
Web services

Patryk Czarnik

XML and Applications 2015/2016
Lecture 6 – 11.04.2016

2 / 45

Motivation for web services

Electronic data interchange

Distributed applications
even as simple as client / server

Interoperability and flexibility
need for (high-level and device-independent) standards

Service Oriented Architecture

3 / 45

Evolution of internet applications

human human
email
WWW sites written manually

application human
web applications (e.g. an internet shop)

application application
“electronic data interchange”

low-level technologies and ad-hoc solutions
pre-XML standards (e.g. EDIFACT)
“web services”
REST, AJAX, etc.

4 / 45

Electronic data interchange (EDI) –
motivation

How to interchange data between companies /
institutions (B2B)?

paper
electronic data interchange

How to establish EDI protocol?
customer receives (or buys) a tool from provider
smaller partner complies to bigger parter
ad-hoc created conversion tools
standard

Standard deployment levels
software developed according to standard from beginning
interface added to legacy system

5 / 45

Pre-XML solutions

ANSI Accredited Standards Committee X12 sub-group
USA national standard
used mainly in America

EDIFACT
international standard (UN/CEFACT and ISO)
used mainly in Europe and Asia

6 / 45

EDIFACT characteristic

Format
text
hardly readable
tree structure

Predefined dictionaries

193 message types

279 segments

186 elements

(counted for version 08a, 2008)

7 / 45

EDIFACT

EDIFACT message example

UNB+IATB:1+6XPPC+LHPPC+940101:0950+1'
UNH+1+PAORES:93:1:IA'
MSG+1:45'
IFT+3+XYZCOMPANY AVAILABILITY'
ERC+A7V:1:AMD'
IFT+3+NO MORE FLIGHTS'
ODI'
TVL+240493:1000::1220+FRA+JFK+DL+400+C'
PDI++C:3+Y::3+F::1'
APD+74C:0:::6++++++6X'
TVL+240493:1740::2030+JFK+MIA+DL+081+C'
PDI++C:4'
APD+EM2:0:1630::6+++++++DA'
UNT+13+1'
UNZ+1+1'

8 / 45

EDIFACT structure

interchange
(wymiana)

message
(wiadomość)

segment group
(grupa)

segment
(segment)

composite (element)
(element złożony)

(data) element
(element) :1000:

TVL+240493:1000::1220+FRA+JFK+DL+400+C'
PDI++C:3+Y::3+F::1'
APD+74C:0:::6++++++6X'

TVL+240493:1000::1220+FRA+JFK+DL+400+C'

 +240493:1000::1220+

9 / 45

XML EDI

Idea: use XML as data format for EDI

Traditional EDI
Documents unreadable without specification
Compact messages
Centralised standard maintenance
Changes in format requires software change
Specialised tools needed

XML EDI
“Self-descriptioning” documents format
Verbose messages
“Pluggable”, flexible standards
Well written software ready to extensions of format
XML-format layer handled by general XML libraries

10 / 45

XML EDI flexibility

Format flexibility
Structures: choosing, repeating, nesting, optionality
Format extensions and mixing via namespaces

Applications
Data interchange between partners' systems
Web interface (with little help from XSLT)

Web Services integration

11 / 45

Service Oriented Architecture (SOA)

Build software modules as services
available for other services and programs
using other services when necessary

Share working services, not code

It is a general characteristic, it does not require to use
any particular type of services or standards.

However, standardisation helps to prepare interoperable
services which are independent of hardware and software
architecture.

12 / 45

Bad approach to share systems logic

Write the same thing twice

Copy & paste source code
Different systems include the same source code;
at best – synchronised to a common repository

Some logic that
we'd written and

want to share

System 1 System 2

copy code
copy code

13 / 45

Traditional component approach

Build software components that can be used within
different software systems via their public API.

Usually realised as dependencies (e.g. Maven)
and sharing of compiled software libraries

Common logic

System 1 System 2

dependency

Built distribution

dependency

14 / 45

Service approach

Expose the common logic as a running service and make
other systems use it.

Only one running instance of the logic, no copying.

Running Service

Common logic

System 1 System 2

usage usage

15 / 45

Benefits and costs of SOA

Systems are lighter (at least in theory) as they do not
duplicate logic.

A (well designed) service available for different client
platforms (interoperability).

One place of (that "logic") management:
bug fixes and enhancements,
security, access control.

But...

In practice, standard-based web services (especially
classical web services based on SOAP and WSDL) adds a
notable cost

16 / 45

Web Services

Idea: a website for programs (instead of people)

General definition
communication based on high-level protocols
structural messages
services described
searching services

Concrete definition: “Classical” Web-Services
HTTP or other protocols
SOAP
WSDL
UDDI
Web Services Interoperability

17 / 45

Web Services standardisation

SOAP (initially Simple Object Access Protocol:
beginnings: 1998
v1.1: W3C Note, 2001 (still in use)
v1.2: W3C Recommendation, June 2003 (also used)

Web Services Description Language:
W3C Note, 2001 (most applications use this version!)
v2.0: W3C Recommendation, June 2007

Universal Description Discovery and Integration:
OASIS project

18 / 45

Web Services standardisation (2)

Web Services Interoperability – levels of WS compliance:
WS-I Basic Profile, Simple Soap Binding Profile, ...

WS-* standards: various standards, usually not W3C:
WS-Eventing, WS-Addressing, WS-Routing, WS-Security

Business Process Execution Language (OASIS) – WS
semantics description, programming using WS as
building blocks

19 / 45

Classical vision of web services
operation

Service
(and its provider)

Client

Service registry
(UDDI)

SOAP

publishes WSDL
reads WSDL

SOAP

In fact, most of deployed solutions
don't use the UDDI layer

In fact, most of deployed solutions
don't use the UDDI layer

20 / 45

SOAP – communication protocol

Built on top of existing transport protocol (HTTP or other)

Message format
XML message with optional binary attachments
headers (optional XML elements) and body content
envelope and some special elements defined in standard
implementation-dependent content

Differences to RPC, CORBA, DCOM etc.:
data represented in extensible, structural format (XML)
data types independent of platform (XML Schema)
lower efficiency

21 / 45

SOAP message – general form

22 / 45

SOAP 1.2 message

<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/literal">

 <soap:Header>
 <t:Trans xmlns:t="http://www.w3schools.com/transaction/"
 soap:mustUnderstand="1">234</m:Trans>
 </soap:Header>

 <soap:Body>
 <m:GetPrice xmlns:m="http://www.w3schools.com/prices">
 <m:Item>Apples</m:Item>
 <m:Currency>PLN</m:Currency>
 </m:GetPrice>
 </soap:Body>
</soap:Envelope>

23 / 45

SOAP 1.2 – normal response

<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <soap:Body>
 <m:GetPriceResponse xmlns:m="http://www.w3schools.com/prices">
 <m:Price>1.90</m:Price>
 <m:Currency>PLN</m:Currency>
 </m:GetPriceResponse>
 </soap:Body>
</soap:Envelope>

24 / 45

SOAP 1.2 – fault response

<soap:Envelope xmlns:usos="urn:USOS"
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <soap:Body>
 <soap:Fault>
 <soap:faultcode>soap:Receiver</soap:faultcode>
 <soap:faultstring>Data missing</soap:faultstring>
 <soap:faultdetail>
 <usos:exception>Found no student identified
 with <usos:ind>123</usos:ind>
 </usos:exception>
 </soap:faultdetail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

25 / 45

SOAP – more info

Request and response have the same structure.
In fact, we can think of SOAP as a document transport
protocol, not necessarily in client-server architecture.

Header part optional, Body part required.

Restrictions on XML part:
no DTD (and external entity references),
no processing instructions.

Although SOAP allows many body elements (elements
within soap:Body), WS-I BP requires exactly one.

To make applications portable we should follow this
restriction.

26 / 45

WSDL – service description

XML document describing a service

Interface (“visit card”) of a service (or set of services)

Specifies (from abstract to concrete things)
XML types and elements (using XML Schema)
types of messages
port types – available operations, their input and output
details of binding abstract operations to a concrete
protocol (SOAP in case of “classical” services)
ports – concrete instances of services, with their URL

Splitting definitions into several files and using external
schema definitions available

27 / 45

WSDL 1.1 structure

<?xml version="1.0" encoding="UTF-8"?>
<definitions name='HelloWorldService'
 targetNamespace='http://example.com/hello'
 xmlns='http://schemas.xmlsoap.org/wsdl/'
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'
 xmlns:tns='http://example.com/hello'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'>
 <types>
...............

 </types>
 <message name='HelloWorld_sayHello'>
...............

 </message>
 <message name='HelloWorld_sayHelloResponse'>
...............

 </message>
 <portType name='HelloWorld'>
...............

 </portType>
 <binding name='HelloWorldBinding' type='tns:HelloWorld'>
...............

 </binding>
 <service name='HelloWorldService'>
 <port binding='tns:HelloWorldBinding' name='HelloWorldMyPort'>
...............

 </port>
 </service>
</definitions>

XML Schema element and type defs.

Message defs.

The interface (set of operations)

Binding with a particular protocol, usually SOAP

Web Service instance (concrete URL given)

28 / 45

WSDL and SOAP interaction

Basically – specified through binding element in WSDL
not so simple, because of many possibilities

RPC style
SOAP XML structure derived basing on operation name and
message parts

Document style
theoretically designed to allow sending arbitrary content
enclosed in XML documents
in practice - also used for RPC realisation, but the author of
WSDL has to define the appropriate document structure

(some tools may be helpful, e.g. bottom-up service
generation in Java JAX-WS)

Message use: literal or encoded.
We should use literal in modern applications.

29 / 45

Service registration and discovery

Idea
service registries
service providers register their services
clients search for services and find them in registries

Universal Description Discovery and Integration (UDDI)
available as service (SOAP)
business category-based directory (“yellow pages”)
searching basing on service name, description (“white
pages”)
registration and updates for service providers

30 / 45

UDDI – issues

Main issue – who can register?
anybody – chaos and low reliability
accepted partners – an institution responsible for access
policy needed, no such (widely accepted) institution exists

Reality
UDDI rarely used
if ever – for “local” SOA-based solutions (intranets)

31 / 45

Web Services advantages and
problems

Advantages:
Standardised, platform-independent technology
Interoperability
Existing tools and libraries

Main drawbacks:
Inefficiency

size of messages → transfer, memory usage
data representation translated many times on the road from
client to server (and vice versa) → processor usage / time

Complex standards, especially when using something more
than raw WSDL+SOAP

32 / 45

Are Web Services good or bad?

SOA and Web Services give an opportunity to build
modular, flexible, and scalable solutions
() by the cost of irrational inefficiency and complexity

Web Service recommended when
Many partners or public service (standardisation)
Heterogeneous architecture
Text and structural data already present in problem domain
Interoperability and flexibility more important than
efficiency

Web Service?... not necessarily
Internal, homogeneous solution.
Binary and flat data
Efficiency more important than interoperability

some-
times

33 / 45

Web services in Java

Basically – web services and web service clients can be built
from scratch in any technology

but it would be the same mistake as reading XML
documents char by char.

Low-level technologies:
HTTP servlets and HTTP clients supported by XML
processing APIs (DOM, SAX, StAX, JAXB, Transformers, ...)
SOAP with Attachments API for Java (SAAJ)
– extension of DOM directly supporting SOAP

High level approach (with low level hooks available):
Java API for XML Web Services (JAX-WS)

34 / 45

Web services in Java

WS support (XML APIs, SAAJ, JAX-WS) present in Java SE
JAX-WS and some of XML APIs since version 6.0

Client side:
Possible to develop and run WS client in Java SE without
any additional libraries!

Server side:
Developing and compiling WS server (without any vendor-
specific extensions) available in Java SE
Running a service requires an application server and a WS
implementation

“Big” app servers (Glassfish, JBoss, WebSphere...) have
preinstalled WS implementations
Lightweight servers (e.g. Tomcat) can be used by
applications equipped with appropriate libraries and
configuration

35 / 45

SAAJ

Package javax.xml.soap

Main class – SOAPMessage

Tree-like representation of SOAP messages
extension of DOM
easy access to existing and building fresh SOAP messages
support for HTTP headers, binary attachments, ...

Easy sending of requests from client side
see example Client_Weather_SAAJ

Possible implementation of server side as a servlet
see example Server_SAAJ

36 / 45

JAX-WS – introduction

Annotation-driven

Uses JAXB to translate Java objects to/from XML

Central point: Service Endpoint Interface (SEI)
Java interface representing a WS port type

kalkulator.Kalkulator and pakiet.Service in our examples

Translation between web services world (WSDL) and Java
top-down: from WSDL generate Java

server side – service interface and implementation skeleton
client side – proxy class enabling easy remote invocations
both sides – auxiliary classes, usually JAXB counterparts of
XML elements appearing in messages

bottom-up: from Java code generate WSDL
(and treat the Java code as a WS implementation)

usually done automatically during application deployment

37 / 45

Advantages and risks of using JAX-WS

High level view on web service
details of communication and SOAP/XML not (necessarily)
visible to a programmer
proxy object on client side enables to transparently invoke
methods on server-side just like on local objects

Automatic generation/interpretation of WSDL
conformance to WSDL controlled by system

Bottom-up scenario – easy introduction of WS interface to
already existing systems

or for programmers not familiar with WSDL/XML details

Risk of
accidental service interface (WSDL)
(automatically generated, not elaborated enough)
inefficiency

38 / 45

JAX-WS – main elements

Class level annotations:
@WebService, @SOAPBinding

Method-level annotations:
@WebMethod, @OneWay, @SOAPBinding,
@RequestWrapper, @ResponseWrapper

Parameter-level annotations:
@WebParam
@WebResult (syntactically a method annotation, applies
to what the method returns)

Support for specific technologies
@MTOM – automatically created binary attachments
@Addressing – adds WS-Addressing headers

39 / 45

JAX-WS – low level hooks

Providers – low level server side
Useful when

high efficiency required (e.g. streaming processing)
XML technology used in implementation

Dispatch – low level client side

One way methods

Asynchronous client calls

Handlers and handler chains
additional processing of messages between client and
server logic
one place to perform common logic: logging,
authentication, session binding

40 / 45

JAX-WS examples

Details to note:

top-down (Kalkulator):
(different) form of WSDL in RPC and Document styles
3 ways WSDL can be translated to Java (and SOAP)
(RPC, document-wrapped, document-bare)
@WebService annotation in implementation class

bottom-up (Hello)
how annotations affect SOAP messages (and WSDL)
how Java objects are represented in SOAP messages (JAXB)

high level proxy clients (Client_Weather_JAXWS)

41 / 45

JAX-WS architecture

Client

Logic Proxy

Server

LogicService
impl.

SEI

High level Java clients available
also for non-Java servers!

High level Java clients available
also for non-Java servers!

When both sides written in Java...When both sides written in Java...

42 / 45

REST – motivation

Complexity and inefficiency of SOAP-based services led
designers/researchers to propose other solutions

service-oriented
but simpler (and less general) than classical WS

The most popular alternative these days:
Representational State Transfer (REST)

Idea by Roy Fielding (2002)
Very popular solution for integration of JavaScript clients
(AJAX) with servers
And mobile clients as well...
In Java (EE) available through JAX-RS interface

43 / 45

REST – basic ideas

Service = set of resources
resource identified by its URL
best practices: URLs unique, resources organised in
collections

Resources
are representable

e.g. as XML
other formats available, a popular one is JSON

can be transferred through the net

HTTP – protocol for remote access to the resources
HTTP methods (GET, PUT, etc) used directly

http://rest.example.org/service/orders/302312

44 / 45

HTTP methods (in REST, but not only)

GET – read the resource
no side effects

PUT – write the resource
request body contains new contents
for writing new and overriding existing resources

DELETE – deletes the resource

POST – “take this piece of data and do something with it”
conceptually incompatible with REST ideas
used in practice to call remote logic more complex that
reading or writing a resource

OPTIONS, HEAD – no special meaning in REST
well, getting last modification time makes sense in REST...

45 / 45

JAX-RS – REST in Java

Java API for RESTful Services (JAX-RS)

Annotation driven API

Support for different ways of passing arguments

Content-type negotiation
the same resource may be available in different formats

Easy to write HTTP servers
REST-specific logic has to be written manually

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45

