . . ∈ W ,

u2u4u6u8 . . . ∈ W ,

then u1u2u3u4 . . . ∈ W .

A winning condition is concave if its complement is convex.



Concavity

Theorem

Concave winning conditions are finitely half-positional.



Concavity

Theorem

Concave winning conditions are finitely half-positional.

Example

The parity conditions are both concave and convex.



Concavity

Theorem

Concave winning conditions are finitely half-positional.

Example

The parity conditions are both concave and convex.

Not all half-positional conditions are concave.



Weakening the assumptions

Theorem (Gimbert, Zielonka)

A winning condition that is both weakly convex and weakly
concave is finitely positional.

Definition

A winning condition W is weakly convex if for all sequences of
words (un), un ∈ C ∗, if

u1u3u5u7 . . . ∈ W and u2u4u6u8 . . . ∈ W ,

for all i we have (ui )
ω ∈ W ,

then u1u2u3u4 . . . ∈ W .



Weakening the assumptions

Theorem (Gimbert, Zielonka)

A winning condition that is both weakly convex and weakly
concave is finitely positional.

Definition

A winning condition W is weakly convex if for all sequences of
words (un), un ∈ C ∗, if

u1u3u5u7 . . . ∈ W and u2u4u6u8 . . . ∈ W ,

for all i we have (ui )
ω ∈ W ,

then u1u2u3u4 . . . ∈ W .

However, weak concavity is not a sufficient condition for
half-positional determinacy.



Geometrical conditions

Let C = [0, 1]d .
For u ∈ C+, let P(u) be the average color of u.
For w ∈ Cω, let Pn(w) = P(w|n).

wn 0 1 0 1 0 1 0 1 0 ...
Pn(w) 0 1/2 1/3 2/4 2/5 3/6 3/7 4/8 4/9 ...



Geometrical conditions

Let C = [0, 1]d .
For u ∈ C+, let P(u) be the average color of u.
For w ∈ Cω, let Pn(w) = P(w|n).

wn 0 1 0 1 0 1 0 1 0 ...
Pn(w) 0 1/2 1/3 2/4 2/5 3/6 3/7 4/8 4/9 ...

Let A be a subset of C . Let WF (A)⊂ Cω be a set of w such that
each cluster point of (Pn(w)) is an element of A, and WF ′(A) be a
set of w such that at least one cluster point of (Pn(w)) is an
element of A.



Half-positional determinacy vs geometry

For which A’s WF (A) and WF ′(A) are half-positional?
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Half-positional determinacy vs geometry

For which A’s WF (A) and WF ′(A) are half-positional?

is the
complement
of A convex?

is A
trivial?

WF
or

WF ′?

not half-pos
nor concave

nothing
interestingconcave,

so finitely
half-pos,
but never
infinitely

is A
open?

finitely
half-pos

?

infinitely
half-pos

?

yes

no

WF

no

yes

yes

no

WF ′

If A is an open half-space, then WF (A) is half-positional.
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Monotonic automata

Consider the languages: C ∗anC ∗, C ∗an−1bC ∗, C ∗ban−1C ∗ over
C = {a, b, c}.

They can be recognized by deterministic finite automata satisfying
the following special conditions:

The set of states Q = {0, . . . , n};

0 is the initial state, n is the only accepting state;

The transition function σ is monotonic, i.e. q ≥ q′ implies
σ(q, c) ≥ σ(q′, c).

We call such an automaton a monotonic automaton A = (n, σ)
over C .



Monotonic automata

Let A be a monotonic automaton. We call the set
WMA = Cω − Lω

A
a monotonic condition.
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Monotonic automata

Let A be a monotonic automaton. We call the set
WMA = Cω − Lω

A
a monotonic condition.

Theorem

Monotonic conditions are half-positional.

For LA = C ∗a2C ∗ the resulting WMA is not concave: (babab)ω is
a combination of (bbbaa)ω and (aabbb)ω. (However, monotonic
conditions are weakly concave.)



Proof (an idea)

Let (G ,WMA) be a game with winning condition WMA. We
construct a new arena G ′ where Pos′ = Pos × Q. Eve
automatically loses when a game reaches a position (v , q) where
q = n. We can implement this as a parity condition, so we can
find a positional strategy s ′ for Eve in some set Win′

E
⊆ Pos′. If

Win′
E

is empty, it ensures that Adam can win from any position.
Otherwise, we project s ′ to WinE = {v : (v , 0) ∈ Win′

E
} by

s(v) = πs ′(v , q(v)) where q(v) is the greatest q such that (v , q) is
in WinE . This gives a positional strategy for Eve in some subset.
We remove this subset from arena and repeat.



General properties

of half-positional

winning conditions



Basic tools

Let D be a determinacy type.

Theorem

Let W ⊆ Cω be a winning condition such that for each nonempty
D-arena G over C, there exists a position v ∈ G such that in the
game (G ,W ) one of the players has a D-strategy winning from v.
Then W is D-determined.



Enhancing with Büchi conditions

Theorem

Let W ⊆ Cω be a D-determined winning condition, and S ⊆ C.
Then W ∪ WBS is a D-determined winning condition as well.

Eve wins if she either wins W , or colors from S appear infinitely
often.
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Theorem

Let W ⊆ Cω be a D-determined winning condition, and S ⊆ C.
Then W ∪ WBS is a D-determined winning condition as well.

Eve wins if she either wins W , or colors from S appear infinitely
often.
Dually, W ∩ WB ′

S (Eve wins if she wins W , and also colors from S
appear only finitely often) is a D-determined winning condition as
well.



Enhancing with Büchi conditions

Theorem

Let W ⊆ Cω be a D-determined winning condition, and S ⊆ C.
Then W ∪ WBS is a D-determined winning condition as well.

Eve wins if she either wins W , or colors from S appear infinitely
often.
Dually, W ∩ WB ′

S (Eve wins if she wins W , and also colors from S
appear only finitely often) is a D-determined winning condition as
well.
By applying this theorem n times one can get positional
determinacy of parity condition.
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Closure under union?

If W is half-positional, then W ∪ WBS is also half-positional.
Is this a general fact: whenever W1 and W2 are half-positional,
W1 ∪ W2 is also half-positional?
Concave conditions are closed under union.
Monotonic conditions are closed under finite union.
A union of a concave and a monotonic condition is also finitely
half-positional.
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A union of an uncountable family of half-positional conditions need
not be half-positional — even for Büchi conditions.
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Closure under uncountable union

Arena: One Eve’s position E and ω Adam’s positions (An)
In E Eve chooses n and moves to An.
In An Adam chooses r and returns to E . This move is colored with
(n, r).

For each f : ω → ω, Wf is the Büchi condition given by
Sf = {(n, f (n)) : n ∈ ω}: Eve wins Wf if Adam uses moves
colored with Sf infinitely many times.

Eve can win
⋃

f :ω→ω
Wf , but only if she uses a non-positional

strategy.



Positional/suspendable conditions

Definition

W is a positional/suspendable condition iff for each arena G Eve
always has a positional strategy in her winning set, and Adam
always has a suspendable strategy in his winning set.

Strategy for Adam is suspendable if from time to time Adam can
stop using it (and do something else) and return later and still win
(if he did not leave his winning set).



Positional/suspendable conditions: examples

The following winning conditions are positional/suspendable:

Co-Büchi condition WB ′
S .
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Positional/suspendable conditions: examples

The following winning conditions are positional/suspendable:

Co-Büchi condition WB ′
S .

The geometrical condition WF (A), for an open half-space A.

Monotonic conditions.

Countable unions of positional/suspendable conditions.



XPS conditions

Definition

The class of extended positional/suspendable (XPS) conditions
over C is the smallest set of winning conditions that contains all
Büchi and positional/ suspendable conditions, is closed under
intersection with co-Büchi conditions, and is closed under finite
union.

Theorem

XPS conditions are half-positional.
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ω-regular Winning Conditions

A language L ⊆ Cω is ω-regular iff it is accepted by a deterministic
finite automaton with parity acceptance condition.

Definition

A DFA with parity acceptance condition is a tuple
A = (Q, qI , δ, rank) where:

Q — set of states

qI — initial state

δ : Q × C → Q — transition function

rank : Q → {0 . . . d} — rank function

Let qn be the state after reading first n letters. An infinite word is
accepted iff lim sup rank qn is even.
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If W is ω-regular and not finitely half-positional then there is a
witness arena (i.e. such that Eve has a winning strategy, but no
positional winning strategy)



Simplifying the Witness Arena

Theorem

If W is ω-regular and not finitely half-positional then there is a
witness arena (i.e. such that Eve has a winning strategy, but no
positional winning strategy) where there is only one Eve’s position,
and only two moves from this position (no restriction on Adam’s
positions and moves).
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We can assume that for each Eve’s position no strategy exists
which always uses the same move in this position.
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Simplifying the Witness Arena part I

b

a

b
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d
d

We can assume that for each Eve’s position no strategy exists
which always uses the same move in this position.
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Simplifying the Witness Arena part II

a
b

c
a

b
c

a
b

we choose one Eve’s position
ghost



Simplifying the Witness Arena part II

we create an equivalent game on G × Q
which is positionally determined



Simplifying the Witness Arena part II

remove unnecessary moves
give other positions to Adam



Simplifying the Witness Arena part II

choose two Eve’s positions. . .
ghost



Simplifying the Witness Arena part II

and merge them
ghost



Simplifying the Witness Arena part II

positional → remove the unused move and merge again
non-positional → give all other Eve’s positions to Adam



Decidability

Theorem

Let W be a (prefix independent) ω-regular winning condition
recognized by a DFA with parity acceptance condition with n
states. Then finite half-positional determinacy of W is decidable in
time O(nn2

).

Algorithm idea: Check all possible arenas with only one Eve’s
position and two Eve’s moves.



Conclusion



Future work

Future work:

more closure properties and examples of interesting
half-positional winning conditions?
Is an union of half-positional winning condition
half-positional? Are there any half-positional winning
conditions not in XPS?
What about infinite half-positional determinacy of ω-regular
languages? Do the classes of finitely half-positional and
half-positional conditions coincide for ω-regular languages?
Is the algorithm given optimal? Are there simple
characterizations of (finitely) half-positional winning
conditions?
What about other geometrical conditions?
In this work we allow arenas where some moves are colorless.
Are there any winning conditions which are half-positional
with respect to arenas without colorless moves, but not when



Future work

How can our results be extended to:

Finite memory strategies?

Payoff mappings instead of win-lose?

Winning conditions which are not prefix independent?

Position-colored arenas (type A)?

Stochastic games?



Conclusion

Summary

infinite games — basic examples and definitions

examples: concave, geometrical, and monotonic winning
conditions

closure properties

suspendable strategies

ω-regular winning conditions, decidability of finite determinacy

future work

thank you


