LOIS: an application of SMT solvers

Eryk Kopczynski and Szymon Torunczyk

University of Warsaw, Poland
{erykk,szymtor}@mimuw.edu.pl

Abstract. We present an implemented programming language called
LOIS, which allows iterating through certain infinite sets, in finite time.
We demonstrate how this language offers a new application of SMT
solvers to verification of infinite-state systems, by showing that many
known algorithms can easily be implemented using LOIS, which in turn
invokes SMT solvers for various theories. In many applications, w-categori-
cal theories with quantifier elimination are of particular interest. Our
tests indicate that state-of-the art solvers perform poorly on such the-
ories, as they are outperformed by orders of magnitude by a simple
quantifier-elimination procedure.

1 Introduction

A fragment of formal verification is concerned in designing algorithms which test
properties of infinite-state systems, such as reachability or verifying whether all
runs satisfy a given formula [KF94JKMG69/FSO1/DHPV(9]. There are two com-
ponents to this process: constructing an algorithm, and proving its correctness
and termination. Usually, the algorithm involves specific data structures for rep-
resenting infinite objects in a finite way. Consequently, the proof of termination
and correctness needs to delve into the specifics of these data structures, and is
often more complicated than the actual underlying mathematical idea.

This paper and its companion paper [KTa] introduce a programming lan-
guage called LOIS (Looping Over Infinite Sets), which manipulates infinite math-
ematical objects in a transparent way, by allowing to iterate through infinite sets,
in finite time. For instance, the code to the right below can be executed in finite
time; as a result, the set X evaluates to the set of odd numbers greater than 7.

To the best of our knowledge, LOIS is the first

set Y = 0;
imperative programming language which allows to for (x : N)
evaluate instructions (possibly, nested) similar to I (x>3) ¥ 4= 2wxsd;
the one above, on infinite sets, in finite time. LOIS if (10€Y)

is implemented as a prototype library in C++; the cout << "10 is odd’;

above instruction is executable after minor syntactic transformations [KTb].
When executing programs, LOIS invokes SMT (Satisfiability Modulo Theories)
solvers for testing validity of first-order formulas. The above program amounts
to testing the validity of Jz.(x > 3) A(2-2+1=10) in (N,-, +).

We believe that LOIS offers an extremely convenient interface between for-
mal verification, SMT solvers, and abstract mathematical arguments. The main

2 Eryk Kopczynski and Szymon Toruticzyk

benefit is that no specific data structures need to be employed to manipulate
infinite mathematical objects. To illustrate our point, we give another example.

Ezample 1. Below is a simple LOIS program. It constructs an automaton with
infinitely many states, which for a given sequence over the alphabet X' = N U {#},
computes the maximal sum of an infix not interrupted by #. We use pseudocode
similar to LOIS syntax to the left below, and comment it to the right.

ZE: QE - g{U{ SN The statespace @) consists of all pairs (m,n)

set I - £(0,0)}: with m,n € N. There is one initial state,

set & = 0; (0,0). The transition relation § C @x X xQ

for m in N do is such that reading the letter # resets the

for n in N do second component of the state, and reading
Q+= (m,n); .

a letter € N increases the second compo-

ft;gr(:,?r)l izndli do nent by x, and accumulates the maximal

if (x==#7) seen value in the first component. The tu-

elg:((m:n):X:(m:O)) ple (X,Q,4,I) is an automaton (without

5+=((m,n) . x, (max(m,n+x),n+x)) Aaccepting states), with infinite-state space.

To understand LOIS on an intuitive level, imagine that an instruction of the
form “for x in X do I” creates possibly infinitely many threads indexed by
elements z € X, executed in parallel and perfectly synchronously; the thread x
executes the instruction I with the value of x set to x.

We now compute the set of reachable states of the above automaton.

func:it;n reach(I,E) { The function reach takes as argument a
o e possibly infinite set F of directed edges

(pairs of vertices), a set of initial vertices I,

while (R t=8) do { and computes the reachable set with a fix-

S = R;
forif(f()’gz)h; E+=d0. point algorithm. Contrary to for loops,

1 P 4 while loops are executed sequentially.
) return R; Finally, we compute the reachable states
in the graph of our automaton. The out-
set E = {; putis {(m,n) | m € N,n € Nym > n}. The
for (p,a,q) in & do while loop iterates three times, with R
E += (p,q); taking values {(0,0)}, {(n,n) | n € N}, and

print (reach(I,E)); {(m7n) ‘ m,nEN,mZn}.

We specify a set of accepting states, e.g. F' = {(m,3) | m € N}, which can be
constructed in LOIS, similarly to Q. Now A = (X, Q, 4, I, F) is a deterministic,
infinite-state automaton accepting those sequences, in which the maximal sum
of an infix uninterrupted by # equals 3. What is the minimal automaton equiv-
alent to A? To find out, we can try to run the well-known partition refinement
algorithm on A. Since this only works for deterministic automata, we treat as
a function @ x X' — @ and ¢ is theunique initial state.

LOIS: an application of SMT solvers 3

?mction minimize(¥,Q,90,F,8) In the first phase, we compute in the variable
set E = 0; equiv the equivalence relation which identifies
for (p,q,a) in @xQx¥ do states that recognise the same languages, i.e.,

E+=((6(p,a),0(q,a)),(p,q)); (v iff f * .
set S=(Fx(Q-F))U((Q-F)xF); (D,q) € equiv iff for all words w € X*, reading

set equiv=(QxQ)-reach(S,E); q from the state p, ends in an accepting state

set classes=0: iff it does from the state ¢g. To compute equiv
for q in Q do { we use the function reach described earlier.
set class = (; .
for p in Q do In the second phase, we compute the equiva-
if ((p,q)€equiv) lence classes of the relation equiv on @, which
class += p; ..
classes += class are the states of the minimal automaton; the
X transitions can be computed similarly. For the
return classes automaton A described above, this returns a
} minimal automaton with 11 states.

Note that the same LOIS code as in the reach and minimize functions can
be used for classical, finite automata, as well as for various classes of infinite-
state systems. It can be readily converted into a very similar, executable LOIS
program (this is done in [KTb]), with no need of auxiliary data structures.

Syntazr and semantics. The syntax and semantics of LOIS are very intuitive,
yet novel. However, this is not the topic of this paper, but of our companion
paper [KTa); the C++ library is described in [KTh].

SMT solvers. What is relevant for this paper is that each time one of the LOIS
instructions for, if, while is executed, an SMT solver is queried for the theory
underlying the particular program (cf. Section . For instance, in the example
above, the underlying theory is the theory of the structure (N, +, <,0) which is
used for defining the particular automaton.

Contributions. The aim of both this paper and its companion [KTa] is to in-
troduce various aspects of LOIS. Whereas [KTal| defines a formal syntax and
semantics and proves results about them, this paper concentrates on applica-
tions of LOIS to formal verification and the use of SMT solvers. We also discuss
the implementation of several SMT solvers which are crucial for our applications,
i.e., for w-categorical theories admitting quantifier elimination. We argue that
LOIS provides a new application of SMT solvers to formal verification.

QOutline. A central notion underlying LOIS are definable sets, introduced in Sec-
tion 2l We argue that LOIS has many potential applications to algorithm design
in formal verification, as it allows to avoid unnecessary implementation details
by directly manipulating infinite mathematical objects. In Section [3| we give
many examples to illustrate this, including register automata [KEF94], rational
register automata [ACJT96], Petri nets [KM69], timed automata [AD94], push-
down register automata [MRT14], database driven systems [Via09], context-free
languages over infinite alphabets [CK98|.To implement these examples, LOIS re-
sorts to SMT solvers for theories which have not been of central focus in the SMT
community, in particular, w-categorical theories admitting quantifier elimination.
We implement simple solvers for several such theories (see Section , and show
that they outperform state-of-the-art SMT solvers by orders of magnitude (cf.
Section [5). We discuss the related work in Section [6] and conclude in Section

4 Eryk Kopczynski and Szymon Toruticzyk

2 Definable sets and LOIS

In this section, we define the central notion underlying this paper and the com-
panion paper [KTal, that is, of definable sets. We also briefly introduce LOIS.

Definable sets. The sets which can be manipulated by LOIS programs have a
purely logical description. We refer to the literature (e.g. [Hod97]) for structures,
sorts, terms, and formulas. In this paper, formulas are assumed to be first-order.

Fix an infinite underlying logical structure A, which may involve relation or
function symbols. For simplicity in the definition below, we assume that A has
only one sort named A; generalizing to multisorted structures is straightforward.
An expression (defined recursively) is either a variable from a fixed infinite set
of variables, or a formal finite union of set-builder expressions, each of the form

{e|lai €A, ...;a, €A ¢}, (1)

where e is an expression, aq,...,a, are (bound) variables, and ¢ is a (guard)
formula over the signature of A and over the set of variables. Free variables
in are those free variables of e and of ¢ which are not among aq,...,a,.
For an expression e with free variables V', any valuation val : V' — A defines
in an obvious way a value X = e[val], which is either an element of A or a
set, formally defined by induction on the structure of e. We then say that X is
definable over A, or with underlying structure A. When we want to emphasize
those elements of A that are used in a definition of X, we say that X is S-
definable, if X is defined using a valuation val : V' — S, for a finite set S C A.

Ezample 2. Let Q be the rationals with order, with one sort Q consisting of
rational numbers, and a predicate < denoting the usual order on Q. The interval
(1/4,5/6) is {1/4,5/6}-definable by the expression {z | x € Q,a < =z Az < b}
and valuation a — 1/4,b — 5/6. Also its complement Q — (1/4,5/6) is {1/4,5/6}-
definable. More generally, definable subsets of Q (over Q) are precisely the finite
unions of open (possibly half-bounded) intervals and points. The set of all open
intervals in Q is a (-definable set, as defined by the expression

{z|zeQa<zAz<bd}|acQbeQ}.

Now consider the ordered field of reals R = (R,+,-,0,1,<). An example
definable subset of R3 is the half-ball

{(z,y,2) | zeRyeR,z€R,z>0A 2>+ 9% + 22 < 1}.

A celebrated result of Tarski characterizes definable subsets of R¥ (over R) as
precisely the finite unions of sets defined by systems of equalities and inequalities
between k-variate polynomials. The set of all balls in R¥ is also (-definable.

Remark 3. In the above example we used a tuple (z,y, z) in an expression. This
is syntactic sugar, as tuples can be encoded as finite sets using e.g. Kuratowski
pairs. Note that any finite set whose elements are definable is itself definable.
Finally, we will sometimes use symbols, e.g. #, as expressions, formally repre-
sented by 0-definable sets, e.g., 0, {0}, etc. In LOIS programs, we allow including
symbols, tuples, arrays, objects, and other data structures directly in sets.

LOIS: an application of SMT solvers 5

LOIS. We briefly describe the LOIS language. See the companion paper [KTa]
for the formal semantics, and [KTb] for the exhaustive list of constructions avail-
able in our implementation. Very roughly, the syntax of LOIS with underlying
structure A extends the syntax of an imperative language (e.g. C++ or Pascal) by:

— the pseudoparallel instruction for x in X,

— types set for representing sets and elem for control variables in a for loop,

— constants) and A, B, ... of type set, one for each sort of A,

— set manipulations, such as insertion X+=x, and operations N, U, —, X

—tests X =Y, X €Y, X CY,x € X for X, Y of type set and z of type elem,

— tests ¢(x1,...,x,), where xy,...,x, are variables of type elem and ¢ is a
formula using relation and function symbols from A.

We discuss some parts of the semantics of LOIS in Section [5.1} with an emphasis
on how SMT solvers are employed.

Remark 4. In the companion paper [KTal| two languages, LOIS and LOIS, are
introduced. They have the same syntax, but slightly different semantics. This
distinction will not be relevant in this paper. Additionally, there is the tool
which is also called LOIS, implemented as a C++ library allowing to execute
programs in a syntax similar to that of LOIS (some minor changes are required
to embed LOIS into C++). The implementation of the tool [KTb| follows very
closely the semantics of the language, so in this paper, we will take the liberty
to use ambiguous phrases such as “LOIS computes a set”.

A structure A has decidable theory if there is an algorithm which decides
whether a given first-order sentence holds in A. Such an algorithm is called an
SMT solver for the theory of A. The structures (N, =), (Q, <), (R, <), (R, <, +,),
(N, <, +) have decidable theories (the last two due to results of Tarski and Pres-
burger), and the structure (N, +,-) has not, by Godel’s theorem. In this paper
the underlying structure A is always assumed to have decidable theory.

Definable sets are the central data structure underlying LOIS programs, used
to represent elements of type set. They have very good closure properties — they
are effectively closed under boolean combinations, cartesian products, projec-
tions, quotients, intersections and unions of definable families, etc. In fact, they
are closed under any function which can be implemented as a LOIS program, as
stated slightly informally below, and proved in our companion paper [KTal.

Theorem 5. Let I be a LOIS instruction with underlying structure A and let v
be a valuation which assigns S-definable sets to variables appearing in I, where
S C Ais a finite set. Then, ezecuting I results in a valuation [I](v) which also
assigns S-definable sets to the variables appearing in 1.

If the theory of A is decidable and the instruction I has bounded recursion
and iteration depth, then the valuation [I](v) can be effectively computed from v.

6 Eryk Kopczynski and Szymon Toruticzyk

3 Applications

This section serves as an illustration of the potential applications of LOIS to
formal verification. We give many examples of classes of infinite-state systems
known from formal verification, which can be naturally modeled using definable
sets. We also show LOIS algorithms which can be used for solving various prob-
lems for those classes of systems, and present several termination proofs. As an
important case, we distinguish w-categorical structures.
Definable automata. Fix an underlying logical structure A. A definable automa-
ton is defined just as a nondeterministic finite automaton (NFA), but all its
components are required to be definable over A, rather than finite — the states-
pace @, the alphabet X', the transition relation § C Q x X x (), the initial and
final states I, F C Q. The automaton from Example [I]is a definable automaton
over (N, +,<,0), and also over (N, +), as < and 0 are definable using +.
Definable automata can be presented as input for algorithms, by using the
expressions which define them, and in LOIS, simply by using definable sets. As
in automata theory, a central problem in verification to which many problems re-
duce is the reachability problem: does a given automaton have an accepting run?

Ezample 6. Register automata of Kaminsky and Francez [KF94] are (roughly)
finite-state automata additionally equipped with finitely many registers which
can store data values from an infinite set D, and which process sequences of
data values from D. In each step, basing on the current state and equality or
inequality tests among the values in the registers and the current input value, the
automaton can choose to store the current value in one of its registers (replacing
the previous value), change its state, or continue to the next input value. For
example, we could consider a register automaton with two registers recognizing
the set of those sequences dids...d, € D* such that d,, € {di,d2}. It is not
difficult to prove [KF94] that the reachability problem for register automata is
decidable (in fact, in PSPACE).

Register automata are a special case of definable automata, where the under-
lying structure A is (D, =), or equivalently, (N, =). Indeed, if a register automa-
ton has m states and n registers, then the corresponding definable automaton
has statespace Q = {q1,--.,qm} X A" (q1,...,qm are treated as symbols), and
input alphabet X' = D. The transition relation § C Q x X x @, as it is defined
only using equalities and inequalities, is a definable set over (D, =).

Ezample 7. Rational relational automata of Cerans (see [ACIT96]) are similar
to register automata, but process sequences of rational numbers rather than
elements of D, and can base their decisions on comparisons with respect to the
linear order. These automata are a special case of definable automata, where the
underlying structure is (Q, <), and the definitions involve quantifier-free formulas
only. Rational register automata also have a decidable reachability problem, with
the same complexity (PSPACE) as register automata.

Ezxample 8. A Minsky machine is a model equipped with several counters storing
natural numbers, which can be incremented, decremented, and tested for zero.

LOIS: an application of SMT solvers 7

The result of Minsky is that reachability for his machines is undecidable. Minsky
machines are also a special case of definable automata, over the structure (N, +1).

Ezample 9. Consider the coverability problem for Vector Addition Systems (VASs,
related to Petri nets — see e.g. [ACJT96]), defined below. Fix a dimension k& > 0.
A VAS of dimension k is described by a finite set of vectors V C ZF. We say
that a vector ¢ is coverable from s if, starting from s, one can reach a vector
componentwise larger than ¢, by repeatedly adding vectors from V so that the
intermediate result always stays in the positive fragment, N* C ZF. It is known
that the coverability problem is decidable for VASs [KM69IFS01].

A VAS gives rise to a definable automaton over the underlying structure
Z = (Z,<,0), as follows. For a fixed finite set V C ZF there is a formula ¢y
with 2k free variables such that ¢y (u, w) holds iff w < u+ v for some v € V; the
formula ¢y refers to the relations <, = only, and not to addition or subtraction.
Therefore, a VAS induces an automaton with states Q = N*, transition relation

d={(u,w) | u,w € W, ¢y (u,w)},

initial states I = {u € W | u < s} and accepting states F' = {v € W | v > t}; this
automaton is definable over Z. In fact, it is a definable well-structured transition
system, using the terminology of [ESO01]. It is easy to see that this system has an
accepting run if and only if ¢ is coverable from s.

Ezample 10. Timed automata [AD94] can be seen as a special case of definable
automata, with underlying structure (R, <,0,+1). The input alphabet is of the
form {a1,...,a,} X R; a word over this alphabet is called a timed word if the
timestamps are increasing. If a timed automaton has m states and n clocks,
then the corresponding definable automaton has states {qi,...,¢n} x R", and
has a transition relation defined using quantifier-free formulas of restricted form:
boolean combinations of atomic formulas ¢; < ¢+ k (timed constraints) or ¢; = 0
(reset), where ¢; is the ith clock and ¢ is the timestamp read on input. Reacha-
bility of timed automata is decidable using the so-called region construction.

Fix an underlying structure A. Every definable automaton can be constructed
in LOIS, similarly to Example [Therefore, for any definable automaton one
can run the standard reachability algorithm described in Example |1} It is clear
that the algorithm is correct, i.e., it will produce the right output, whenever it
terminates. The aim is therefore to identify classes of definable automata for
which the algorithm does terminate. This is a purely mathematical question:
the programming part is done, since the reachability algorithm is executable in
LOIS, assuming an SMT solver for the underlying structure is provided.

3.1 Proofs of termination

We now present several termination arguments for the models listed above. As
a side effect, we prove Theorem [14] and Theorem i.e., decidability of the
reachability problem for automata and pushdown automata which are definable
over w-categorical structures with decidable theory, generalizing known results.

8 Eryk Kopczynski and Szymon Toruticzyk

Termination for w-categorical structures. We now present a generic termination
argument for the reachability algorithm from Example [1} which works for all
definable automata over a wide range of underlying structures A, including reg-
ister automata from Example [6] rational relational automata from Example [7]
and many others, generalizing slightly the results from [BKLITIBT12/BKIL.14].
This argument uses the notion of w-categoricity from model theory.

For a structure A, its automorphism is a bijection of A to itself, which pre-
serves the sorts, relations and functions of A. An automorphism 7 of A can be
applied to a tuple (ay,...,a,) of elements of A, yielding as a result the tuple
(m(ay),...,n(an)); we say that two tuples a,b € A" are in the same orbit if
there is an automorphism which maps @ to b. An orbit is an equivalence class
of this equivalence relation. A countable structure A is w-categorical if for every
n € N, the set of tuples A" has finitely many orbits.

Ezample 11. The structure (N, =) is w-categorical. Its automorphisms are all
bijections of N to itself. Representatives of the orbits of N3 are (1,1,1), (1,1,2),
(1,2,1),(2,1,1),(1,2,3). More generally, the orbits of N* correspond to parti-
tions of the set {1,...,k}. The structure (Q, <) is also w-categorical. Its auto-
morphisms are the increasing bijections of Q. Representatives of the orbits of Q2
are (1,1), (1,2), (2, 1). In general, the orbits of Q* correspond to transitive, reflex-
ive and total relations on {1, ..., k}. More generally, any homogeneous structure
over a finite relational signature (see Section [4]) is w-categorical. The structures
(Z,<),(N,+1), (R,+1) are not w-categorical: each pair (0,n), for n € N, repre-
sents a different orbit.

Lemma 12. Let A be an w-categorical structure. Then any S-definable set V
has only finitely many S-definable subsets.

We consider the reachability algorithm described in Example [I} which is
implemented in LOIS [KTh].
Corollary 13. The reachability algorithm terminates if the sets E CV XV and
I CV are definable over A.

Proof. Let S C A be a finite set such that £, V, I are S-definable. By Theorem [5]
in the nth iteration of the loop in the reach function, the variable R evaluates
to an S-definable set R,, C V, giving rise to an increasing sequence:

RoCRiCRC.... (2)
By Lemma the sequence stabilizes after finitely many steps. a
Corollary [I3] and Theorem [5] imply the following.

Theorem 14. Reachability is decidable for all definable automata over a fixed
w-categorical underlying structure with decidable theory.

This result generalizes the decidability of the reachability problem for the
models described in Examples [6] and [7} and by a slightly more detailed analysis
which we omit here, yields optimal complexity bounds in each of those cases.
Theorem [14] also generalizes slightly a result from [BKL11/BKT.14].

LOIS: an application of SMT solvers 9

Ezample 15. Database driven systems [DSVZ06/Via09[DHPVQ9] extend register
automata by the capability of testing whether a tuple of data values stored in
the registers belongs to a relation of a database D over a fixed schema Y. The
reachability problem is: given a description of a system S, does there exist a finite
database D over the schema X, such that S has an accepting run driven by D? It
is observed in [BST13| that this is equivalent to: does S have an accepting run,
driven by the infinite database D.,? The structure Do, a generalization of the
Erdos-Rado graph [Rad64]; we define it when X consists of a binary relation E,
interpreted as an edge relation, the general case is similar. The structure D, has
a countable set of vertices, and for each pair of vertices v, w independently and at
random with probability 1/2, an edge (v, w) is created in Do,. With probability 1,
two independent constructions of D, result in isomorphic structures. Hence
D is called the random directed graph. It is homogeneous (cf. Section , in
particular, w-categorical, and has decidable theory.

A database-driven system S defines a definable automaton over D.,. Theo-
rem [14] yields decidability of reachability of this automaton, which is equivalent
to reachability of the original system S. Hence, reachability for database-driven
systems is decidable (this gives the optimal PSpPACE bound for a fixed schema
Y)). Note that this proof is substantially simpler than the original proof [DSV07]
(existence of infinite runs can be reduced to the case of finite ones as in [ST11]).

Using the above method, one can also prove decidability in the case when
the databases D are XML trees conforming to a fixed XML schema; it is then
useful to consider infinite homogeneous trees [BST13] instead of Dy,.

Other termination arguments. Termination of the reachability algorithm can be
also proved when the underlying structure is not w-categorical, for some classes
of definable automata.

Ezample 16. To test coverability of a VAS, convert it into a definable automaton
as described in Example [0] The reachability algorithm from Example [I] termi-
nates and correctly decides reachability of this automaton, thus deciding cover-
ability of the original VAS by using an SMT solver for (N, <). The termination
argument is the well known [FS01] well quasi-order argument: the sequence (2)
stabilizes by Dickson’s lemma, as it consists of downward-closed subsets of N

(with respect to the coordinatewise ordering of N*). More generally, the reacha-
bility algorithm terminates for any definable well-structured transition system.

Ezample 17. The reachability algorithm terminates for timed automata (see Ex-
ample , treated as definable automata. To prove termination, one argues that
each set R, in the sequence decomposes into finitely many regions. To run
this algorithm in LOIS, an SMT solver for (R, <,+1,0) is needed.

Note that by using LOIS, no specific data structures need to be devised: the
algorithm is the standard one from Example [1} and is trivial to implement in
LOIS (see [KTb]). Thanks to this, the termination proofs can be more abstract
and precise, since they do not need to discuss the implementation details. This
luxury of abstraction can be afforded thanks to SMT solvers, which are heavily
used when LOIS instructions are executed (see Section .

10 Eryk Kopczynski and Szymon Toruticzyk

3.2 Other verification problems

So far we only investigated one problem: the reachability problem for definable
automata. Many other classical algorithms involving finite-state systems can be
executed in LOIS on infinite-state definable systems, often yielding interesting
theoretical decidability results. We illustrate this phenomenon with two further
examples: automata minimization and reachability of pushdown automata.

Ezxample 18. Deterministic definable automata are defined just as finite deter-
ministic automata, i.e., they are nondeterministic definable automata in which
the transition relation is the graph of a function § : Q x X' — @. The automaton
from Example [1] is a deterministic definable automaton. The standard Moore
minimization algorithm presented in Example[l| can be run for any definable de-
terministic automaton; it is immediate to implement it in LOIS [KTD]. It follows
from Corollary [13]that this algorithm terminates whenever the underlying struc-
ture is w-categorical. The algorithm also terminates for many other automata,
such as the one given in Example [I} It is shown in [BL12] that minimization
terminates for deterministic timed automata, represented appropriately.

Ezample 19. Definable automata can be extended to definable pushdown au-
tomata, just as normal pushdown automata extend NFAs. Here, we extend the
automata by e-transitions, add to the syntax a definable stack alphabet I', and
require the transition relation to be a definable subset of @ x (X'U{e}) x Opsx Q,
where Ops = {push, pop} x I is the set of stack operations. For the underlying
structures (N, =), this model generalizes pushdown register automata [MRT14].
We implement in LOIS a standard fixpoint algorithm for pushdown automata
which computes the set of pairs (p,q) such that there is a run from state p to
state ¢ which starts and ends with an empty stack; this algorithm relies on the
following branching analogue of the reachability procedure from Example

func:i;n daduce (rules) { The function deduce takes as an argument
bool added - true; a set of rules of the form (X,), where X is
hile (added) { a subset of some set of facts F' and = € F,
while
aed o ;alse; and computes the least R C F such that
for (premises,conclusion) X C R implies x € R for every rule (X, z).
in rules do . .
if ((premisesC R) For infinite definable arguments over w-
and (conclusiongR)) { categorical structures, the function deduce
R += conclusion; . .
added = Gruep D terminates for exactly the same reason as in
¥ the proof of Corollary [I3] as a consequence

return R;

} of Lemma

Using the above algorithm (which is executable in LOIS, despite infiniteness of
the arguments!), we prove the following theorem (see Appendix for details).
Theorem 20. Reachability is decidable for all definable pushdown automata
over a fized w-categorical underlying structure with decidable theory.

An analogous result can be proved for definable tree automata with infinitely
many states and infinite alphabet, or for infinite, definable grammars. Similar
results were described in [BKL11/BBKL12/BT12IBKL14ICL15] (see Section @

LOIS: an application of SMT solvers 11

All the above examples serve as a proof of concept, to demonstrate that
infinite-state systems can be seamlessly manipulated using a programming lan-
guage manipulating definable sets, which in turn relies on SMT solvers (we
discuss this in Section . As a consequence, proofs of termination (and also
complexity bounds, see Remark become more abstract and concise. Two
paradigms are particularly useful for termination proofs: the w-categoricity ar-
gument and the well quasi-ordering argument (see [ES01] for a broad overview),
but other combinatorial arguments can be also employed.

By using LOIS, one can come up with many other algorithms for problems
involving classes of infinite-state systems. LOIS acts as an intermediary which
converts imperative programs into queries to SMT formulas, as discussed in Sec-
tion[5l As far as we know, this provides a new use of SMT solvers in verification.

4 Theories of homogeneous structures

LOIS has an internal solver which can handle several w-categorical theories, in
particular, of homogeneous structures. These are important for many of the ap-
plications sampled in Section [3| In this section, we discuss the algorithm briefly.
In Section [we discuss how and when the internal solver and external solvers
are invoked in LOIS, and how they perform in tests.
Homogeneity. Recall that we consider structures with relation and/or function
symbols. An n-generated structure B is a structure with an n-tuple of distin-
guished generators from which every other element in B can be obtained using
function symbols. An isomorphism of two n-generated structures B,C is an iso-
morphism from B to C, which maps the i-th generator of B to the i-th generator
of C, for i = 1..n. A structure A is homogeneous if every isomorphism between
two n-generated substructures of A extends to an automorphism of A, for n € N.
It is straightforward to verify that the structures (N,=) and (Q, <) are ho-
mogeneous. Also, the countable directed random graph D, defined in Section
is homogeneous. Those, and many other examples are discussed in [Mac11].
The following result is well known from model theory (cf. [Hod97]).

Theorem 21. Suppose that A is homogeneous, over a finite signature and for
every n there is a bound on the size of n-generated substructures of A. Then A
is w-categorical, and each formula is equivalent to a quantifier-free formula.

The aim of this section is to give an effective version of Theorem 21} Observe
that if every formula can be effectively converted into an equivalent quantifier-
free formula, then the theory of A is decidable. The following lemma is a crucial,
though immediate observation, relating homogeneity to w-categoricity. Due to
lack of space, the proofs in this section are relegated to Appendix [C]

Lemma 22. Let A be a homogeneous structure. Suppose that T and § are two
n-tuples of elements of A, which generate isomorphic n-generated substructures
of A. Then Z,y are in the same orbit of the action of Aut(A) on A™.

To get a good grip on the complexity bounds, we introduce a few notions.

12 Eryk Kopczynski and Szymon Toruticzyk

Eztension bounds. An extension of an n-generated structure B is an (n + 1)-
generated structure C whose substructure generated by the first n generators
of C is equal to B. For a structure A, an eztension bound is a function e :
N — N such that the following property holds for every n € N: any n-generated
structure B which embeds into A has at most e(n) non-isomorphic extensions
to a structure C which embeds into A. For example, the 2-generated structure
B = ({a,b},<) with a # b, a < b, has five (up to isomorphism) extensions
to a 3-generated structure which embeds into Q, corresponding to: ¢ < a < b,
c=a<b,a<c<ba<b=c a<b<c For the structures listed above
such bounds are, respectively: for the pure set e(n) = n + 1, for the rational
numbers e(n) = 2n + 1, for the random graph e(n) = n +2™. If A has extension
bound ey, then for n € N, let el 4(n) denote ¢y - €4(0) - e4(1)--ea(n — 1),
where ¢ is the number of isomorphism types of O-generated substructures of \A.
Observe that e! 4(n) is a bound on the number isomorphism types of n-generated
substructures of A. This implies:

Lemma 23. Let A be a homogeneous structure. If A has extension bound e,
then A™ has at most el g(n) orbits. It follows that A is w-categorical if and only
if it has an extension bound.

Efficient algorithm. For many homogeneous structures one can implement a data
structure allowing to efficiently iterate through all (isomorphism types of) n-
generated structures which embed into A, which admits the following operations
in amortized constant time (1) proceed to the next (isomorphism type) of an
n-generated structure which embeds into A, and (2) extend to the first (n + 1)-
generated structure which embeds into A. Also, testing whether a quantifier-free
formula v with n variables holds in the current n-generated structure can be done
in time O(|t|n). If there is such a data structure as described above, we say that
there is a constant-delay extension enumeration algorithm for A.

Proposition 24. Let A be a homogeneous structure. Suppose that A has ex-
tension bound ey and constant-delay extension enumeration algorithm. Then,
for a given sentence ¢, deciding whether ¢ holds in A can be done in time
O(el(r) - |p|*r), where r is ¢’s quantifier rank.

Remark 25. Under assumptions as in Proposition S-definable subsets of V'
in Lemma [12| can be iterated in polynomial space with respect to the size of the
description of V. This implies that the reachability algorithm for definable au-
tomata runs in polynomial space, giving optimal bounds for register automata,
rational relational automata, and others. Also, this implies (an optimal) expo-
nential running time for the reachability algorithm for pushdown automata.

5 Solvers and tests

The only prerequisite for LOIS to work with an underlying structure A is that
a solver for its (first-order) theory is provided. LOIS invokes the solver for the
theory of A in order to determine whether a given instruction should be executed
(in for, if, while statements). In this section, we give some details about the
used internal and external solvers.

LOIS: an application of SMT solvers 13

5.1 Queries generated by LOIS

We briefly describe how LOIS generates formulas. This is part of the formal
semantics described in detail in our companion paper [KTa].

A context is a finite set of bound variables and formulas. During the execution
of a program, LOIS maintains a stack of contexts, modified by the for, if, while
instructions. A statement of the form for x in X do I is executed as follows.
Assume that X evaluates to a definable set X, which is internally represented
by a union of set-builder expressions e; U - - - Ue,,. For each expression e; in this
union, do as follows. Suppose that e; is of the form {f | a; € A,...,a, € A, ¢}.
Then a context C' comprising the bound variables aq, ..., a, and the formula ¢
is pushed onto the stack. If the union of all contexts currently on the stack is
satisfiable, then the instruction I is executed with variable x set to f. Afterwards,
the context C'is removed from the stack and we move to the next expression e;1,
until all expressions are processed. The instruction if ¢ do I is equivalent
to for x in {0 | ¢} do I, and while is implemented by using if.

Satisfiability tests. As we see above, during the execution of a program, LOIS
performs only a few operations on contexts, which can be described as follows:
(push) push a context onto the stack, (pop) remove the topmost context from
the stack, (check-sat) check if the union of all contexts on the stack is satisfi-
able. Conveniently, many SMT solvers — in particular, the solvers conforming to
the SMT-LIB standard [BSTI10] — allow to execute the above three operations
(push), (pop), (check-sat), for certain background theories; this is known as in-
cremental solving. LOIS can communicate with an external incremental solver,
using the SMT-LIB (v. 2) format. Also, LOIS can use its internal solver, which
tests satisfiability using the algorithm described in Proposition 24] and is im-
plemented for some theories of homogeneous structures, including the examples
from Section {4} and several others (cf. [KTh]). We compare the performance of
the internal and external solvers in Section [5.2]

Origin of the formulas. It is perhaps worth expounding on the origin of the for-
mulas appearing in the set-builder expressions during the execution of a LOIS
program. Whenever the instruction X+=x is executed, a new set-builder expres-
sion is appended to the expression defining X; the guard in this expression is
the union of those contexts on the stack which appeared after X was declared.
Boolean values are represented by formulas. For example, if X is represented by a
single set-builder expression of the form {f | a1 € A, ... a, € A, ¢}, then (X==0)
evaluates to Va; ...Va,—¢. Tests for €, =, C are defined mutually recursively in
the expected way. For example, X C Y is implemented by the code below. It
returns a formula with the expected quantifier prefix V*3* In general, tests for
€,=, C between sets of nesting n produces a for- function subset (X,Y) {
mula with < 2n alternations between V and 3. set F = 0;

From time to time, LOIS tries to simplify the fogf(f(; é) 5 FA={0
formulas appearing in the set-builder expressions, ;
which turns out to be crucial for the performance,
since simpler formulas are easier to verify. LOIS also performs basic syntactic
transformations, such as removing quantifiers which introduce unused variables.

return (’F==(Z)) 5

14 Eryk Kopczynski and Szymon Toruticzyk

Additionally, LOIS runs its internal solver on the guards when constructing sets,
checking whether there are any parts which always turn out to be true or false
during the evaluation, and removing them. For relatively simple LOIS programs
this simplification algorithm is very effective.

5.2 Tests

We have tested LOIS with its internal solver, as well as with two state-of-the-art
SMT solvers conforming to the SMT-LIB standard, namely CVC4 |[BCD™ 11|
and Z3 [DMBO08]. We have also tested the solver SPASS, which is based on su-
perposition calculus [WDET09|. In the tests, the underlying structure was Q
(rational numbers with order); it has the same theory as (R, <). For the ex-
ternal solvers, we used the LRA logic (Linear Real Arithmetic), which is the
weakest logic defined in the SMT-LIB 2 standard which encompasses the theory
of (R, <). Six LOIS programs were used as benchmarks: testing basic properties
of orders, reachability from the tutorial and three minimisation algorithms (dif-
ferent automaton than in the introduction). More details on the performed tests
are provided in Appendix The results are presented in Figure

order reachable| minimizel | minimize2 |minimize3

internal 7: 0 3: 0 549: 0] 33884: 0| 1215:
73 7368: 12| 569: 1| 5022: 7|158928: 229 | 2734:
CVC4 76: 51| 121: 11| 3807:478 | 58395: 241 | 925T7:

CVC4* 113: 85 |3729: 67| 18303: 57 hangs 10320:
SPASS [110582:107 |3666: 0|111567: 0 [905887:1076 |256187:
queries 159 180 8732 5962 28616

= NN = O

Fig. 1. Results of tests. Columns correspond to tests, rows to solvers. An entry
of the form ¢ : u means that the test took t milliseconds, and that to u queries
the solver replied “unknown”. The last row shows the total number of queries.

The tests indicate that there is space for improvement for state-of-the-art
SMT solvers in performing quantifier elimination in formulas which do not in-
volve arithmetic. In particular, the order test, which is a simple program testing
transitivity of the linear order on Q, is surprisingly difficult for external solvers.

6 Related work

The idea of a programming language which allows working with infinite sets,
thus providing a useful tool in verification and in automata theory, comes from
the papers [BBKL12| — which proposes a functional language called NA — and
[BT12] — where an imperative language is proposed. Both languages are ca-
pable of handling infinite, but orbit-finite sets with atoms. These papers were
meant as a proof of concept, and did not propose any efficient implementation.
In contrast, we present a working prototype. Similarly to this paper, they show
applications of such languages in formal verification, which form a subset of the
applications of LOIS, since they are limited to homogeneous underlying struc-
tures over finite relational signatures (which are w-categorical by Theorem .

LOIS: an application of SMT solvers 15

Furthermore, they propose to represent infinite sets internally as finite unions
of orbits. This has several drawbacks. Firstly, the underlying structure A needs
be homogeneous and over a finite signature, whereas LOIS can work with any
structure with decidable theory. Secondly, the orbit decompositions proposed in
those papers are exponentially less concise than expressions describing definable
sets, rendering them impractical for most applications, in particular, optimal
complexity results cannot be obtained this way. Lastly, SMT solvers cannot be
easily employed. An implementation of N\ in Haskell using definable sets and
SMT solvers is the topic of our sister project [KS].

Superficially, LOIS is similar to Kaplan [KKS12] — an extension of the Scala
programming language. Its main purpose is to integrate constraint programming
into imperative programming. It allows effective manipulation of constraints, and
relies on a verification tool Leon, which in turn invokes the SMT solver Z3. Con-
straints are implemented as boolean valued functions (in Scala, functions are
first-class objects) whose arguments are integers or algebraic data types built on
top of integers. As such, they can be seen as certain logical formulas which can be
defined as programs in a fragment of the Scala language. However, this fragment
is incomparable with first order logic, as it allows recursion but not quantifi-
cation. More importantly, the main objective of LOIS — to allow iterating over
infinite sets — is not addressed in Kaplan (one can perform list comprehension in
order to iterate through the explicit set of solutions of a constraint, which ter-
minates only if this set is finite). It would be interesting to see whether iteration
over infinite sets defined by constraints can be incorporated into Kaplan.

SMT solvers have been applied in various branches of formal verification [BSST09),
[DMB11JAMPO6/DMB14]. In particular, in model checking they are used in
predicate abstraction, interpolation-based model checking, backward reachabil-
ity analysis and temporal induction. LOIS offers yet another application of SMT
solvers in model checking: to analysis of infinite-state systems.

For a discussion of the novel syntax and semantics of LOIS see [KTal.

7 Conclusion

We introduce an imperative programming language which allows seamless ma-
nipulation of infinite sets, by employing SMT solvers. In this paper, we focused
on the applications to verification of infinite-state systems, and aspects involving
the use of the solvers. LOIS is implemented as a C++ library, and several algo-
rithms for infinite-state systems are presented in this paper and implemented
in LOIS [KTh]. LOIS uses an internal solver for theories of w-categorical ho-
mogeneous structures. There are many improvements possible in this area, for
example, improving the internal solver and extending it to other theories.

We made a case that LOIS provides a new connection between formal veri-
fication and SMT solvers, different from the various connections established so
far [DMB14]. We would like to encourage both communities to benefit from
this connection. In particular, the SMT community might consider using queries
produced by LOIS as benchmarks, whereas the formal verification community
might benefit from using LOIS as a convenient language for algorithm design,
owing to its ease of representation of abstract mathematical objects.

16 Eryk Kopczynski and Szymon Toruticzyk

This work is supported by Poland’s National Science Centre grant 2012/07/B/ST6/01497.

—— References

[ACJT96] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay.
General decidability theorems for infinite-state systems, 1996.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183—-235, 1994.

[AMPO06] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded
model checking of software using SMT solvers instead of SAT solvers. In
Antti Valmari, editor, Model Checking Software, 13th International SPIN
Workshop, Vienna, Austria, March 30 - April 1, 2006, Proceedings, volume
3925 of Lecture Notes in Computer Science, pages 146-162. Springer, 2006.

[BBKL12] Mikolaj Bojanczyk, Laurent Braud, Bartek Klin, and Stawomir Lasota. To-
wards nominal computation. In John Field and Michael Hicks, editors,
POPL, pages 401-412. ACM, 2012.

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, De-
jan Jovanovi¢, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In
Proceedings of the 23rd International Conference on Computer Aided Veri-
fication, CAV’11, pages 171-177, Berlin, Heidelberg, 2011. Springer-Verlag.

[BKL11] Mikolaj Bojariczyk, Bartek Klin, and Stawomir Lasota. Automata with
group actions. In LICS, pages 355—-364. IEEE Computer Society, 2011.

[BKL14] Mikolaj Bojaiiczyk, Bartek Klin, and Stawomir Lasota. Automata theory
in nominal sets. Log. Meth. Comp. Sci., 10, 2014.

[BL12] Mikolaj Bojanczyk and Slawomir Lasota. A machine-independent charac-
terization of timed languages. In Artur Czumaj, Kurt Mehlhorn, Andrew
Pitts, and Roger Wattenhofer, editors, Automata, Languages, and Program-
ming, volume 7392 of Lecture Notes in Computer Science, pages 92—103.
Springer Berlin Heidelberg, 2012.

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.
Satisfiability modulo theories. In Handbook of Satisfiability, pages 825—-885,
2009.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. Technical report, Department of Computer Science, The Uni-
versity of Iowa, 2010. Available at www.SMT-LIB.org.

[BST13] Mikolaj Bojaiiczyk, Luc Segoufin, and Szymon Toruiczyk. Verification of
database-driven systems via amalgamation. In Richard Hull and Wenfei
Fan, editors, PODS, pages 63-74. ACM, 2013.

[BT12] Mikolaj Bojariczyk and Szymon Toruiczyk. Imperative programming in
sets with atoms. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar
Radhakrishnan, editors, FSTTCS, volume 18 of LIPIcs, pages 4-15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[CK98] Y.C. Edward Cheng and Michael Kaminski. Context-free languages over
infinite alphabets. Acta Informatica, 35(3):245-267, 1998.

[CL15]

LOIS: an application of SMT solvers 17

L. Clemente and S. Lasota. Reachability analysis of first-order definable
pushdown systems. In Proc. CSL’15, pages 244-259, 2015.

[DHPV09] Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. Automatic

[DMBOS]

[DMB11]

[DMB14]

[DSV07]

verification of data-centric business processes. In Intl. Conf. on Database
Theory (ICDT), 2009.

Leonardo De Moura and Nikolaj Bjorner. Z3: An efficient smt solver. In Pro-
ceedings of the Theory and Practice of Software, 14th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337-340. Springer-Verlag, 2008.

Leonardo De Moura and Nikolaj Bjgrner. Satisfiability modulo theories: In-
troduction and applications. Commun. ACM, 54(9):69-77, September 2011.
Leonardo De Moura and Nikolaj Bjgrner. Applications of smt solvers to
program verification. Available online: http://fm.csl.sri.com/SSFT14/
smt-application-chapter.pdf, 2014.

Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verification
of data-driven web applications. J. Comput. Syst. Sci., 73(3):442-474, 2007.

[DSVZ06] Alin Deutsch, Liying Sui, Victor Vianu, and Dayou Zhou. A system for

[FS01]
[Hod97]
[KF94]

[KKS12]

[KM69]
[KS]
[KTa]
[KTb]
[Macl1]

[MRT14]

specification and verification of interactive, data-driven web applications. In
Intl. Conf. on Management of Data (SIGMOD), 2006.

Alain Finkel and Ph. Schnoebelen. Well-structured transition systems ev-
erywhere! Theor. Comput. Sci., 256(1-2):63-92, 2001.

Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, New
York, NY, USA, 1997.

Michael Kaminski and Nissim Francez. Finite-memory automata. Theor.
Comput. Sci., 134(2):329-363, 1994.

Ali Sinan Koksal, Viktor Kuncak, and Philippe Suter. Constraints as control.
In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’12, pages 151-164, New York,
NY, USA, 2012. ACM.

Richard M. Karp and Raymond E. Miller. Parallel program schemata. J.
Comput. Syst. Sci., 3(2):147-195, May 1969.

Bartek Klin and Michat Szynwelski. SMT Solving for Functional Program-
ming over Infinite Structures. Submitted.

Eryk Kopczynski and Szymon Toruiiczyk. LOIS: syntar and semantics.
Submitted for a conference. See http://www.mimuw.edu.pl/~erykk/lois/|
Eryk Kopczynski and Szymon Toruniczyk. LOIS: technical documentation.
See http://www.mimuw.edu.pl/"erykk/lois/.

Dugald Macpherson. A survey of homogeneous structures. Discrete Mathe-
matics, 311(15):1599-1634, 2011.

Andrzej S. Murawski, Steven J. Ramsay, and Nikos Tzevelekos. Reacha-
bility in pushdown register automata. In Erzsébet Csuhaj-Varja, Martin
Dietzfelbinger, and Zoltan Esik, editors, Mathematical Foundations of Com-
puter Science 2014 - 39th International Symposium, MFCS 2014, Budapest,
Hungary, August 25-29, 201/. Proceedings, Part I, volume 8634 of Lecture
Notes in Computer Science, pages 464-473. Springer, 2014.

http://fm.csl.sri.com/SSFT14/smt-application-chapter.pdf
http://fm.csl.sri.com/SSFT14/smt-application-chapter.pdf
http://www.mimuw.edu.pl/~erykk/lois/
http://www.mimuw.edu.pl/~erykk/lois/

18

[OEI]
[Rad64]

[ST11]

[Via09]

Eryk Kopczynski and Szymon Toruticzyk

The on-line encyclopedia of integer sequences. http://oeis.org.

R. Rado. Universal graphs and universal functions. Acta Arithmetica, 9:331—
340, 1964.

Luc Segoufin and Szymon Torunczyk. Automata based verification over
linearly ordered data domains. In Thomas Schwentick and Christoph Diirr,
editors, 28th International Symposium on Theoretical Aspects of Computer
Science, STACS 2011, March 10-12, 2011, Dortmund, Germany, volume 9
of LIPIcs, pages 81-92. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2011.

Victor Vianu. Automatic verification of database-driven systems: a new
frontier. In Intl. Conf. on Database Theory (ICDT), pages 1-13, 20009.

[WDF*09|Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar,

Martin Suda, and Patrick Wischnewski. Spass version 3.5. In Proceedings
of the 22Nd International Conference on Automated Deduction, CADE-22,
pages 140-145, Berlin, Heidelberg, 2009. Springer-Verlag.

LOIS: an application of SMT solvers 19

A Details of tests

In this section, we provide the details of the tests we have been running on LOIS.
The sources are included in the subdirectory tests in the LOIS package.

A.1 Automatic tests

The program tests/autotest.cpp performs some automatic testing of LOIS.
This includes some interesting applications of LOIS, allowing one to see that
LOIS runs correctly, and how fast does it run. The following tests are conducted:

— testRandomBipartite
Let R be a random symmetric and anti-reflexive relation, and let A; and
As be a random 2-partition. Let S(z,y) iff and y are in different parts of
the partition. We construct a new relation £ = RN S. In graph theoretic
terms, R is Rado’s random graph, S is a complete bipartite graph, and F is
a random bipartite graph. We take one vertex z € A and run BFS on the
graph, and ask about the number of iterations after which we have reached
every vertex. The program correctly answers that every vertex is reached
after 3 iterations.
This test evaluates in roughly 3 milliseconds on the machine used for tests.
— testTree
A function is given elements x1,..., 2, of the homogeneous tree, and asks
questions about relationships between them. Once the answers uniquely de-
termine the substructure generated by xi,...,xx, the substructure is pre-
sented in a readable form. For four elements without any relations, 416 pos-
sible structures are generated (262 if we know that all the four elements are
not equal — see sequences A005264 and A005172 in [OEI]).
This test evaluates in roughly four seconds on our machine (for four ele-
ments). This time is relatively long because of two reasons:

e The extension bound of the homogeneous tree is relatively large (e(n) =
8n — 4, which gives the evaluation time of roughly 8*k! according to
Proposition . In fact Proposition [24]is not optimal, all trees are gen-
erated in time roughly linear in the number of all trees, which is 416 for
four elements. Still, it grows quite fast.

e The program is very ineffective: currently, each question tries to generate
all the possible structures from the beginning, even if we know that some
possible structures have been already ruled out.

Therefore, the running time is actually at least quadratic in the number of
possible trees. This should be optimized in the future versions of LOIS.
— testOrder
This test the basic properties of the order relation, and evaluates very quickly.
— testAssigment
This checks whether an assignment exception is correctly thrown when we
try to assign a value (rbool, in this case) which uses variables which are not
in the internal context of the variable we are assigning to.

20 Eryk Kopczynski and Szymon Toruticzyk

— testQueue
This checks whether the setof’s and the queue semantics of the for loop
works correctly. Numbers from 0 to 10 are inserted to 1lsetof<int>.

— testRemoval
This checks whether the -= operator works in the natural, pseudo-parallel
way, as advertised in paper.

A.2 Minimisation of an automaton

The program tests/mintest.cpp tries to perform the minimisation algorithm
on an orbit finite automaton. This automaton over the alphabet A (our infinite
domain) reads three symbols, and accepts iff either two of them are equal (if
there are less than three or more than three symbols, the word is rejected).
The minimisation algorithm works in a way similar to the usual one for finite
automata. The equivalence relation n C @ x @ is computed — two states will be
in 7 if they can be merged into a single state. Initially, n is set to F' x F U (Q —
F) x (Q — F), and then, in each iteration states each =,y € @ are separated
iff =n(d(z,a),d(y,a)) for some symbol a in the alphabet. For this particular
automaton minimisation takes four iterations. The algorithm is implemented
using two representations () is represented either as a relation or as the set of
equivalence classes), and currently takes 0.15 s in the relation representation,
and 32 s in the equivalence class representation.

A.3 Solver tests

The program tests/soltest.cpp tests various solvers on several LOIS func-
tions. The table in Section is based on its results. The following tests are
included:

— testOrder This test the basic properties of the order relation, and evaluates
very quickly with the internal solver, although external solvers have problems
with it.

— testReachable Reachability from the introduction.

— testReal This test the basic properties of the Real sort (LRA logic).

— testInt This test the basic properties of the Real sort (LRA logic).

— testMinimizeXY These tests minimize automata. There are two automata:
A (the same as in tests/mintest.cpp) and B (the automaton using the
integers from the introduction), and three different implementations of the
minimisation algorithm (two from tests/mintest.cpp, and the one shown
in the Introduction is implementation number 3). Internal solver and SPASS
work on the automaton A, but none of the solvers work on B.

— testPacking What are the maximal sets of subsets of (0,5) such that no
two points are in distance less than 17 Z3 correctly calculates using the LRA
logic that such maximal sets can have from 3 to 5 elements.

— testCirclePacking This tests the NRA logic by asking about packings of
disks in a larger disk. None of the tested solvers can answer even the simplest
questions here.

LOIS: an application of SMT solvers 21

The external solvers where called using the following commands:

Z3: z3-*/bin/z3 -smt2 -in -t:500

CVC4: cvc4 -lang smt -incremental -tlimit-per=500

CVC4*: cvcd -lang smt -incremental -finite-model-find -tlimit-per=500
SPASS: SPASS -TimeLimit=1

B Proofs

In this appendix, we present some proofs of the results from Section [3] and
Section [l

B.1 Proofs for Section [3]
Proof of Theorem [20,

Proof. We implement a standard fixpoint algorithm for pushdown automata
which computes the set U of pairs (p, q) such that there is a run from state p to
state ¢ which starts and ends with an empty stack.

function iSmePtoPIgsgld;W:) . For this, we apply two kinds of deduction
set rules = 0: rules (we write p — ¢ if (p,q) € U):
for q in Q do P—=q g—=T = p—r,

rules += (0,(q,q));
—q = u—v
for (p,q,r) in @° do p q ’
rules+= ({(p,q),(q,x)},(p,r));
whenever (u, a, push., p), (¢, b, pop.,, v) € 9.
for (u,a,(push,v),p) in 6 do
for (q,b,(pop,vy),v) in § do
1 = s , (u, H :
rulest= ({{p,q)}, (u,v)) The function deduce takes as an argument

return (deduce(rules)N(IxF))!=0 g set of rules of the form (X, (I,'), where X

} is a subset of some set of facts F' and = €
function dgducﬂrules) { F, and computes the smallest set R C F
t R = 0; . .
oed| g & (g satisfying X C R = x € R for every
rule (X,).
while (added) {
added - false; , The function deduce terminates for exactly
for (premises,conclusion) .
in rules do the same reason as in the proof of Corol-
if (premisesC R) in-
L el L lary [I3} the subsequent values of R are in
R += conclusion; creasing, and are subsets of the set of facts
) adkled = HFEGE F, which is S-definable, where S C A is a
return R; finite set such that rules is S-definable.

Correctness of the procedure isEmptyPushdown is clear. This proves Theo-

rem 200

22 Eryk Kopczynski and Szymon Toruticzyk

B.2 Proofs for Section [

Proof of Theorem 21}

Proof. By Lemma the orbit of z € A™ is described by the quantifier-free
formula with n free variables describing the isomorphism type of the (finite) n-
generated structure generated by Z. In particular, there are finitely many such
orbits. A formula ¢ with n-free variables defines a union of orbits of A™, so it is
equivalent to a disjunction of quantifier-free formulas.

Proof of Lemma 23

Proof. By homogeneity, the isomorphism extends to an automorphism of A, so
T,y are in the same orbit of the action of Aut(A) on A™.

Proof of Lemma 23

Proof. From Lemma [22] it follows that the orbit of an n-tuple z is determined
by the isomorphism type of the structure it generates. This proves the first
part of Lemma 23] and the ‘if” implication of the second part. For the ‘only if’
implication, note that e(n) is bounded by the number of orbits of A"T!.

Proof of Proposition [2])

Proof. If ¢ is a formula with free variables x1,...,z,, then let [¢] denote the
set of isomorphism types of n-generated structures B with generators by, ..., by,
such that for some embedding « of B to A, the valuation which maps the variable
x; to a(b;) satisfies ¢, i.e., v, A, = ¢. It follows from homogeneity that this does
not depend on the choice of the embedding «.

We show by induction on the structure of a formula ¢ with n free variables,
that given an isomorphism type of an n-generated structure B, it can be decided
whether B € [¢] in time O(e(r —1)---e(1) - €(0) - |¢]).

Proving this will prove the proposition. Indeed, sentences have 0 free vari-
ables, and due to the assumption that 4 has no constants, there is only one
0-generated structure, namely the empty structure. Testing whether this struc-
ture belongs to [¢] is equivalent to answering whether A = ¢.

We proceed to the inductive proof. In the inductive base, we consider predi-
cates R(t1,ta,...,t), where t1, ...ty are terms using function symbols and vari-
ables. If B is an k-generated structure, then testing whether B = R(t1,t2,..., k)
can be done in time linear in |¢|.

In the inductive step, consider a formula ¢ of the form Jz.1. Given a structure
B, to test whether B € [¢], consider all extensions B’ of B by one generator, and
find out whether one of them satisfies B’ € [¢)]. This can be done in the required
time, by inductive assumption.

The case when ¢ is of the form —) or ¢, V ¢ is easy.

	LOIS: an application of SMT solvers
	Eryk Kopczynski, Szymon Torunczyk

