
XML in Programming

Patryk Czarnik

XML and Applications 2015/2016
Lecture 5 – 4.04.2016

2 / 48

XML in programming – what for?

To access data in XML format

To use XML as data carrier (storage and transmission)

To support XML applications (Web, content management)

To make use of XML-related standards
XML Schema, XInclude, XSLT, XQuery, XLink, ...

To develop or make use of XML-based technology
XML RPC, Web Services (SOAP, WSDL)
REST, AJAX

3 / 48

XML in programming – how?

Bad way
Treat XML as plain text and write low-level XML support
from scratch

Better approach
Use existing libraries and tools

Even better
Use standardised interfaces independent of particular
suppliers

4 / 48

XML and Java

Propaganda
Java platform provides device-independent means
of program distribution and execution.
XML is a platform-independent data carrier.

Practice
Java – one of the most popular programming languages,
open and portable.
Very good XML support in Java platform.
Many technologies use XML.

Of course you can find very good (or at least not bad)
XML support on other programming platforms, but we

have to choose one for presentation and exercises.

Of course you can find very good (or at least not bad)
XML support on other programming platforms, but we

have to choose one for presentation and exercises.

5 / 48

XML in Java – standards

Both included in Java Standard Edition since v.6

Java API for XML Processing (JAXP 1.x – JSR-206)
many interfaces and few actual classes,
“factories” and pluggability layer
support for XML parsing and serialisation (DOM, SAX, StAX)
support for XInclude, XML Schema, XPath, XSLT

Java API for XML Binding (JAXB 2.x – JSR-222)
binding between Java objects and XML documents
annotation-driven
strict relation with XML Schema

6 / 48

Classification of XML access models

And their “canonical” realisations in Java

Document read into memory

generic interface: DOM

interface depending on document type/schema: JAXB

Document processed node by node

event model (push parsing): SAX

streaming model (pull parsing): StAX

7 / 48

Document Object Model

W3C Recommendations
DOM Level 1 – 1998
DOM Level 3 – 2004
Several modules. We focus on DOM Core here

Document model and universal API
independent of programming language (IDL)
independent of particular XML application

Used in various environments
notable role in JavaScript / ECMA Script model
available (in some form) for all modern programming
platforms

8 / 48

Primary DOM types

Document Element Comment

Attr Text

CDATA Section

Processing
Instruction

NamedNodeMap

NodeListNode

9 / 48

DOM key ideas

Whole document in memory

Tree of objects

Generic interface Node

Specialised interfaces for particular kinds of nodes

Available operations
reading document into memory
creating document from scratch
modifying content and structure of documents
writing documents to files / streams

10 / 48

Example: problem introduction

Count the number of seats in rooms equipped with
a projector.

<rooms>
<room>

<number>2120</number>
<floor>1</floor>
<equipment projector="false" computers="false"/>
<seats>50</seats>

</room>
<room>

<number>3180</number>
<floor>2</floor>
<equipment projector="true" computers="false"/>
<seats>100</seats>

</room>
<room>

<number>3210</number>
<floor>2</floor>
<equipment />
<seats>30</seats>

</room>
</rooms>

11 / 48

DOM in Java example
Parsing and basic processing

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = dbf.newDocumentBuilder();
Document doc = builder.parse(fileName);

for(Node node = doc.getFirstChild();
node != null;
node = node.getNextSibling()) {

if(node.getNodeType() == Node.ELEMENT_NODE
&& "rooms".equals(node.getNodeName())) {

this.processRooms(node);
}

}

Whole example in CountSeats_DOM_Generic.java

12 / 48

DOM in Java example
Visiting nodes in the tree

private void processRooms(Node roomsNode) {
for(Node node = roomsNode.getFirstChild();

node != null;
node = node.getNextSibling()) {

if(node.getNodeType() == Node.ELEMENT_NODE
&& "room".equals(node.getNodeName())) {

this.processRoom(node);
} } }

private void processRoom(Node roomNode) {
boolean hasProjector = false;
Node seatsNode = null, equipmentNode = null;

for(Node node = roomNode.getFirstChild();
node != null;
node = node.getNextSibling()) {

// searching for <equipment> node
if(node.getNodeType() == Node.ELEMENT_NODE

&& "equipment".equals(node.getNodeName())) {
equipmentNode = node;
break;

} }
...

13 / 48

DOM in Java example
Access to attributes and text nodes

...
if(equipmentNode != null) {

NamedNodeMap equipmentAttributes = equipmentNode.getAttributes();
Node projectorNode = equipmentAttributes.getNamedItem("projector");
if(projectorNode != null) {

String projector = projectorNode.getNodeValue();
if("true".equals(projector) || "1".equals(projector)) {

hasProjector = true;
} } }
...

...
if(seatsNode != null) {

String seatsString = seatsNode.getTextContent();
try {

int seats = Integer.parseInt(seatsString);
sum += seats;

} catch (NumberFormatException e) {
// Incorrect number format is silently ignored (sum is not increased).

} }
...

14 / 48

Approaches to using DOM

Two approaches in DOM programming
Use only generic Node interface
Use specialised interfaces and convenient methods

Example features of specialised Element interface:
searching the subtree for elements of the given name
getElementsByTagName, getElementsByTagNameNS
direct access to attribute values
getAttribute, getAttributeNS,
setAttribute, setAttributeNS

15 / 48

Using specialised interfaces
(fragments)

...
Document doc = builder.parse(fileName);
Element rooms = doc.getDocumentElement();
if("rooms".equals(rooms.getNodeName()))

this.processRooms(rooms);
...
NodeList list = roomsElem.getElementsByTagName("room");
for(int i=0; i < list.getLength(); ++i) {

this.processRoom(list.item(i));
}
...
Element equipmentElem = (Element) roomElem.

getElementsByTagName("equipment").item(0);
...
if(equipmentElem != null) {

String projector = equipmentElem.getAttribute("projector");
if("true".equals(projector) || "1".equals(projector)) {

hasProjector = true;
} }

Whole example in CountSeats_DOM_Specialized.java

16 / 48

XML binding and JAXB

Mapping XML to Java

High-level view on documents

From programmer's point of view:
instead of Integer.parseString(room.
getElementsByTagsName("seats").item(0).getTextContent())
we simply have
room.getSeats()

17 / 48

JAXB 2.x architecture

Application operates basing on (usually annotated)
“JAXB classes”

generated from a schema
or written manually

18 / 48

JAXB example

We generate Java classes basing on our schema
xjc -d src -p package_name school.xsd

One of generated classes:

All generated classes are in ...jaxb_generated
and the program in CountSeats_JAXB

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "Room", propOrder = {
 "number", "floor", "equipment", "seats"})
public class Room {
 @XmlElement(required = true)
 @XmlJavaTypeAdapter(CollapsedStringAdapter.class)
 @XmlSchemaType(name = "token")
 protected String number;
 protected byte floor;
 @XmlElement(required = true)
 protected RoomEquipment equipment;
 @XmlSchemaType(name = "unsignedShort")
 protected Integer seats;
...

19 / 48

JAXB example

JAXBContext jaxbContext = JAXBContext.newInstance(Rooms.class);
Unmarshaller u = jaxbContext.createUnmarshaller();
Rooms rooms = (Rooms) u.unmarshal(new File(fileName));
if(rooms != null)

this.processRooms(rooms);

private void processRooms(Rooms rooms) {
for(Room room : rooms.getRoom()) {

if(room.getEquipment().isProjector()
&& room.getSeats() != null) {

sum += room.getSeats();
} } }

20 / 48

JAXB – applications and alternatives

Primary applications:
high-level access to XML documents
serialisation of application data
automatic mapping of method invocations to SOAP
messages in JAX-WS

Many options to customise the mapping
using Java or XML annotations

Some alternatives:
Castor
Apache XML Beans
JiBX

21 / 48

Streaming (and event) processing
Motivation

Whole document in memory (DOM, JAXB)
convenient
but expensive

memory for document
(multiplied by an overhead for structure representation)
time for building the tree
reading always whole document, even if required data
present at the beginning

sometimes not possible at all
more memory required than available
want to process document before it ends

Alternative: Reading documents node by node

22 / 48

Event model

Document seen as a sequence of events
“an element is starting”,
“a text node appears”, etc.

Programmer provides code fragments – “event handlers”

Parser reads a document and
controls basic syntax correctness
calls programmer's code relevant to actual events

Separation of responsibility:
Parser responsible for physical-level processing
Programmer responsible for logical-level processing

23 / 48

SAX

Simple API for XML – version 1.0 in 1998

Original standard designed for Java

Idea applicable for other programming languages

Typical usage:
Programmer-provided class implementing
ContentHandler
Optionally classes implementing ErrorHandler,
DTDHandler, or EntityResolver

one class may implement all of them
DefaultHandler – convenient base class to start with

24 / 48

SAX

Typical usage (ctnd):
Obtain XMLReader (or SAXParser) from factory
Create ContentHandler instance
Register handler in reader
Invoke parse method

Parser conducts processing and calls methods of our
ContentHandler

Use data collected by ContentHandler

25 / 48

SAX events in run

<?xml-stylesheet ...?>

<room>

 <equipment projector="true"/>

 <seats>
 60
 </seats>
</room>

● startDocument()
● processingInstruction(

 "xml-stylesheet", ...)
● startElement("room")
● startElement("equipment",

{projector="true"})
● endElement("equipment")
● startElement("seats")
● characters("60")
● endElement("seats")
● endElement("room")
● endDocument()

26 / 48

SAX example
(fragments)

CSHandler handler = new CSHandler();
XMLReader reader = XMLReaderFactory.createXMLReader();
reader.setContentHandler(handler);
reader.parse(new InputSource(fileName));
return handler.getSum();

public class CSHandler implements ContentHandler {
...

public void startElement(String uri, String localName,
String qName, Attributes atts) throws SAXException {

switch(state){

...
case IN_ROOM:

if("equipment".equals(qName)) {
String projector = atts.getValue("projector");
if("true".equals(projector) || "1".equals(projector))

state = CSHandler_States.IN_ROOM_WITH_PROJECTOR;
}

...

27 / 48

SAX examples

See whole example classes:
CountSeats_SAX_Traditional and CSHandler_Traditional
for traditional scenario of creating parses instance
and registering a ContentHandler
CountSeats_SAX_JAXP and CSHandler_JAXP
for modern JAXP-conformant scenario of combining things
together

28 / 48

SAX filters

Motivation: Joining ContentHandler-like logic into chains

Realisation:
interface XMLFilter
(XMLReader having a parent XMLReader)
in practice filters implements also ContentHandler
convenient start-point: XMLFilterImpl

Typical implementation of a filter:
handle incoming events like in a ContentHandler
pass events through by manual method calls on the next
item in chain

Filters can:
pass or halt an event
modify an event or a sequence of events!

29 / 48

Possible usage of SAX filters

Filter FilterReader

Filter TransformerReader

Content
Handler

30 / 48

SAX Filters – example?

We're not going to resolve our example program using
filters, as it makes a little sense.

An example filter can be found in
more_sax/UpperCaseFilter

31 / 48

SAX – typical problems

To make implementations portable – we should manually
join adjacent text nodes in an element

StringBuilder is a convenient class

The same method called for different elements, in
different contexts

Typical solution – remembering the state:
one boolean flag in simplest cases
enum is usually enough
elaborated structures may be required for complex logic

It may become tedious in really complex cases.

32 / 48

StAX: Pull instead of being pushed

Alternative for event model
application “pulls” events/nodes from parser
processing controlled by application, not parser
idea analogous to: iterator, cursor, etc.

More intuitive control flow
reduced need of remembering the state etc.

 Advantages of SAX saved
high efficiency
possibility to process large documents

33 / 48

StAX

Streaming API for XML

Available in Java SE since version 6

Two levels of abstraction:

XMLStreamReader
one object for all purposes
most efficient approach

XMLEventReader
subsequent events (nodes) provided as separate objects
more convenient for high-level programming,
especially when implementing modification
of the document “on-the-fly”

34 / 48

StAX example with XMLStreamReader
(fragments)

XMLInputFactory xif = XMLInputFactory.newInstance();
reader = xif.createXMLStreamReader(new FileInputStream(fileName));
while (reader.hasNext()) {

if (reader.isStartElement()
&& "rooms".equals(reader.getLocalName())) {

this.processRooms();
}
reader.next();

}

while (reader.hasNext()) {
if (reader.isStartElement()

&& "equipment".equals(reader.getLocalName())) {
String projector = reader.getAttributeValue(

XMLConstants.NULL_NS_URI, "projector");
if ("true".equals(projector) || "1".equals(projector)) {

hasProjector = true;
}

} else if (hasProjector && reader.isStartElement()
&& "seats".equals(reader.getLocalName())) {

...

35 / 48

StAX example with XMLEventReader
(fragments)

XMLInputFactory xif = XMLInputFactory.newInstance();
reader = xif.createXMLEventReader(new FileInputStream(fileName));
while (reader.hasNext()) {

XMLEvent event = reader.nextEvent();
if (event.isStartElement()

&& "rooms".equals(event.asStartElement().
getName().getLocalPart())) {

this.processRooms();
}

}

while (reader.hasNext()) {
XMLEvent event = reader.nextEvent();
if (event.isStartElement() && "equipment".equals(

event.asStartElement().getName().getLocalPart())) {
Attribute projectorEvent = event.asStartElement().

getAttributeByName(new QName(XMLConstants.NULL_NS_URI,
"projector"));

if(projectorEvent != null) {
String projector = projectorEvent.getValue();

...

36 / 48

StAX Example

Whole programs:
CountSeats_Stax_Stream
presents the usage of the low-level XMLStreamReader
CountSeats_Stax_Event
presents the usage of XMLEventReader

37 / 48

Control flow in SAX

program :ContentHandler parser

init

setContentHandler

parse

startElement

characters, etc.

endDocument

programmer's code

parser internal code

38 / 48

Control flow in StAX

program parser

createXMLEventReader

nextEvent

nextEvent

close

result : StartElement

result : Characters

programmer's code

parser internal code

39 / 48

StAX features

API for reading documents:
XMLStreamReader, XMLEventReader

API for writing documents:
XMLStreamWriter, XMLEventWriter

Filters
simple definition of a filter: accept(Event): boolean
“filtered readers”

40 / 48

Which model to choose? (1)

Document tree in memory:
small documents (must fit in memory)
concurrent access to many nodes
creating new and editing existing documents “in place”

Generic document model (like DOM):
not established or not known structure of documents
lower efficiency accepted

XML binding (like JAXB):
established and known structure of documents
XML as a data serialisation method

41 / 48

Which model to choose? (2)

Processing node by node
potentially large documents
relatively simple, local operations
efficiency is the key factor

Event model (SAX):
using already written logic (SAX is more mature)
filtering events, asynchronous events
several aspects of processing during one reading of
document (filters)

Streaming model (like StAX):
processing depending on context; complex states
processing should stop after the item is found
reading several documents simultaneously

42 / 48

Features of JAXP

3 models of XML documents in Java: DOM, SAX, StAX
Formally JAXB is a separate specification

Reading and writing documents

Transformations of XML documents (Transformers)
applying XSLT in our programs
translating internal form of representation

XPath support

Validation
against DTD (only during parsing)
against XML Schema (during parsing or using Validators)
against XML Schema 1.1, Relax NG, or other alternative
standards – when implementation supports

43 / 48

Transformer: source and result

StreamSource

Source

DOMSource

JAXBSource

SAXSource

StAXSource

StreamResult

Result

DOMResult

JAXBResult

SAXResult

StAXResult

SAAJResult

Transformer

44 / 48

Applications of Transformers

Simple:
invoking XSLT transformations from Java
changing internal representation of XML
in our program

Tricky:
parsing and writing documents,
e.g. serialisation of a DOM tree
serialisation of modified (or generated)
sequences of SAX events
(together with SAX filters)
enabling “on-the-fly” processing
of large XML documents

45 / 48

Editing XML documents

More natural when whole document present in memory
DOM – generic API
JAXB – deep embedding of XML in application model

Harder, but possible, using node-by-node processing
required when processing big documents while having little
memory
suggested for big (“long and flat”) documents and simple
local operations – then we can save substantial resources
StAX – possible using “writers”

IMO XMLEventWriter more convenient than XMLStreamWriter

SAX
no direct support for editing/writing
available indirect solution: SAX filters and Transformer

46 / 48

Validation

Against DTD
setValidating(true) before parsing

Against XML Schema (or other schema formats,
if implementation supports)

setSchema(schema) before parsing
using Validator

Validator API
validate(Source) – only checking of correctness
validate(Source, Result) – augmented document returned

not possible to use as Transformer – source and result must
be of the same kind
(my private observation) – not always working as expected

47 / 48

Handling errors

Most JAXP components (specifically SAX and DOM
parsers, Validators)

may throw SAXException
signal errors through ErrorHandler events

Interface ErrorHandler
3 methods (and severity levels): warning, error, fatalError
registering with setErrorHandler allows to override default
error handling

Required to manually handle validation errors

48 / 48

XPath support in Java

DOM XPath module implementation
org.w3c.dom.xpath
officially not a part of Java SE, but available in practice
(by inclusion of Xerces in Oracle Java SE runtime)

JAXP XPath API
javax.xml.xpath
most efficient when applied for documents in memory
(DOM trees)
our examples show this solution

Note: using XPath may significantly reduce developer's
work, but the application may be less efficient (than if we
used SAX, for example)

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48

