
LOIS
syntax and semantics

Eryk Kopczyński
University of Warsaw
erykk@mimuw.edu.pl

Szymon Toruńczyk
University of Warsaw

szymtor@mimuw.edu.pl

Abstract
We present the semantics of an imperative programming language
called LOIS (Looping Over Infinite Sets), which allows iterating
through certain infinite sets, in finite time. Our semantics intu-
itively correspond to execution of infinitely many threads in par-
allel. This allows to merge the power of abstract mathematical con-
structions into imperative programming. Infinite sets are internally
represented using first order formulas over some underlying logical
structure, and SMT solvers are employed to evaluate programs.

Categories and Subject Descriptors F.3.2 [LOGICS AND MEAN-
INGS OF PROGRAMS]: Semantics of Programming Languages

1. Introduction
Modern imperative programming languages allow easy manipula-
tion of arrays, lists, sets, trees etc. using for loops, mimicking the
intuitive set-builder notation used in mathematical formulas such as

Y = {2x+ 1 | x ∈ X,x > 3}.

The code below is an example of how this could be imitated in C++
using the range-based for loop (available since C++11).

set < i n t > Y;
f o r (i n t x : X)

i f (x>3) Y.insert (2*x+1);

i f memberof (10,Y)
cout << "10 is in Y";

Many programming languages, e.g. Python or Scala, support list
comprehension, closely resembling set-builder notation. Such con-
structions are more general than set-builder notation, in that they
allow executing instructions (with possible side effects) within the
body of the loop. On the other hand, set-builder notation is more
powerful, as it can be equally well applied to infinite sets, which is
crucial in abstract mathematical reasonings. For instance, the setX
in the mathematical formula above might be the set of all integers
or real numbers, yielding a meaningful definition of Y . To the best
of our knowledge, no existing imperative programming language
combines both strengths, allowing to evaluate instructions (possi-
bly, nested) similar to the one above, when X denotes an infinite

[Copyright notice will appear here once ’preprint’ option is removed.]

set. Note that although lazy evaluation allows defining certain infi-
nite objects, few tests can be performed on them, e.g., one cannot
determine in finite time whether an infinite stream contains the el-
ement 10, by analogy to memberof(10,Y) test above (although
see (JKS12) for an extension of OCaml allowing certain effective
tests).

In this paper, we present LOIS – a programming language ma-
nipulating infinite sets, in which the above code is executable, in
finite time even for some infinite sets X . Below we give further
illustrating examples of imperative mathematical constructions in-
volving iteration over infinite sets, written in pseudocode which is
very close to LOIS.

Example 1. For a region F of Rn, a ball packing of F is an
inclusion-maximal family of pairwise-disjoint unit balls contained
in F . An example of a ball packing of the disk of radius 2 +

√
5 in

the plane is depicted below.

The pseudocode below implements a function which takes as
argument a region F of Rn, and returns the set of all ball packings
of F – usually, an infinite set.

s e t packings(F) {
s e t packings = ∅;
s e t partial = {∅};

f o r (P i n partial) {
b o o l maximal = t r u e ;

f o r (x i n F)
i f Ball(x,1)⊆F and

Ball(x,1)∩union(P)=∅ {
maximal = f a l s e ;
partial +=(P∪{Ball(x,1)})

};
i f (maximal)

packings += P
}
r e t u r n packings

}

The semantics of the code is as follows. The variable packings
stores the packings found so far, and the variable partial stores
partial (possibly not maximal) packings. In each iteration, consider
a partial packing P . For all points x ∈ F , if P ∪ {Ball(x, 1)}
is a partial packing, add it to partial. If no such point x exists,
then P is maximal, so add it to packings. Note that the sets F and
partial, over which the loops iterate, are typically infinite.

LOIS: syntax and semantics 1 2016/10/6

Example 2. Take an infinite countable set of vertices V, and for
each pair of vertices, choose randomly whether there is an edge
between them or not. It is well known that, up to isomorphism, with
probability 1 we get the same graph, known as the random graph,
the Rado graph, or the Erdős-Rényi graph (Rad64; ER63). To make
things more interesting, assign each vertex randomly to one of two
parts and remove edges between pairs of vertices which are in the
same part. We obtain the random bipartite graph G = 〈V, E〉.

Is this graph connected? We could check this using the function
is-connected described in pseudocode below.

b o o l is_connected(V,E) {
f o r (v i n V)

i f (reach(E,{v})!=V)
r e t u r n f a l s e ;

r e t u r n t r u e ;
}

Here we use the function reach, implemented by the pseudocode
below as the BFS algorithm for computing reachable nodes starting
from a set of vertices I , in a directed graph with edgesE ⊆ V ×V .

s e t reach(E,I) {
s e t R=I;
s e t S=∅;

w h i l e (R 6=S) {
S=R;
f o r (e i n E)

f o r (v i n S)
i f (e.first=v)

R += e.second;
}
r e t u r n R;

}

Note that we wish to run this function on infinite graphs. Both
examples above can be implemented in LOIS, which, in the briefest
summary, allows performing for loops over infinite sets. Intuitively,
such a loop executes all of its branches in parallel.

Example 3. This example is inspired by formal verification of
infinite state systems. Below is a LOIS program constructing an
automaton with infinitely many states, which for a given sequence
over the alphabet Σ = N ∪ {#}, computes the maximal sum of
an infix not interrupted by #. For example, for the input sequence
1, 3, 2,#, 5, 6, 11,#, 1, 2 the automaton ends in state (22, 3).

s e t Σ = N∪{’#’};
s e t Q = ∅;
s e t I = {(0 ,0)};
s e t δ = ∅;

f o r m i n N do
f o r n i n N do

Q+= (m,n);

f o r (m,n) i n Q do
f o r x i n Σ do

i f (x==’#’)
δ+=((m,n),x,(m,0))

e l s e
δ+=((m,n),x,(max(m,n+x),n+x));

s e t E = ∅;

f o r (p,a,q) i n δ do
E += (p,q);

print(reach(E,I));

The statespaceQ consists of all pairs (m,n) withm,n ∈ N. There
is one initial state, (0, 0). The transition relation δ ⊆ Q×Σ×Q is

such that reading # resets the second component of the state, and
reading a letter x ∈ N increases the second component by x, and
accumulates the maximal seen value in the first component. The
tuple (Σ, Q, δ, I) is an automaton (without accepting states), with
infinite-state space.

In the last three lines of the code above, we compute the set
of reachable states of our automaton, using the function reach
defined in Example 2.

The output is {(m,n) |m ∈ N, n ∈ N,m ≥ n}. Whereas for
loops should be interpreted as executing in parallel, while loops
are executed sequentially. In particular, in a terminating program,
they are executed finitely many times. In our case, the while loop
of the reach function iterates three times, with R taking val-
ues {(0, 0)}, {(n, n) | n ∈ N}, and {(m,n) |m,n ∈ N,m ≥ n}.

Let us specify a set of accepting states, e.g.F = {(m, 3) |m ∈ N},
which can be constructed in LOIS, similarly to Q. Now A =
(Σ, Q, δ, I, F) is a deterministic, infinite-state automaton accept-
ing those sequences, in which the maximal sum of an infix uninter-
rupted by # is 3.

What is the minimal automaton equivalent toA? To find out, we
can try to run the well-known partition refinement algorithm on A,
implemented by the code below.

f u n c t i o n minimize(Σ,Q,q0,F,δ)
{

s e t E = ∅;
f o r (p,q,a) i n Q×Q×Σ do

E+=((δ(p,a),δ(q,a)),(p,q));
s e t S=(F×(Q-F))∪((Q-F)×F);
s e t equiv=(Q×Q)-reach(S,E);

s e t classes=∅;
f o r q i n Q do {

s e t class = ∅;
f o r p i n Q do

i f ((p,q)∈equiv)
class += p;

classes += class
}

r e t u r n classes
}

Since this only works for deterministic automata, here we treat δ
as a function Q × Σ → Q and q0 is the unique initial state. In the
first phase, we compute in the variable equiv the equivalence rela-
tion which identifies states that recognise the same languages, i.e.,
(p, q) ∈ equiv iff for all words w ∈ Σ∗, reading w from the state
p, ends in an accepting state iff it does from the state q. To compute
equiv we use the function reach described earlier. In the second
phase, we compute the equivalence classes of the relation equiv
on Q, which are the states of the minimal automaton; the transi-
tions can be computed similarly. For the automaton A described
above, this returns a minimal automaton with 11 states. Note that
the pseudocode in the reach and minimize functions implements
the classical algorithms for finite automata. One of the benefits of
LOIS is that it demonstrates that these algorithms are also meaning-
ful and correct for some infinite-state systems. We note that these
functions can be readily converted into a very similar, executable
LOIS program (KTb) with no need of auxiliary data structures.

Contributions We introduce the concept and formal semantics of
a programming language manipulating infinite sets which are de-
finable in an underlying first order structure, and allowing to iter-
ate over such sets in finite time. Actually, we describe two seman-
tics, LOIS0 and LOIS. Whereas LOIS0 has a simpler mathemat-
ical description, LOIS is closer to an implementation, can simu-

LOIS: syntax and semantics 2 2016/10/6

late LOIS0, and is more flexible. We briefly describe how LOIS
and LOIS0 can be implemented by employing SMT (Satisfiability
Modulo Theories) solvers.

We have actually implemented LOIS as a C++ library (see At-
tachment and (KTb)) allowing the users to combine pseudoparallel
computation with the full power of C++11. Furthermore, our C++
library allows programming constructs such as recursion, function
calls, expressions with side effects, complex data structures, etc.
Since they can be handled in the standard way, they have been omit-
ted from this paper.

Applications LOIS is a high level programming language allow-
ing manipulation of abstract mathematical objects. We believe that
it may be useful in the design and implementation of algorithms in-
volving abstract mathematical reasoning, as well as for for didactic
and expository purposes.
Verification and research. We believe that the syntax and semantics
of LOIS are useful for presenting high-level algorithms in research
papers, and proving their correctness. In particular, we believe
that LOIS might find many applications in verification of infinite
state systems. As LOIS allows to work directly with infinite sets,
many theoretical arguments used in the verification literature can
be readily translated into executable LOIS programs, avoiding the
burden of implementing symbolic data structures. Moreover, the
same piece of code can implement various algorithms, depending
on the chosen underlying structure.
Aiding education. Several programming languages are based on
the idea of allowing the programmer to manipulate sets. The prin-
cipal example here is SETL (SDSD86), and its variants, such as
ISETL (FD96). Whereas these languages only allow using finite
sets, LOIS extends this idea by introducing infinite sets, which are
definable in an underlying logical structureA. ISETL has been pro-
posed (FD96) as a tool for teaching discrete mathematics. We be-
lieve that by allowing the manipulation of infinite definable sets
LOIS can be a good tool for teaching logic, set theory, and abstract
mathematics.

Outline In the following section, Section 2, we describe the intu-
ition underlying pseudoparallel semantics. Next, we introduce the
formal definition of the fully pseudoparallel semantics of LOIS0, in
Section 3. The expressive power of LOIS0, from the logical point
of view, is studied in Section 4, whereas the effectiveness of the
semantics of LOIS0 is demonstrated in Section 5. In the following
Section 6, we introduce a variant of the fully pseudoparallel se-
mantics, called hybrid pseudoparallel semantics, which is close to
the actual implementation of LOIS, discussed in Section 7. In Sec-
tion 8 we mention many potential applications of LOIS to formal
verification. Related work is discussed in Section 9.

2. Pseudoparallel semantics – intuition
We start with a brief intuitive introduction of the main ideas of
the pseudoparallel semantics. On an intuitive level, the semantics
of LOIS0 can be explained simply by saying that the instruction
for (x in A) executes (possibly infinitely) many threads – one per
each element x of the iterated set A – perfectly synchronously. The
term “thread” here does not refer to parallel computation, but to
the intuition associated to it; therefore we call those pseudoparallel
threads. The pseudoparallel thread corresponding to the element
x of A is executed with the control variable x set to x. In the fully
pseudoparallel semantics of LOIS0, perfect synchronization means
that two different threads execute corresponding instructions of the
loop’s body exactly at the same moment.

The above intuition suffices to understand the examples in the
introduction, and to write programs in LOIS. We give some more
examples below, using the actual syntax of LOIS0 and LOIS. For

technical reasons, our C++ library uses a slightly different syn-
tax (KTb). The formal syntax and semantics of LOIS0 will be given
in Section 3, and of LOIS in Section 6.

Let A denote an infinite set, and let A be a variable representing
it. Consider evaluating the following code below.

s e t X;
f o r (x i n A)

X += x;

The type set denotes a type for (possibly infinite) sets. The instruc-
tion X += x adds the element x to the set X.

Naturally, after executing this program, the variable X should
evaluate to A. However, this cannot be evaluated by sequential
iteration, since the set A is infinite. Intuitively, we create a separate
thread a for each a ∈ A. The instruction X += x, performed in all
threads in the same time, adds all the possible values x ∈ A to the
set X. As expected, X evaluates to A.

Now consider the following code.

s e t X;
f o r (x i n A) {

s e t Y;
f o r (y i n A) {

i f ¬(x=y)
Y += y;

X += Y;
}

}

This program demonstrates several new concepts. First, the threads
may branch: in the inner loop, there is a thread xy for each pair
x, y ∈ A. Second, threads can have local variables: each thread
x ∈ A has its own copy of the variable Y. Next, notice the use
of a conditional. The inner statement is executed only for those
threads which satisfy the condition, while for the other threads, an
empty instruction will be executed. In thread x, the final value of
its local copy of the variable Y is {y : y ∈ A, y 6= x}. The last line
adds the value of each local variable Y to X. The final value of X is
{{y : y ∈ A, y 6= x} : x ∈ A}.

The outcomes of the above two programs are intuitively clear,
since their code resembles the set-builder notation used for describ-
ing the resulting sets. To define a meaningful semantics, however,
some conceptual challenges need to be overcome when truly imper-
ative constructions are executed within an infinite loop. Consider
for instance the following code.

i n t parity = 0;
f o r (x i n A)

parity = 1 - parity;

Since A is an infinite set, the parity of its cardinality is ill-defined.
What should the outcome of the program be? According to the fully
pseudoparallel semantics of LOIS0, all the threads x ∈ A are fully
synchronous, so the last instruction sets the value of parity to
1 in each thread simultaneously and unanimously, so the overall
result is 1. On the other hand, in the hybrid semantics of LOIS
which we also present in this paper, the full synchronicity condition
is dropped, and the result of the above program can be either 0
or 1, depending on the internal representation of A. For example,
when A in fact represents a finite set in a standard way (similar to
a list), the code above will compute the parity of the set, as in this
particular case the for loop is executed sequentially, rather than
in parallel. In general, however, some threads can be executed in
parallel, and some sequentially, hence the name hybrid semantics.
The main advantage of the hybrid semantics of LOIS is that it tends
to produce more succinct outputs, which in turn results in more
efficient programs. The fully parallel semantics of LOIS0, on the

LOIS: syntax and semantics 3 2016/10/6

S ::= Var, ∅, A, S ∪ S, S ∩ S, S− S, (S), {S}, f(S, . . . , S),

B ::= ⊥,>, B ∨ B, B ∧ B, ¬B, (B),

S = S, S ∈ S, S ⊆ S, R(S, . . . , S).

Figure 1. Formal syntax of expressions of type set (S) and bool
(B). Above, A denotes a name of a sort in A and f and R denote
function/relation symbols in the signature of A of arity matching
the number of arguments.

other hand, has a more elegant mathematical description. We begin
by formally defining the fully pseudoparallel semantics.

3. LOIS0: fully pseudoparallel semantics
Although the semantics of LOIS0 may seem natural on an intuitive
level, it turns out that defining it formally is a nontrivial endeavour.
In this section, we give a big-step operational semantics for LOIS0,
which we call the fully pseudoparallel semantics. This language
has a fully pseudoparallel for loop, conditional (if), sequencing (;),
while-loop (while), local variables (type set), expressions, assign-
ment, and set insertion (+=). For simplicity, we omit recursion, and
assume that expressions have no side effects, and do not allow vari-
ables of types other than set. Semantics for these can be given in
the standard way. Although this is not necessary for understanding
the semantics, it is crucial in our applications to allow LOIS0 to
access an infinite logical structure, as described below.

Underlying structure As we want programs in LOIS0 to manipu-
late complex mathematical objects, such as the rationals, the reals,
infinite random graphs, etc., it will be useful to allow LOIS0 to
access an underlying logical structure A. For instance, in order to
implement Example 1 from the Introduction, one would take A to
be the ordered field of reals R = 〈R,+, ·, 0, 1,≤〉, which is rich
enough to talk about certain regions in the plane (such as squares,
disks), sets of regions, ball packings, etc. During the execution of
the program, new infinite sets can be produced basing on the under-
lying structure A. For instance, as we will see, the disk of radius
2+
√

5 centered at the origin of the plane, considered in Example 1,
can be constructed when the underlying structure isR.

Fix an underlying structureA, which is a many-sorted structure
A over a signature containing relational and functional symbols.
We refer to the literature (e.g. (Hod97)) for structures, variables,
sorts, terms, and formulas. Throughout this paper, formulas are
assumed to be first order. Each sort of A has a name which is a
symbol, and a domain, which is a set. We use the boldface letters
A,B, etc. to denote sort names. An element of A is an element
of any of its domains. Formally, elements of A are sets (as in set
theory, every mathematical object is a set). We call elements of A
atoms (this terminology comes from set theory) as according to our
semantics (see Section 3.2), in programs they will be viewed as sets
which do not contain any elements.

3.1 Syntax
Expressions Fix a set of variable names Var. We consider ex-
pressions of two types: set and bool, whose syntax is presented in
Figure 1. Expressions of type set denote sets (which include atoms,
i.e., elements of A). Expressions of type bool are used as condi-
tions for flow control operations.

Statements We skip the formal syntax of LOIS0 statements, as
it is very similar as for while-programs. Below is an informal
description. A statement is either of the following:

• A sequence statement of the form S1;S2, where S1 and S2 are
statements;

• A variable declaration instruction of the form set x;S where
x ∈ Var is a variable name. This declares a local variable x
in S. We consider ; to be right associative, thus the scope of x
extends to the end of the block;
• flow-control instructions if (e) S and while (e) S, where e is an

expression of type bool and S is a statement;
• A statement for (x in e) S, where x ∈ Var is a variable name

and e is an expression of type set, and S is a statement;
• An assignment instruction x=y or insertion instruction x+=y,

where x is a variable name and y is an expression of type set.

3.2 Semantics
Let U be the universe of set theory, i.e., its elements are arbitrary
sets (we will see in Section 4 that in fact not all sets are necessary).
A thread is formally a sequence γ ∈ U∗ of elements of U, where
U∗ denotes the class of tuples (finite sequences) of elements of U.
If w, v ∈ U∗, then wv is the concatenation of the tuples w, v. A
state of the program is a partial function s : Var × U∗ → U.
Informally, s(v, γ) is interpreted as the value of the variable v in
thread γ (which can be undefined).

Expressions For an expression e, thread γ and state s, we write
JeKs,γ for the denotational semantics of the expression e in the
given state and thread, as defined formally in Figure 2 below. We
use the convention that a set operation ∪,∩,− can be applied only
to sets which are not atoms (i.e., elements of A), and function
and relation symbols from A can only be applied to elements of
A of appropriate sorts (and not to sets). Violating these natural
restrictions results in undefined semantics. In an interpreter, this
would be raised as a runtime error.

JxK = s(x, η), where η is the longest prefix of γ for which s(x, η) is defined

J∅K = ∅ JAK = AA J{e}K = {JeK}

Je#fK = JeK#JfK for # ∈ {∪,∩,−} if JeK 6∈ A and JfK 6∈ A

Jf(e1, . . . , en)K = f
A
(Je1K, . . . , JenK) if JeiK ∈ AA

i for 1 ≤ i ≤ n

JR(e1, . . . , en)K = R
A
(Je1K, . . . , JenK) if JeiK ∈ AA

i for 1 ≤ i ≤ n

Je = fK =

{
> if JeK = JfK
⊥ otherwise

Je ∈ fK =

{
> if JfK 6∈ A, JeK ∈ JfK
⊥ otherwise

Je ⊆ fK =

{
> if JeK, JfK 6∈ A, JeK ⊆ JfK
⊥ otherwise

Figure 2. Semantics of expressions. Fix a state s and a thread γ;
we write simply JeK to denote JeKs,γ . Above, x ∈ Var, and A
is a sort name whose corresponding domain in A is AA; f is a
function symbol in the signature ofA of type A1×· · ·×An → A0

whose interpretation in A is fA, and R is a relation symbol in the
signature of A interpreted as a function RA of type A1 × · · · ×
An → {>,⊥}. The semantics of boolean expressions is defined in
the obvious way for ⊥,>,∨,∧,¬.

Statements The rules of semantics of LOIS0 statements will be
given as Γ, S, s → t, indicating that if the current set of threads
is Γ, and we execute the statement S, the state s changes to t. In
Figure 3, we list the rules of the semantics of LOIS0 statements.

Note that according to the definition, the assignment x = e
cannot be applied when there are two threads η1, η2 in Γ extending
a thread γ in which the variable x is defined, and which write
different values to x, i.e., JeKs,η1 6= JeKs,η2 . Formally, in this case,
the semantics of such a program is undefined. In an interpreter, this
would be raised as a runtime error.

LOIS: syntax and semantics 4 2016/10/6

Γ = ∅

Γ, S, s→ s
(no-threads)

Γ, S1, s→ t Γ, S2, t→ u

Γ, S1; S2, s→ u
(sequencing)

Γ, S, s→ t

Γ, {S}, s→ t
(block)

Γ, S, s ∗ [(x, γ) 7→ ∅ for γ ∈ Γ]→ t

Γ, set x;S, s→ t \ x
(declaration)

{γ ∈ Γ : JeKs,γ = >}, S, s→ t

Γ, if (e) S, s→ t
(if)

∀γ ∈ Γ.JeKs,γ = ⊥

Γ,while (e) S, s→ s
(while-done)

{γ ∈ Γ : JeKs,γ = >}, S, s→ t Γ,while (e) S, t→ u

Γ,while (e) S, s→ u
(while)

∆, S, s ∗ [(x, γg) 7→ g for γg ∈ ∆]→ t, ∆ = {γg : γ ∈ Γ, g ∈ JeKs,γ}

Γ, for (x in e) S, s→ t \ x
(for)

t = [(X, γ) 7→ (s(X, γ) ∪ {JeKs,η : η ∈ Γ, γ 4 η}) for γ ∈ dom(s(X,−))]

Γ, X+=e, s→ s ∗ t
(insertion)

t = [(x, γ) 7→ JeKs,η for γ ∈ dom(s(x,−)), η ∈ Γ, γ 4 η]

Γ, x=e, s→ s ∗ t
(assignment)

Figure 3. Semantics of LOIS0. For two threads γ, η, write γ 4 η
if γ is a prefix of η, that is, η is one of the sub-branches of
the thread γ. For a state t and variable x, let t \ x denote t
where values for (x, γ) become undefined for all γ. By s ∗ t we
denote the partial mapping which maps (y, γ) to t(y, γ) if this
is defined, and to s(y, γ) otherwise. By [d] we denote the partial
mapping as described by the description d. If d does not define a
partial mapping, then [d] is undefined (this can happen only in the
assignment rule). Except for the no-threads rule, we assume Γ 6= ∅.

Typically, when considering the semantics of a program P in
LOIS0, we start with the set of threads Γ0 consisting only of the
empty tuple ε ∈ U∗, indicating that no branching has occurred yet,
and with the state s0 : Var × U∗ → U consisting of the empty
partial mapping. We say that the program P results in state s if
one can derive Γ0, s0, P → s using the rules of the semantics of
LOIS0. Of course, there might be no such state s, for example if
the program P loops forever or a runtime error occurs. However,
a program P results in at most one state, since the semantics of
LOIS0 is deterministic. Another issue, discussed in Section 5, is
whether the resulting state s can be computed, given P – this may
depend on the underlying structure A.

Example 4. We showcase our semantics on a simple example.
Consider the following statement, described earlier in Section 2.

s e t X;
f o r (x i n Y)

X += x;

We execute this statement in some initial set of threads Γ, and some
initial state s, such that s(Y, γ) = {a, b} for all γ ∈ Γ, where a, b
are some two distinct sets. In other words, in every thread in Γ,
the variable Y evaluates to the set Y = {a, b}. According to the
declaration rule, when the variable X is declared, a pseudoparallel
copy for each thread γ ∈ Γ is created, where the value of the
copy in thread γ is given by s(x, γ). Then, we are performing a
pseudoparallel for loop, hence in the body of the loop, the set of
threads Γ changes to ∆ = Γ · Y : each thread γ ∈ Γ branches into
two threads γa, γb ∈ ∆, and s(x, γi) = i for i = a, b. In other
words, in the thread γi, the control variable x has value i. Finally,

according to the insertion rule, s(x, γa) = a and s(x, γb) = b
are inserted to s(X, γ) in parallel, so the final value of X in every
thread γ ∈ Γ is {a, b}. A similar analysis would be valid if Y were
infinite rather than finite.

Suppose now that we modify the last line of the code to the as-
signment X=x. At the moment of assignment, s(x, γa) and s(x, γb)
are different, so the assignment rule cannot be applied (when trying
to apply this rule, the description inside the brackets [] does not de-
fine a partial mapping, since it maps (x, γ) to two different values).
Intuitively, two different assignments to x are performed at exactly
the same moment, resulting in a runtime error.

Finally, if we modify the last line of the code to the statement
if (x=a) X=x (assuming a evaluates to the element a of Y in every
thread γ ∈ Γ, i.e., s(a, γ) = a for γ ∈ Γ) then the condition x=a
is satisfied only in the thread γa, so the program would be valid
again, and the final value of X would be a, in every thread γ ∈ Γ.

4. Definable sets
We now turn to characterizing the sets which can be computed by
a program in LOIS0, with underlying structure A. Our characteri-
zation will shed light on how to represent these sets internally in an
interpreter, and how to evaluate LOIS0 programs. We will see that
these sets are precisely those sets which can be constructed using
set-builder notation with first-order guards ranging over elements
of A and finite unions, in a nested fashion. We start with defining
precisely this class of sets.

We assume an infinite set of variables, each of which is assigned
to a specific sort (these are first-order variables, not to be confused
with the programmatic variables in Var). If x is assigned to a sort
named A, we write x ∈ A. A context is a set of either variables,
called bound variables, or formulas in the signature of A, called
the constraints. A valuation of a set of variables V is a mapping
v : V → A which respects the sorts. If C is a context, then by
Val(C) we denote the set of valuations of the bound variables in C
which satisfy every constraint in C.

We define set-builder expressions, variable elements (or v-
elements) and variable sets (or v-sets) by mutual induction. A set-
builder expression is an expression of the form {e | C}, where e
is a v-element and C is a context. V-sets are formal unions of set-
builder expressions of the form {e1 | C1} ∪ . . . ∪ {ek | Ck}, also
denoted {e1 | C1; . . . ; ek | Ck} for brevity. A v-element is either of
the following: a term built of variables and function symbols from
A, a tuple of v-elements, an integer, or a v-set. If e is a v-set or
v-element and v is a valuation of its free variables, then by e[v] we
denote its value under this valuation (formally defined by structural
induction on e), which is a mathematical object (i.e., e[v] is an
atom in A or is a set).

Definable sets Fix a structure A. Let e be a v-element. If
a1, . . . , an are elements of A and v is a valuation of its free vari-
ables with values in {a1, . . . , an}, then we say that the element
e[v] is definable (in A) with parameters a1, . . . , an.

Example 5. Let Q = 〈Q, <〉 be the rationals with their linear
order. The expression e equal to {x | x ∈ Q, x < y} ∪ {z} is a
v-set with free variables y, z. Under the valuation v : {y, z} → Q
such that v(y) = 2 and v(z) = 3, e[v] evaluates to the set
X = {x | x ∈ Q, x < 2} ∪ {3}. The set X is definable, with
parameters 2, 3. The definable subsets of Q are precisely the finite
unions of open (possibly half-bounded) intervals and points.

Now consider the ordered field of reals R = 〈R,+, ·, 0, 1,≤〉.
An example definable subset of R3 is the half-ball {(x, y, z) | x ∈
R, y ∈ R, z ∈ R, x > 0 ∧ x2 + y2 + z2 ≤ 1}. Another example
is the disk of radius 2 +

√
5 centered at (0, 0), from Example 1,

which is defined by the expression {(x, y) | x ∈ R, y ∈ R, r ∈

LOIS: syntax and semantics 5 2016/10/6

R, r2−4r−1 = 0∧ r > 0∧x2 +y2 ≤ r}. A celebrated result of
Tarski characterizes definable subsets of Rk as precisely the finite
unions of sets defined by systems of equalities and inequalities
between k-variate polynomials.

To cast definable sets in the realm of set theory, we may use the
standard set-theoretic encodings of tuples and integers, using sets.
In the definitions above, we allow tuples and integers for notational
convenience, and in programs, for efficiency.

4.1 Closure properties
We argue that the class of definable sets, besides having a simple
mathematical definition, also enjoys many useful closure proper-
ties, which makes it suited for performing mathematical construc-
tions. We will later use these properties to prove in Theorem 4 that
LOIS0 computes precisely all definable sets, and to prove in Theo-
rem 7 that the semantics of LOIS0 is effective.

As in set theory, we may speak of definable relations (definable
subsets of X × Y), definable functions (definable relations which
are functional), definable structures (structures, in which the do-
main, the relations and functions are definable), etc.

Proposition 1. Definable sets are effectively closed under boolean
combinations, cartesian products, quotients under definable equiv-
alence relations and images under definable mappings.

The proof of the following result proceeds by recursively reduc-
ing set equality to inclusion, inclusion to membership, and mem-
bership to equality.

Proposition 2. Let e, f be two v-elements with free variables
contained in V . There exists an effectively computable (in PSPACE)
formula τ= such that for any valuation v : V → A, the equality
e[v] = f [v] holds iff v satisfies τ= in A. Similarly, there are
formulas τ∈, τ⊆ for ∈,⊆ in place of =.

Below, by boolean expression we mean an expression as de-
scribed by the syntax given in Section 3, and JeK denotes the de-
notational semantics of e according to the semantics given in Sec-
tion 3, with JviK = xi, for i = 1, . . . , n.

Proposition 3. Let X ⊆ X1 × · · · × Xn be a definable set. If e
is a boolean expression with free variables v1, . . . , vn, then the set
W = {(x1, . . . , xn) ∈ X : JeK = >} is definable.

The above propositions demonstrate that the setting of definable
sets is suitable for performing basic mathematical constructions.
Finally, let us remark that structures which are definable in A
correspond (up to isomorphism) to structures which interpret in A
via interpretations (see e.g. (Hod97) for a definition).

4.2 LOIS0 computes definable sets
The following theorem shows that the values computed by LOIS0

are exactly the definable sets. We say that a state partial function
s : Var × U∗ → U is definable if its graph is definable (where
Var is identified with the set of naturals {0, 1, 2, . . .}, and U∗ is
the class of tuples of elements of U).

Theorem 4. Fix an underlying structure A. For a LOIS0 program
P , if P results in a state partial function s, then s is definable
without parameters. Conversely, for every definable set X and
variable name x, there is a LOIS0 program P which results in a
state s, such that X ∈ s(x, ε).

Remark 1. At the end of the above statement, we have that X ∈
s(x, ε) rather thanX = s(x, ε). The reason is that, according to the
first part of the above theorem, s(x, ε) is always definable without
parameters. In particular, we cannot hope for s(x, ε) = X if X
is not definable without parameters. However, if X is definable
without parameters, then we can achieve s(x, ε) = {X}.

The second part of Theorem 4 proceeds by writing an explicit
program in LOIS0 simulating the expression defining the set X ,
basically, by replacing set-builder notation by for loops with addi-
tional conditions.

The first part is straightforward from the following lemma:

Lemma 5. Let Γ and s be definable, and P be a statement. If
Γ, P, s→ t, then t is definable too.

Proof sketch. The proof proceeds by induction on the structure of
the statement P . In the inductive step, we study each rule given in
Figure 3. For example, if P is of the form if(e) S, we apply the if
rule, and observe that the expression defining the thread sets is of
the form ∆ = {γ ∈ Γ : JeKs,γ = >}. By assumption that Γ and s
are definable, and by applying Proposition 3, we conclude that the
set ∆ is definable too. By applying the inductive hypothesis to S
and ∆, S, s→ t, we arrive at the conclusion that t is definable.

In the case of the remaining rules, we proceed similarly. See
Appendix B for details.

The above result says that in principle, in order to implement
an interpreter of LOIS0, one could use definable sets as an internal
representation for the type set. Note that the procedure described in
Lemma 5 is not effective – although exactly one of the while and
while-done rules can be applied, to determine which one should be
applied, we need to test validity of the sentence ∀γ ∈ Γ.JeKs,γ =
⊥. A similar problem arises when we want to determine whether
to apply the no-threads rule or one of the remaining rules, as this
requires testing nonemptiness of a definable set. Indeed, a certain
effectiveness assumption concerning the underlying structure A
is required in order to guarantee computability, as we describe in
Section 5.

5. Effectiveness
Whereas Section 3 provides a formal semantics of LOIS0, in this
section, we show that the semantics is effective, i.e., the programs
can be simulated by classical computers. This requires some mild
assumptions on the underlying structure A, namely, that its theory
is decidable. Let us first recall some standard notions from model
theory.

Theories A theory T is a set of sentences (formulas without free
variables) over a fixed signature. The theory of the structure A is
the set of all sentences which hold in the structure. We say that
a theory T is decidable if there is an algorithm which decides
whether a given sentence belongs to T . Such an algorithm is called
a (first order theory) solver for T , or an SMT solver (for Satis-
fiability Modulo Theory) with background theory T . There is a
rich literature concerning SMT solvers (see e.g. (BSST09) for an
overview), with many working implementations. Structures with
decidable theories include 〈N,≤,+〉, 〈Q,≤,+〉, 〈R,+, ·,≤〉, the
Rado graph (see Example 2). On the other hand, the theory of
〈N,+, ·〉 is undecidable, by Gödel’s theorem.

The following proposition shows that decidability of the theory
of A is necessary for effective evaluation of LOIS0 programs.
Theorem 7 below also shows that it is a sufficient condition.

Proposition 6. Fix an underlying structure A with at least two
elements. The problem of deciding emptiness of a given definable
set is computationally equivalent to deciding the theory of A, and
is PSPACE-hard.

Proof sketch. By Proposition 2, deciding emptiness reduces (in
PSPACE) to testing satisfiability of a first order formula inA. In the
other direction, a sentence ϕ is satisfiable in A iff the definable set
{∅ | ϕ} is nonempty. PSPACE-hardness follows from the fact that

LOIS: syntax and semantics 6 2016/10/6

QBF reduces to the theory of A, by interpreting quantifiers as in-
troducing first-order variables ranging over A rather than proposi-
tional variables ranging over {⊥,>}, and by replacing each propo-
sitional variable x in the body of the QBF formula by the predicate
x = x0, where x0 is an additional, existentially quantified variable.
For example, the QBF formula ∀x∃y.x ∨ (y → x) is translated to
the formula ∃x0∀x∃y.(x = x0) ∨ ((y = x0)→ (x = x0)).

Theorem 7. Suppose that the underlying structure A has a decid-
able theory. Given a program P one can effectively compute the
resulting state s, if it exists.

We remark that runtime errors (as described in Section 3) can
be also effectively detected; the only case when a resulting state
cannot be computed is when a while-loop never terminates.

Proof. We observe that in the proof of Lemma 5, we can effectively
determine which rule to apply. To distinguish between applying the
while and while-done rules, we test for emptiness of the (effec-
tively) definable set {γ ∈ Γ : JeKs,γ = >}. To distinguish be-
tween applying the no-thread rule and the remaining rules, we test
for emptiness of the definable set Γ. By Proposition 6, emptiness
of definable sets reduces to testing validity of a first-order formula
in the underlying structure A.

Theorem 7 allows evaluating LOIS0 programs. However, this
approach might not be practical: thread sets Γ and state functions
s may become very complicated. This is the main reason why we
introduce the hybrid semantics in Section 6.

6. LOIS: hybrid pseudoparallel semantics
In this section, we define the hybrid pseudoparallel semantics of
LOIS. The syntax of LOIS is the same as of LOIS0, and the only
difference lays in the semantics. Although LOIS lacks the mathe-
matical elegance of LOIS0 in some aspects, it leads to more effi-
cient and simpler implementations. In fact, we have implemented
a prototype of LOIS (see the attachment and (KTb)). On the other
hand, it is easy to simulate1 LOIS0 in LOIS. We remark that the
same code can yield different results in LOIS and LOIS0, due to
the hybrid pseudoparallel semantics – see the example mentioned
in Section 2, computing the parity of the set2. Other differences
between LOIS and LOIS0 are summarized in Section 6.1.

As mentioned, mathematically LOIS is less appealing than
LOIS0. For better readability, and also to give a hint of some of
the implementation details, we omit the rule-based definition as in
Section 3, and rather give a definition using words, which, while
precise, closely follows the actual implementation. To illustrate
the formal definitions, we use a running example. We assume an
underlying structure A, for which a theory solver is provided.

The stack LOIS uses a stack for storing contexts (recall from
Section 4 that contexts comprise bound variables and constraints).
The stack is initially empty and is controlled by the if, while and for
constructs. In a given moment of the execution of a program, the
current stack context, denoted Current, is the context defined as the
union of all contexts currently on the stack3. It is guaranteed that
an instruction is executed if and only if Val(Current) is nonempty,

1 Our implementation extends LOIS by an operator fpp, guaranteeing the
same outcome as in LOIS0.
2 To make this example precise, we could use as underlying structure
A = 〈N, 0, 1,−〉 (where − denotes subtraction), or extend the syntax and
semantics of LOIS and LOIS0 to allow manipulation of integers.
3 In the SMT literature (BST10), our contexts correspond (roughly) to
assertion-sets, our stack – to the assertion-set stack, and the current stack
context – to the set of all assertions.

i.e. there is a valuation which satisfies the constraints currently on
stack.

One should keep in mind the following relationship with the
semantics of LOIS0: the set of all satisfying valuations of the
current stack context corresponds to the set of threads Γ. In other
words, Current can be seen as a description of Γ, using formulas.
However, whereas threads in LOIS0 can be indexed by arbitrary
sequences of (definable) sets, in LOIS, they are of a specific normal
form, namely they are indexed by tuples of elements of A.

Types Variables of type set designate v-sets. V-sets are imple-
mented as queues consisting of set-builder expressions; this is rel-
evant for how such expressions are processed (see paragraph Inser-
tion below). Initially, v-sets are empty. Variables of type set have
an associated inner context, which at the moment of creation of the
variable is set to the current stack context, and is never changed
during the life of the variable. The inner context contains all free
variables of the v-set or formula designated by the variable. It is
an invariant that at any moment of a variable’s lifetime, the current
stack context contains the variable’s inner context.

Example 6 (Running example). To illustrate the definitions, we
study a simple running example, by executing the code below.
Suppose that X is a variable of type set, storing the v-set X =
{a | a ∈ A, a 6= b} ∪ {(a, b, c) | c ∈ A, a = b, b 6= c},
and that the current stack context is (for some reason) equal to
C = {a ∈ A, b ∈ A, a 6= b}.

s e t Y;
f o r (x i n X)

Y += x;

i f (X = Y) S1;
i f (¬(X = Y)) S2

S1 and S2 denote statements, which we imagine to report the
answer in some way (if we allowed side effects, as in the actual
implementation of LOIS, they could print something on the screen).
Initially, the inner context of Y is equal to C, and Y designates the
empty v-set ∅.

For loop An instruction of the form for (x in X) I is executed
as follows. Sequentially loop over all set-builder expressions form-
ing the v-set X . For such an expression {e | D}, rename con-
sistently all bound variables in D using fresh (unused) variables,
yielding an equivalent expression {e′ |D′}. PushD′ onto the stack,
and set the loop’s control variable x to the v-element e′. Check
whether Val(Current) is nonempty, by invoking the solver for the
theory of A. If so, execute the loop’s body. Remove D′ from the
stack, and proceed to the next expression comprising X .

(Running example) In the first iteration, the first expression com-
prising X , i.e., {a | a ∈ A, a 6= b} is renamed to {d | d ∈ A, d 6=
b}. This is desired, since the bound variable a is already used
in the current stack context C. The context {d ∈ A, d 6= b}
is pushed onto the stack, so the current stack context becomes
{a ∈ A, b ∈ A, a 6= b, d ∈ A, d 6= b}. This context has a satisfying
valuation, so the instruction Y += x is executed with x set to d.

Insertion The insertion Y += x is executed as follows: append
the set-builder expression {x |D} to the queue associated to Y,
where D is the set difference between the current stack context
and the inner context of Y (bear in mind that the latter is always a
subset of the former).

(Running example) The difference between the current stack
context and inner context C of Y is {d ∈ A, d 6= b}, and x
is set to d. Therefore the instruction Y += x results in adding

LOIS: syntax and semantics 7 2016/10/6

{d | d ∈ A, d 6= b} to (previously empty) Y. Afterwards, the stack
context reverts to C.

In the next iteration, the expression {(a, b, c) | c ∈ A, a =
b, b 6= c} is renamed to {(a, b, e) | e ∈ A, a = b, b 6= e} (in this
case, the renaming is not essential), and the stack context becomes
{a ∈ A, b ∈ A, e ∈ A, a 6= b, a = b, b 6= e}, which has no
satisfying assignment. Therefore, no instruction is performed, and
the stack context reverts to its original value C. The final value of Y
is Y = {d | d ∈ A, d 6= b}. Observe how the final value of Y differs
from the value of X, even though the performed instruction seems
to simply copy the content of X to Y. This should not be disturbing,
since the v-sets X and Y are equivalent in the context C, i.e.,
yield the same result under every valuation in Val(C). In fact,
the obtained expression Y can be seen as a simplification of the
expression X , in the context C.

Tests and conditionals The tests (x∈y, x=y, x⊆y) result in pro-
ducing a formula ϕ, as described in Proposition 2. The conditional
if and the while loop while are executed as follows. Push a context
D consisting of the condition ϕ onto the stack, and check (using a
solver) whether the resulting stack context Current has a satisfying
valuation, i.e., if Val(Current) is nonempty. If so, execute the body
of the instruction. Finally, remove D from the stack, and – in the
case of while – repeat.

(Running example) The test X = Y results in a formula φ such
that for any valuation v, φ(v) holds if and only if X[v] = Y [v]. In
particular, since X[v] = Y [v] for every valuation v satisfying the
current stack contextC, it follows that every valuation satisfyingC
also satisfies φ. Executing the first if conditional results in pushing
the formula φ onto the stack. The resulting stack context C ∪ {φ}
has a satisfying assignment, namely, any assignment satisfying C.
Therefore, the statement S1 is executed. When evaluating the sec-
ond conditional, however, the resulting stack context is equal to
C ∪ {¬φ}, which does not have any satisfying assignment, so the
statement S2 is not executed.

This ends the definition of the operational semantics of LOIS.

6.1 Differences between LOIS and LOIS0

Below is an overview of the main differences between the two
semantics.

• LOIS0 is defined as an abstract programming language which
works on U, which is a model of set theory. On the other hand,
LOIS works on v-sets (expressions which define definable sets).
As we know from Theorem 4, this is not a drawback, since any set
computable by LOIS0 is definable. On the other hand, using finite
representations is necessary for implementation.
• In LOIS, it is possible that looping over v-sets X1 and X2 gives

different results, even though they represent the same set X ∈ U.
This is because, while in LOIS0 the for (x in X) loop always
executes fully in parallel, in LOIS, it executes sequentially if X
is defined as a union of set-builder expressions. This should not be
seen as a drawback, however: to simulate the fully pseudoparallel
semantics of LOIS0 in our implementation of LOIS, it is sufficient
to write for (x in fpp(X)), where fpp is an operator which changes
the representation of X so that all threads will be executed fully
pseudoparallelly.
• The set of all threads Γ is defined by contexts in LOIS – thus, we

only put variables which represent element of A, and constraints
which are first order formulae using these variables. This is much
simpler than LOIS0, where the threads were indexed by sequences
of arbitrarily complex elements of U. We believe that this is elegant
in its own right.
• Looping over set-builder expressions sequentially can be viewed

as a low-level tool. This is useful when we want LOIS to interact

with things which do not work in pseudoparallel, for example, to
present the results on the screen. Furthermore, an implementation
of LOIS0 would require us to implement set equality, inclusion, and
membership. In case of LOIS, we essentially get this for free – set
equality, inclusion, and membership can be implemented in LOIS
itself, simply by looping over all the elements of the set. For this
reason, we believe that LOIS is easier to implement than LOIS0.
• Such an access to low-level representations improves the efficiency.

Moreover, our experiments show that programs written in LOIS
yield nicer representations than LOIS0 (obtained by forcing parallel
computation with the fpp operator), which furthermore improves
both the efficiency and the presentation of the end results.
• In a LOIS loop for (x in X), it is possible to add new elements

to X while it is running. Such new elements will be processed
after all the old elements are processed (in general, set-builder
expressions that X consists of will be processed in first-in first-
out order). This turns out to be useful in practice, since many
of the potential applications of LOIS are based on some kind of
reachability (breadth first search) on a infinite graph.
• It is well known that local variables and recursive calls are usually

implemented by using the execution stack (or call stack). We show
that the same concept can also be used to implement pseudoparallel
computation effectively. Thus, in a LOIS program, the execution
stack contains not only local variables and return addresses, but also
information about the currently running pseudoparallel threads.

7. Implementation
LOIS has been implemented as a C++ library, allowing the users to
combine pseudoparallel computation with the full power of C++11.
In Section 3, we omitted programming constructs such as recursion,
function calls, expressions with side effects, complex data struc-
tures, etc., allowing us to present the semantics without delving
into the irrelevant details. Such constructs are allowed in the actual
implementation of LOIS. (See the attachment and (KTb) for more
details, and also, for a quick tutorial on the use of the LOIS library.)
Below we roughly describe how LOIS is implemented. This is done
mainly as a proof of concept, and to give an impression of the full
potential of LOIS.

C++ allows a programming technique known as RAII, which
allows automatic initialization and finalization of variables when a
local variable enters or exits the scope. Our implementation uses
RAII to change the contents of the LOIS stack when if, for, and
while constructs are used.

For technical reasons, the syntax of our C++ library is a bit
different than one presented in Section 6. Since if and while change
the current context, we were unable to use C++’s if and while
statements – instead, If and While macros are used, and Ife for
if-then-else.

The type lset represents a LOIS set together with its inner
context, and the polymorphic type elem represents a v-element. V-
elements can represent an integer (type int), a term over A (type
term), a pair (type elpair), a tuple (type eltuple), or a set (type
lset). Integers, pairs, and tuples are implemented with the corre-
sponding standard C++ types (int, std::pair and std::vector,
respectively); and more types can be added by the programmer.
So the programmer can for instance extend elem to allow a type
representing lists or trees of elements, thus allowing sets of type
lset to store infinite sets of lists or trees. It is well known that
integers, pairs and tuples can be encoded in the set theory (using
Kuratowski’s definition of pair, for example); however, allowing to
use them directly in our programs greatly improves both readability
and efficiency.

LOIS: syntax and semantics 8 2016/10/6

Hybrid pseudoparallel looping over a set X of type lset is
done with for(elem x:X). This is implemented using the C++11
range-based loop. We can check the specific type of x, as well
as inspect its components, with functions such as is<T>, as<T>
(where T is one of the types listed above) and isSet, asSet. The
syntactic sugar lsetof<T> is provided for defining sets which can
only include elements of one specific type T – this allows static
type checking, and eliminates the necessity of using is and as
functions.

In some cases, such low-level representation of elements is not
enough: for example, consider the function extract(X) which
returns the only element of a setX of cardinality 1. IfX = {a|a =
b} ∪ {0|a 6= b}, then it is not possible to represent extract(X)
as elem in the context {a ∈ A, b ∈ A}, since each elem has to
be of specific type, and in our case, extract(X) can be either a
term or an integer. In this case, we can use the type lelem, which
represents piecewise v-elements – that is, ones which may have
different representations depending on the constraints satisfied by
variables in the context. Internally, this type is represented with a
set – thus, extract(X) simply wraps the set X into a piecewise
element. Type lbool represent a piecewise boolean variable, which
boils down to a formula with free variables from its inner context.

All the conditions appearing in If and While statements are
evaluated into first-order formulas over the underlying structureA.
A solver is used to check whether the set of all constraints on
the stack is satisfiable (and thus whether to execute a statement or
not). Also, a method of simplifying formulas is necessary, to obtain
legible presentations of results, and to make the execution of the
sequel of the program more effective.

The membership function memberof(X,Y), as well as set
equality X==Y and inclusion subseteq(X,Y), have been imple-
mented straightforwardly using lbool and hybrid pseudoparallel
iteration over the sets involved. They are defined with a mutual
recursion – set equality is a conjunction of two set inclusions, set
inclusion X ⊆ Y is evaluated by looping over all elements of X
and checking whether they are members of Y , and membership
x ∈ Y is evaluated by looping over all elements of Y and checking
whether they are equal to x. Equality and relation symbols applied
to terms result in first order formulas.

Furthermore, for technical reasons, types rbool, rset and
relem are used – these types are used for rvalues, while lbool,
lset and lelem are used for lvalues. This is because lvalues have
an inner context, while rvalues do not (their inner context always
equals the current context).

To enforce fully pseudoparallel computation, thus simulating
LOIS0, write

for(relem e: fullypseudoparallel(X)).

The underlying structure A is not given at the start of the pro-
gram; instead, it is possible to define new sorts and new relations
during the execution. Our prototype includes several relations with
decidable theories (order, random partition, random graph, homo-
geneous tree), as well as solvers for these theories. Also, it allows
consulting external SMT solvers.

The implementation of the LOIS library described above is
available for the interested reader (KTa). The prototype includes
sample programs for testing various aspects of LOIS, as well as
ones based on potential applications (minimizing automata), and
ones showing the power of LOIS (reachability on the infinite ran-
dom bipartite graph).

Performance The current implementation of LOIS is described
as a proof of concept. Its performance can be improved by improv-
ing the used first order theory solvers, the techniques of simplifi-
cation of formulas, and other aspects. The currently used external
and internal SMT solvers, formula simplification techniques and

performance tests are the topic of a separate publication (in prepa-
ration; see paper in attachment). The interested reader may confer
the attachment, which contains several test cases. More details of
the tests are described in (KT16).

8. Applications
This section serves as an illustration of the potential applications of
LOIS to formal verification. We give many examples of classes of
infinite-state systems known from formal verification, which can
be naturally modeled using definable sets. We also show LOIS
algorithms which can be used for solving various problems for
those classes of systems, and present several termination proofs.
As an important case, we distinguish ω-categorical structures.

Definable automata Fix an underlying logical structureA. A de-
finable automaton is defined just as a nondeterministic finite au-
tomaton (NFA), but all its components are required to be defin-
able over A, rather than finite – the statespace Q, the alphabet Σ,
the transition relation δ ⊆ Q × Σ × Q, the initial and final states
I, F ⊆ Q. The automaton from Example 3 is a definable automa-
ton over (N,+,≤, 0), and also over (N,+), as ≤ and 0 are defin-
able using +.

Definable automata can be presented as input for algorithms,
by using the expressions which define them, and in LOIS, simply
by using definable sets. As in automata theory, a central problem
in verification to which many problems reduce is the reachability
problem: does a given automaton have an accepting run?

Example 7. Register automata of Kaminsky and Francez (KF94)
are (roughly) finite-state automata additionally equipped with
finitely many registers which can store data values from an infi-
nite set D, and which process sequences of data values from D.
In each step, basing on the current state and equality or inequality
tests among the values in the registers and the current input value,
the automaton can choose to store the current value in one of its
registers (replacing the previous value), change its state, or con-
tinue to the next input value. For example, we could consider a
register automaton with two registers recognizing the set of those
sequences d1d2 . . . dn ∈ D∗ such that dn ∈ {d1, d2}. It is not
difficult to prove (KF94) that the reachability problem for register
automata is decidable (in fact, in PSPACE).

Register automata are a special case of definable automata,
where the underlying structureA is (D,=), or equivalently, (N,=
). Indeed, if a register automaton has m states and n registers,
then the corresponding definable automaton has statespace Q =
{q1, . . . , qm}×An (q1, . . . , qm are treated as symbols), and input
alphabet Σ = D. The transition relation δ ⊆ Q × Σ × Q, as it
is defined only using equalities and inequalities, is a definable set
over (D,=).

Example 8. Rational relational automata of Cerans (see (ACJT96))
are similar to register automata, but process sequences of rational
numbers rather than elements ofD, and can base their decisions on
comparisons with respect to the linear order. These automata are
a special case of definable automata, where the underlying struc-
ture is (Q,≤), and the definitions involve quantifier-free formulas
only. Rational register automata also have a decidable reachability
problem, with the same complexity (PSPACE) as register automata.

Example 9. A Minsky machine is a model equipped with several
counters storing natural numbers, which can be incremented, decre-
mented, and tested for zero. The result of Minsky is that reachabil-
ity for his machines is undecidable. Minsky machines are also a
special case of definable automata, over the structure (N,+1).

Example 10. Consider the coverability problem for Vector Addi-
tion Systems (VASs, related to Petri nets – see e.g. (ACJT96)), de-

LOIS: syntax and semantics 9 2016/10/6

fined below. Fix a dimension k ≥ 0. A VAS of dimension k is
described by a finite set of vectors V ⊆ Zk. We say that a vector t
is coverable from s if, starting from s, one can reach a vector com-
ponentwise larger than t, by repeatedly adding vectors from V so
that the intermediate result always stays in the positive fragment,
Nk ⊆ Zk. It is known that the coverability problem is decidable
for VASs (KM69; FS01).

A VAS gives rise to a definable automaton over the underlying
structure Z = (Z, <, 0), as follows. For a fixed finite set V ⊆ Zk
there is a formula φV with 2k free variables such that φV (u,w)
holds iff w ≤ u+ v for some v ∈ V ; the formula φV refers to the
relations<,= only, and not to addition or subtraction. Therefore, a
VAS induces an automaton with states Q = Nk, transition relation

δ = {(u,w) | u,w ∈W,φV (u,w)},

initial states I = {u ∈ W | u ≤ s} and accepting states
F = {v ∈ W | v ≥ t}; this automaton is definable over Z . In
fact, it is a definable well-structured transition system, using the
terminology of (FS01). It is easy to see that this system has an
accepting run iff t is coverable from s.

Example 11. Timed automata (AD94) can be seen as a special case
of definable automata, with underlying structure (R,≤, 0,+1).
The input alphabet is of the form {a1, . . . , ar}×R; a word over this
alphabet is called a timed word if the timestamps are increasing. If a
timed automaton hasm states and n clocks, then the corresponding
definable automaton has states {q1, . . . , qm}×Rn, and has a tran-
sition relation defined using quantifier-free formulas of restricted
form: boolean combinations of atomic formulas ci ≤ t+ k (timed
constraints) or ci = 0 (reset), where ci is the ith clock and t is the
timestamp read on input. Reachability of timed automata is decid-
able using the so-called region construction.

Fix an underlying structure A. Every definable automaton can
be constructed in LOIS, similarly as in Example 3. Therefore, for
any definable automaton one can run the standard reachability algo-
rithm described in Example 3. It is clear that the algorithm is cor-
rect, i.e., it will produce the right output, whenever it terminates.
The aim is therefore to identify classes of definable automata for
which the algorithm does terminate. This is a purely mathemati-
cal question: the programming part is done, since the reachability
algorithm is executable in LOIS, assuming an SMT solver for the
underlying structure is provided.

8.1 Proofs of termination
We now present several termination arguments for the models listed
above. As a side effect, we prove Theorem 10 and Theorem 11, i.e.,
decidability of the reachability problem for automata and push-
down automata which are definable over ω-categorical structures
with decidable theory, generalizing known results.

Termination for ω-categorical structures We now present a
generic termination argument for the reachability algorithm from
Example 3, which works for all definable automata over a wide
range of underlying structuresA, including register automata from
Example 7, rational relational automata from Example 8, and
many others, generalizing slightly the results from (BKL11; BT12;
BKL14). This argument uses the notion of ω-categoricity from
model theory.

For a structure A, its automorphism is a bijection of A to
itself, which preserves the sorts, relations and functions of A. An
automorphism π of A can be applied to a tuple (a1, . . . , an) of
elements of A, yielding as a result the tuple (π(a1), . . . , π(an));
we say that two tuples ā, b̄ ∈ An are in the same orbit if there is
an automorphism which maps ā to b̄. An orbit is an equivalence
class of this equivalence relation. A countable structure A is ω-

categorical if for every n ∈ N, the set of tuples An has finitely
many orbits.

Example 12. The structure (N,=) is ω-categorical. Its automor-
phisms are all bijections of N to itself. Representatives of the or-
bits of N3 are (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 3). More
generally, the orbits of Nk correspond to partitions of the set
{1, . . . , k}. The structure (Q,≤) is also ω-categorical. Its auto-
morphisms are the increasing bijections of Q. Representatives of
the orbits of Q2 are (1, 1), (1, 2), (2, 1). In general, the orbits of Qk
correspond to transitive, reflexive and total relations on {1, . . . , k}.
More generally, any homogeneous structure over a finite relational
signature is ω-categorical. The structures (Z,≤), (N,+1), (R,+1)
are not ω-categorical: each pair (0, n), for n ∈ N, represents a
different orbit. Very often ω-categorical structures have decidable
theories (KT16).

Lemma 8. Let A be an ω-categorical structure. Then any S-
definable set V has only finitely many subsets which are definable
with parameters from S.

We consider the reachability algorithm described in Example 3,
which is implemented in LOIS (see attachment).

Corollary 9. The reachability algorithm terminates in LOIS0 if the
sets E ⊆ V × V and I ⊆ V are definable over A.

Proof. Let S ⊆ A be a finite set such that E, V, I are S-definable.
By Theorem 4, in the nth iteration of the loop in the reach func-
tion, the variable R evaluates to an S-definable set Rn ⊆ V , giving
rise to an increasing sequence:

R0 ⊆ R1 ⊆ R2 ⊆ (1)

By Lemma 8, the sequence (1) stabilizes after finitely many steps.

Corollary 9 and Theorem 4 imply the following.

Theorem 10. Reachability is decidable for definable automata
over a fixed ω-categorical underlying structure with decidable the-
ory.

This result generalizes the decidability of the reachability prob-
lem for the models described in Examples 7 and 8, and by a slightly
more detailed analysis which we omit here, yields optimal com-
plexity bounds in each of those cases. Theorem 10 also generalizes
slightly a result from (BKL11; BKL14). Note that the conciseness
of the proof is thanks to the semantics of LOIS0.

Other termination arguments Termination of the reachability
algorithm can be also proved when the underlying structure is not
ω-categorical, for some classes of definable automata.

Example 13. To test coverability of a VAS, convert it into a defin-
able automaton as described in Example 10. The reachability algo-
rithm from Example 3 terminates and correctly decides reachability
of this automaton, thus deciding coverability of the original VAS by
using an SMT solver for (N,≤). The termination argument is the
well known (FS01) well quasi-order argument: the sequence (1)
stabilizes by Dickson’s lemma, as it consists of downward-closed
subsets of Nk (with respect to the coordinatewise ordering of Nk).
More generally, the reachability algorithm terminates for any de-
finable well-structured transition system.

Example 14. The reachability algorithm terminates for timed au-
tomata (see Example 11), treated as definable automata. To prove
termination, one argues that each setRn in the sequence (1) decom-
poses into finitely many regions. To run this algorithm in LOIS, an
SMT solver for (R,≤,+1, 0) is needed.

Note that by using LOIS, no specific data structures need to be
devised: the algorithm is the standard one from Example 3, and

LOIS: syntax and semantics 10 2016/10/6

is trivial to implement in LOIS (see attachment). Thanks to this,
the termination proofs can be more abstract and precise, since they
do not need to discuss the implementation details. This luxury of
abstraction can be afforded thanks to the semantics of LOIS and to
SMT solvers, which are heavily used when LOIS instructions are
executed.

8.2 Other verification problems
So far we only investigated one problem: the reachability problem
for definable automata. Many other classical algorithms involving
finite-state systems can be executed in LOIS on infinite-state de-
finable systems, often yielding interesting theoretical decidability
results. We illustrate this phenomenon with two further examples:
automata minimization and reachability of pushdown automata.

Example 15. Deterministic definable automata are defined just as
finite deterministic automata, i.e., they are nondeterministic defin-
able automata in which the transition relation is the graph of a func-
tion δ : Q × Σ → Q. The automaton from Example 3 is a deter-
ministic definable automaton. The standard Moore minimization
algorithm presented in Example 3 can be run for any definable de-
terministic automaton; it is immediate to implement it in LOIS (see
attachment). It follows from Corollary 9 that this algorithm termi-
nates whenever the underlying structure is ω-categorical. The al-
gorithm also terminates for many other automata, such as the one
given in Example 3. It is shown in (BL12) that minimization termi-
nates for deterministic timed automata, represented appropriately.

Example 16. Definable automata can be extended to definable
pushdown automata, just as normal pushdown automata extend
NFAs. Here, we extend the automata by ε-transitions, add to the
syntax a definable stack alphabet Γ, and require the transition
relation to be a definable subset of Q × (Σ ∪ {ε}) × Ops × Q,
where Ops = {push, pop} × Γ is the set of stack operations. For
the underlying structures (N,=), this model generalizes pushdown
register automata (MRT14).

We implement in LOIS a standard fixpoint algorithm for push-
down automata which computes the set of pairs (p, q) such that
there is a run from state p to state q which starts and ends with
an empty stack; this algorithm relies on the following branching
analogue of the reachability procedure from Example 3.

f u n c t i o n deduce(rules) {
s e t R = ∅;
b o o l added = t r u e ;

w h i l e (added) {
added = f a l s e ;
f o r (premises ,conclusion)
i n rules do

i f ((premises⊆ R)
and (conclusion 6∈R)) {

R += conclusion;
added = t r u e ; }

}
r e t u r n R;

}

The function deduce takes as an argument a set of rules of the
form (X,x), whereX is a subset of some set of facts F and x ∈ F ,
and computes the least R ⊆ F such that X ⊆ R implies x ∈ R
for every rule (X,x).

For infinite definable arguments over ω-categorical structures,
the function deduce terminates for exactly the same reason as in
the proof of Corollary 9, as a consequence of Lemma 8. Using
the above standard algorithm, executable in LOIS for infinite ar-

guments, we prove the following theorem analogously to the proof
of Theorem 10.

Theorem 11. Reachability is decidable for all definable pushdown
automata over a fixed ω-categorical underlying structure with de-
cidable theory.

An analogous result can be proved for definable tree automata
with infinitely many states and infinite alphabet, or for infinite,
definable grammars. Similar results were described in (BKL11;
BBKL12; BT12; BKL14; CL15) (see Section 9).

All the above examples serve as a proof of concept, to demon-
strate that infinite-state systems can be seamlessly manipulated us-
ing a programming language manipulating definable sets, which
in turn relies on SMT solvers (we discuss this in Section 4). As a
consequence, proofs of termination become more abstract and con-
cise. Two paradigms are particularly useful for termination proofs:
the ω-categoricity argument and the well quasi-ordering argument
(see (FS01) for a broad overview), but other combinatorial argu-
ments can be also employed.

By using LOIS, one can come up with many other algorithms
for problems involving classes of infinite-state systems. LOIS acts
as an intermediary which converts imperative programs into queries
to SMT formulas. As far as we know, this provides a new use of
SMT solvers in verification (cf. (KT16)).

9. Related work
The idea of a programming language which allows working with
infinite sets, thus providing a useful tool in verification and in au-
tomata theory, comes from the papers (BBKL12) – which proposes
a functional language called Nλ – and (BT12) – where an impera-
tive language is proposed. Both languages are capable of handling
infinite, but orbit-finite sets with atoms. These papers did not pro-
pose any efficient implementation. In particular, they propose to
represent orbit-finite sets internally as unions of orbits. This has
several drawbacks. Firstly, the underlying structureA needs be ho-
mogeneous and over a finite signature, whereas LOIS can work
with any structure with decidable theory. For instance, the Exam-
ple 1 concerning packings does not fit into the homogeneous set-
ting. Secondly, the orbit decompositions proposed in those papers
are exponentially less concise than descriptions by formulas, ren-
dering them impractical for most applications. For example, the set
An has exponentially (in n) many orbits, whereas in LOIS it is
represented by the formula>. On the other hand, for every set with
orbit decomposition of size at most n, there is a representation as a
definable set of size O(n). This proves that the representation used
by LOIS is more succinct, sometimes even exponentially. Lastly,
SMT solvers cannot be (easily) employed to manipulate orbit de-
compositions.

X = A
f o r a i n A

X -= a

Also, LOIS uses the novel
pseudoparallel semantics, which
differs from the union semantics
of (BT12) (for the pseudocode to the right, X has final value A
in the union semantics of (BT12), and ∅ in LOIS extended by the
obvious semantics of -= as removal of an element from the set).
We believe that our semantics is more natural.

Declarative programming paradigms offer some form of ma-
nipulation of infinite sets. In logic programming and constraint
programming, predicates and constraints are typically infinite. In
functional programming, the programmer manipulates functions as
first-class objects. Furthermore, lazy evaluation allows performing
operations on infinite streams. However, our approach is fundamen-
tally different, as it represents sets internally by formulas, allowing
to effectively scan through the set. In particular, membership and
equality of sets can be effectively tested. On the other hand, we can

LOIS: syntax and semantics 11 2016/10/6

only handle definable sets. Few computable functions f : N → N
or streams have a definable graph. In fact, both approaches – func-
tional programming and manipulating infinite sets – are orthogo-
nal, and can be combined, as in Nλ proposed by (BBKL12). We
remark that (JKS12) propose yet another, orthogonal extension of
functional programming by the ability of testing equality between
certain infinite sets, namely regular coinductive datatypes, and uses
equation solvers for this purpose.

SETL (SDSD86) is a high-level imperative programming lan-
guage, in which sets and a form of list comprehension are funda-
mental to the syntax and semantics. One of the objectives of SETL
is to provide a high level of abstraction, simplifying the presenta-
tion of mathematical algorithms. This is also one of the main goals
of LOIS. However, SETL does not allow manipulating infinite sets.

Superficially, LOIS is similar to Kaplan (KKS12) – an extension
of the Scala programming language. Its main purpose is to integrate
constraint programming into imperative programming. It allows ef-
fective manipulation of constraints, and relies on a verification tool
Leon, which in turn invokes the SMT solver Z3. Constraints are
implemented as boolean valued functions (in Scala, functions are
first-class objects) whose arguments are integers or algebraic data
types built on top of integers. As such, they can be seen as certain
logical formulas which can be defined as programs in a fragment
of the Scala language. However, this fragment is incomparable with
first order logic, as it allows recursion but not quantification. More
importantly, the main objective of LOIS – to allow iterating over
infinite sets – is not addressed in Kaplan (one can perform list com-
prehension in order to iterate through the explicit set of solutions
of a constraint, which terminates only if this set is finite). It would
be interesting to see whether iteration over infinite sets defined by
constraints can be incorporated into Kaplan.

SMT solvers have been successfully applied in various branches
of formal verification. In particular, in model checking they are
used in predicate abstraction, interpolation-based model checking,
backward reachability analysis and temporal induction. LOIS can
be seen as yet another application of SMT solvers in model check-
ing: in automata theory and theoretical verification.

LOIS: syntax and semantics 12 2016/10/6

References

[ACJT96] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson,
and Yih-Kuen Tsay. General decidability theorems
for infinite-state systems, 1996.

[AD94] Rajeev Alur and David L. Dill. A theory of timed
automata. Theoretical Computer Science, 126:183–
235, 1994.

[BBKL12] Mikołaj Bojańczyk, Laurent Braud, Bartek Klin,
and Sławomir Lasota. Towards nominal compu-
tation. In John Field and Michael Hicks, editors,
POPL, pages 401–412. ACM, 2012.

[BKL11] Mikołaj Bojańczyk, Bartek Klin, and Sławomir La-
sota. Automata with group actions. In LICS, pages
355–364. IEEE Computer Society, 2011.

[BKL14] Mikołaj Bojańczyk, Bartek Klin, and Sławomir La-
sota. Automata theory in nominal sets. Log. Meth.
Comp. Sci., 10, 2014.

[BL12] Mikołaj Bojańczyk and Sławomir Lasota. A
machine-independent characterization of timed lan-
guages. In Artur Czumaj, Kurt Mehlhorn, Andrew
Pitts, and Roger Wattenhofer, editors, Automata,
Languages, and Programming, volume 7392 of Lec-
ture Notes in Computer Science, pages 92–103.
Springer Berlin Heidelberg, 2012.

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Se-
shia, and Cesare Tinelli. Satisfiability modulo theo-
ries. In Handbook of Satisfiability, pages 825–885,
2009.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The
SMT-LIB Standard: Version 2.0. Technical report,
Department of Computer Science, The University of
Iowa, 2010. Available at www.SMT-LIB.org.

[BT12] Mikołaj Bojańczyk and Szymon Toruńczyk. Imper-
ative programming in sets with atoms. In Deepak
D’Souza, Telikepalli Kavitha, and Jaikumar Rad-
hakrishnan, editors, FSTTCS, volume 18 of LIPIcs,
pages 4–15. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2012.

[CL15] L. Clemente and S. Lasota. Reachability analysis
of first-order definable pushdown systems. In Proc.
CSL’15, pages 244–259, 2015.

[ER63] P. Erdős and A. Rényi. Asymmetric graphs. Acta
Mathematica Academiae Scientiarum Hungarica,
14(3-4):295–315, 1963.

[FD96] William E. Fenton and Ed Dubinsky. Introduction to
discrete mathematics with ISETL. Springer, 1996.

[FS01] Alain Finkel and Ph. Schnoebelen. Well-structured
transition systems everywhere! Theor. Comput. Sci.,

256(1-2):63–92, 2001.

[Hod97] Wilfrid Hodges. A Shorter Model Theory. Cam-
bridge University Press, New York, NY, USA, 1997.

[JKS12] Jean-Baptiste Jeannin, Dexter Kozen, and Alexan-
dra Silva. CoCaml: Programming with coinductive
types. Technical Report http://hdl.handle.net/
1813/30798, Computing and Information Science,
Cornell University, December 2012. Fundamenta
Informaticae, to appear.

[KF94] Michael Kaminski and Nissim Francez. Finite-
memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994.

[KKS12] Ali Sinan Köksal, Viktor Kuncak, and Philippe
Suter. Constraints as control. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL
’12, pages 151–164, New York, NY, USA, 2012.
ACM.

[KM69] Richard M. Karp and Raymond E. Miller. Parallel
program schemata. J. Comput. Syst. Sci., 3(2):147–
195, May 1969.

[KTa] Eryk Kopczyński and Szymon Toruńczyk. LOIS
website. See www.mimuw.edu.pl/~erykk/lois .

[KTb] Eryk Kopczyński and Szymon Toruńczyk. LOIS:
technical documentation. See www.mimuw.edu.pl/

~erykk/lois .

[KT16] Eryk Kopczynski and Szymon Toruńczyk. LOIS:
an application of SMT solvers. In Tim King and
Ruzica Piskac, editors, Proceedings of the 14th In-
ternational Workshop on Satisfiability Modulo The-
ories affiliated with the International Joint Confer-
ence on Automated Reasoning, SMT@IJCAR 2016,
Coimbra, Portugal, July 1-2, 2016., volume 1617 of
CEUR Workshop Proceedings, pages 51–60. CEUR-
WS.org, 2016.

[MRT14] Andrzej S. Murawski, Steven J. Ramsay, and Nikos
Tzevelekos. Reachability in pushdown register au-
tomata. In Erzsébet Csuhaj-Varjú, Martin Diet-
zfelbinger, and Zoltán Ésik, editors, Mathematical
Foundations of Computer Science 2014 - 39th Inter-
national Symposium, MFCS 2014, Budapest, Hun-
gary, August 25-29, 2014. Proceedings, Part I, vol-
ume 8634 of Lecture Notes in Computer Science,
pages 464–473. Springer, 2014.

[Rad64] R. Rado. Universal graphs and universal functions.
Acta Arithmetica, 9:331–340, 1964.

[SDSD86] J. T. Schwartz, R. B. Dewar, E. Schonberg, and
E. Dubinsky. Programming with Sets; an Introduc-
tion to SETL. Springer-Verlag New York, Inc., New

LOIS: syntax and semantics 13 2016/10/6

www.SMT-LIB.org
http://hdl.handle.net/1813/30798
http://hdl.handle.net/1813/30798
www.mimuw.edu.pl/~erykk/lois
www.mimuw.edu.pl/~erykk/lois
www.mimuw.edu.pl/~erykk/lois

York, NY, USA, 1986. A. The attachment
The current implementation of the prototype is available to the in
the attached archive.

The archive includes the following documents and packages:

• lois-technical.pdf, which is the technical documentation,
• lois-sat.pdf, which is our paper (KT16) describing the use

of SMT solvers by LOIS.
• source code (LOIS library itself, examples from the paper, and

an automatic testing program).
• a Makefile which includes the all target which compiles the

LOIS library and the two programs, runs the two programs, and
saves the output.
• lois-results.tgz also includes the result of make all

(both binaries and their output), obtained on our system.

B. Omitted proofs
Proof of Proposition 3. By definition, e is a boolean combination
of atomic predicates of the form =,∈ or R (where R is a relation
symbol from A) applied to terms obtained from variable names
using functions symbols from A. Since definable sets are closed
under boolean combinations, we only need to consider expressions
which are atomic predicates. Consider first the case when e is the
relation = applied to terms, i.e., e is of the form s = t, where s, t
are terms using function symbols from the vocabulary of A and
variables x1, . . . , xn. In particular, s and t are v-elements.

Since X is a definable set, it is a finite union of sets described
by a set-builder expression. We consider the special case whenX is
described by a single set-builder expression {(e1, . . . , en) |C}; the
general case follows from this special case easily by taking unions.
Apply Proposition 2 to the v-elements s, t, yielding a formula τ=.
Then W = {(x1, . . . , xn) | JsK = JtK} is described by the set-
builder expression {(x1, . . . , xn) | C, τ=}. This finishes the case
when e is of the form s = t. The case when e is of the form s ∈ t
is similar.

Finally, consider the case when e is of the form R(s1, . . . , sk),
whereR is a relation symbol ofA. Note that in order forR(x1, . . . , xk)
to hold, it must be the case that x1, . . . , xk are elements of A,
of appropriate sorts. Therefore, it is enough to consider the case
when X is described by a set-builder expression of the form
{(e1, . . . , en) | C}, where ei is a term built of variables and func-
tion symbols from A (for set-builder expressions of the remaining
forms, the resulting set W is empty). Then, the set W is described
by the set-builder expression {(e1, . . . , en) | C,R(e1, . . . , en)}.

Proof of Lemma 5 (details). The following simple lemma is useful
in a formal proof of Lemma 5.

Lemma 12. Let Γ ⊆ U∗ be a definable set. Then there is a bound
l ∈ N such that every tuple in Γ has length at most l. Moreover, for
each 0 ≤ k ≤ l, the set Γk = Γ ∩ Uk of tuples in Γ of length k is
definable.

Proof. Let f be an expression defining Γ; then f is a formal union
of set-builder expressions, f = f1∪· · ·∪fn. Since Γ consists only
of tuples, it follows that each expression fi is of the form {ti | φi},
where ti is a tuple of expressions, of some length li. In particular,
Γ consists of tuples of length at most l = max1≤i≤n li.

For k = 1..n, let ek be the formal union
⋃

1≤i≤n,li=k fi of all
expressions involving tuples of length k. Then the expression ek
defines the set Γk = Γ ∩ Uk.

LOIS: syntax and semantics 14 2016/10/6

We give some more details concerning the (for) case. Let ∆ =
{γ ∈ Γ : JeKs,γ = >}. We show that ∆ is definable. This follows
general principles of manipulating definable sets, and their good
closure properties, similarly to Proposition 1, and is shown below.

Let l and Γk (for k = 0..l) be as in Lemma 12. Then ∆ =
∆0 ∪ · · · ∪∆l, where ∆k = {γ ∈ Γk : JeKs,γ = >}. It suffices to
show that each ∆k is definable, for k = 0..l.

Let

X = {(s(x1, γ), s(x2, γ), . . . , s(xr, γ)) | γ ∈ Γk}, (2)

where x1, x2, . . . , xr ∈ Var are all the variables appearing in
the expression e. We claim that X is a definable set, since both
s and Γk are definable. Formally, this is proved as follows. Let
G(s) ⊆ Var × U∗ × U be the graph of s; by definition, G(s) is a
definable set. Then G(s) can be written as a union

G(s) = G0(s) ∪ · · ·Gl(s),

where Gk(s) = G(s) ∩ ({0, . . . , l} ×Uk ×U) is the graph of the
restriction of s to {0, . . . , l} ∩ Γk. Observe that since the length of
tuples in Gk(s) is fixed (and equal to k + 2), the projection Pi of
Gk(s) onto a coordinate i, where i = 1..k + 2 is a definable set.

Then, for i = 1..r, the set

Xi = {s(xi, γ) | γ ∈ Γk}
is definable by Proposition 1, as the projection onto the k + 2-nd
coordinate of the setGk(s). Similarly, one can define an expression
defining the set X in (2).

Applying Proposition 3 to X ⊆ X1 × · · · × Xr , we obtain
that Γk is definable. As sketched in the proof of Lemma 5, this
completes the inductive step in the case of a statement P of the
form if(e) S.

We consider the case when P is of the form for (x in e)S. Let
∆ = Γ · JeKs,γ consist of all tuples (u1, . . . , un, u) such that
(u1, . . . , un) ∈ Γ and u ∈ JeKs,γ . We start by showing that ∆
is definable.

Lemma 13. The set ∆ = Γ · JeKs,γ is definable.

Proof. First observe that the subset X = JeKs,γ of U is definable.
This is proved similarly as in the proof Proposition 3, by induction
on the structure of the expression e.

Since Γ ·X = (Γ0 ·X) ∪ (Γ1 ·X) ∪ · · · ∪ (Γl ·X) (where l
and Γk are as in Lemma 12), it is enough to prove that Γk · X is
definable, for k = 0..l. This is done below.

More generally, let T ⊆ Uk be a definable set of k-tuples and
X ⊆ U be definable. We show that T · X is a definable set of
k + 1-tuples. Let

V = {ai | (a1, . . . , ak) ∈ T, 1 ≤ i ≤ k}
be the set of elements which occurs in some tuple in T . It is easy
to see that V is a definable set, as an explicit expression can be
easily constructed out of an expression defining T . The Cartesian
product V k×X is definable by Proposition 1. Finally, observe that
T ·X = {(r1, . . . , rk, x) ∈ V k×X : (r1, . . . , rk) ∈ T ∧x ∈ X}
is definable, as an intersection of projections of definable sets, by
Proposition 1.

By Lemma 13, the set of threads ∆ is definable. Consider the
partial function r = [(x, γg) 7→ g for γg ∈ ∆], where x is
fixed. It is easy to see that r is a definable state function, and
that consequently, s′ = s ∗ r is also a definable state function.
By applying the inductive hypothesis to S and ∆, S, s′ → t, we
conclude that t is definable, too.

LOIS: syntax and semantics 15 2016/10/6

	Introduction
	Pseudoparallel semantics – intuition
	LOIS0: fully pseudoparallel semantics
	Syntax
	Semantics

	Definable sets
	Closure properties
	LOIS0 computes definable sets

	Effectiveness
	LOIS: hybrid pseudoparallel semantics
	Differences between LOIS and LOIS0

	Implementation
	Applications
	Proofs of termination
	Other verification problems

	Related work
	The attachment
	Omitted proofs

