
Modelling XML Applications

Patryk Czarnik

XML and Applications 2015/2016
Lecture 2 – 07.03.2016

2 / 30

XML application (recall)

XML application (zastosowanie XML)
A concrete language with XML syntax

Typically defined as:
Fixed set of acceptable tag names (elements and
attributes, sometimes also entities and notations)
Structure enforced on markup, e.g.:
“<person> may contain one or more <first-name> and
must contain exactly one <surname>”
Semantics of particular markups (at least informally)

3 / 30

Modelling new XML application

Analysis & design
analysis of existing documents,
new requirements, etc.
identifying nouns,
their role and dependencies
data types, constraints, limits

Writing down
structure definition – “schema”
semantics description – usually in natural language;
in schema (comments, annotations) or a separate document

4 / 30

Standards for defining structure of
XML documents

DTD
part of XML standard (1998, 2004)
origins from SGML (1974)

XML Schema – W3C Recommendation(s)
version 1.0 – 2001
version 1.1 – 2012

Relax NG
OASIS Committee Specification – 2001
ISO/IEC 19757-2 – 2003

Schematron
alternative standard and alternative approach
several version since 1999
impact on XML Schema 1.1

5 / 30

Benefits of formal definition

Tangible asset resulting from analysis & design
Formal, unambiguous definition of language
Reference for humans (document authors and readers,
programmers and tool engineers)

Ability to validate documents using tools or libraries
Programs may assume correctness of the content of
validated documents (less conditions to check!)

Content assist in editors
autocomplete during typing, stub document generation

6 / 30

Two levels of document correctness
(recall)

Document is well-formed (poprawny składniowo) if:
conforms to XML grammar,
and satisfies additional well-formedness constraints
defined in XML recommendation.
Then it is accessible by XML processors (parsers).

Document is valid (poprawny strukturalnie,
“waliduje się”) if additionally:

is consistent with specified document structure definition;
from context: DTD, XML Schema, or other;
in strict sense (DTD): satisfies validity constraints given
in the recommendation.

Then it is an instance of a logical structure and makes
sense in a particular context.

7 / 30

Element content – simple case

<student>
 <first-name>Monika</first-name>
 <surname>Domżałowicz</surname>
 <birth-date>1990-03-13</birth-date>
</student>

Example content

<!ELEMENT student (first-name, surname, birth-date)>
<!ELEMENT first-name (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT birth-date (#PCDATA)>

DTD definition

<xs:element name="student">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="first-name" type="xs:string"/>
 <xs:element name="surname" type="xs:string"/>
 <xs:element name="birth-date" type="xs:date"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

XML Schema definition

8 / 30

Document Type Definition (DTD)

Defines structure of a class of XML documents
(“XML application”).

Optional and not very popular in new applications.
Replaced by XML Schema and alternative standards.
It is worth to know it, though. Important for many
technologies created 10-30 years ago and still in use.

Contains declarations of:
elements (“element types” to be precise)

attributes (“attribute lists”...)

entities – described last week

notations – extremely rarely used, we'll skip them

9 / 30

Example DTD (fragments)

<!ELEMENT teacher (first-name+, last-name)>
<!ATTLIST teacher degree (MSc | PhD | Prof) #REQUIRED

 guest (yes | no) "no">

<!ELEMENT student (first-name+, last-name, birth-date, idetification)>

<!ELEMENT identification (PESEL | (passport-nr, country)>

<!ELEMENT first-name (#PCDATA)>
...

<student>
<first-name>Henry</first-name>
<first-name>Walton</first-name>
<first-name>Junior</first-name>
<last-name>Jones</last-name>
<birth-date>1905-05-05</birth-date>
<identification>

<passport-nr>1234567890</passport-nr>
<country>USA</country>

</identification>
</student>

<teacher degree="MSc">
<first-name>Patryk</first-name>
<last-name>Czarnik</last-name>

</teacher>

10 / 30

Element declaration in DTD

Element name

Element type; one of:
EMPTY
ANY

(content specification)

Content specification is built of
element names
#PCDATA token*

joint together using basic regular expression operators.

*) #PCDATA is allowed only under special conditions

11 / 30

Symbols in DTD element specifications

Parenthesis ()

Occurrence indicators (postfix operators)
? – zero or one
* – zero or more
+ – one or more
no symbol – exactly one

Combination (infix associative operators)
, – sequence (all in the given order)
| – choice (one of the given)

12 / 30

XML Schema

Replacement for DTD in new applications of XML

Separate W3C standard
v 1.0 in 2001 – 3 recommendations
v 1.1 in 2012 – 2 recommendations

“XML Schema definition” (*.xsd) is itself XML document

Similar capabilities for tree-level structure specification

Much more capabilities than in DTD for
text-level content (“simple types”/ “datatypes”)
modularisation of the definition
(type inference, imports, namespace support)
identity constraints (keys and references)

in v 1.1 also more advanced constraints

Much more verbose than DTD

13 / 30

Types in XML Schema

Concept of type – one of basic distinctions wrt DTD

Elements and attributes have specified types

Type specify allowable content of an element / attribute
for elements – also their attributes
type spec. does not include identity constraints

Type is independent of element (or attribute) name
many elements may have the same type
elements with the same name may have different types
“in different places”

14 / 30

Types – categorisation

Types can be categorised with respect to:

complexity
complex types define tree-level structure: subelements
and attributes; they can be applied to elements only
simple types define text-level content; they can be
applied to elements and attributes

scope
named types are defined in global scope and can be used
many times
anonymous types are defined in the place of use

origin
predefined / built-in – provided by XML Schema
user-defined

15 / 30

Element declaration

<xs:element name="student" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="first-name" type="xs:string" maxOccurs="3" />
<xs:element name="last-name" type="xs:string" />
<xs:element name="birth-date" type="xs:date" />
<xs:element name="identification">

<xs:complexType>
<xs:choice>

<xs:element name="PESEL" type="xs:string"/>
<xs:sequence>

<xs:element name="passport-nr" type="xs:string"/>
<xs:element name="country" type="xs:string"/>

</xs:sequence>
</xs:choice>

</xs:complexType>
</xs:element>

</xs:sequence> ...
</xs:complexType>

</xs:element><!ELEMENT student (first-name+, last-name, birth-date, idetification)>
<!ELEMENT identification (PESEL | (passport-nr, country)>
<!ELEMENT first-name (#PCDATA)>
...

16 / 30

More details in examples!

Disclaimer

Taking our experience and students' opinions into account
we will try not to copy standard specifications onto slides
but rather to show by examples:

some typical usage,

different paths to do a thing – so you can choose your
approach depending on needs,

chosen cases of advanced usage and rarely used
features – it is impossible to show all of them during
a short lecture,

some good and bad practices.

It also means, in particular, that slides are not a complete
source of knowledge required to pass the exam.

17 / 30

Basic things to look in the examples

“students” - several ways to write a schema for the same
document

Structure of DTD, structure of XML Schema definition

Typical element definition

Controlling number of occurrences

Sequence and choice

Building complex models (nested groups)

Defining attributes in schema and DTD

18 / 30

More possibilities
see lab classes

Avoiding code duplication and different ways of writing
definitions in schemas

Local definitions vs global definitions
Anonymous types vs named (global) types
Named groups
Extending complex types

Mixed content
DTD approach – (#PCDATA| a | b)*
Mixed content with controlled subelements – schema only

Any order (xs:all) – schema only

19 / 30

Model groups

Element content defined with model groups:
sequence – all in the given order
choice – one of the given choices
all – all given elements in any order

sequence and choice – may be nested, multiplied, etc.

all – restricted
may not be mixed with sequence and choice
may not be nested
can contain only elements with different names and
occurrence number <= 1

20 / 30

Namespaces – motivation

Same names of tags may denote different things.

Problematic especially when combining document
fragments from different sources into one document.

<article code="A1250">
 <title>Assignment in Pascal and C</title>
 <author>
 <fname>Jan</fname> <surname>Mądralski</surname>
 <address>...
 <code>01-234<code>
 </address>
 </author>
 <body>
 <paragraph>
 Assignment is written as <code>x = 5</code> in C
 and <code>x := 5</code> in Pascal.
 </paragraph>
 </body>
</article>

21 / 30

XML namespaces – realisation

Namespace name (identyfikator przestrzeni nazw)
– globally unique identifier

Universal Resource Identifier (URI) in XML v1.0
Internationalized Resource Identifier (IRI) in XML v1.1

Namespace prefix (prefiks przestrzeni nazw)
– local, for convenient reference

Local for document or fragment
Processors should not depend on prefixes!

Names resolved and interpreted as pairs:
(namespace name, local name)

To make things more complex:
scope and overrding
default namespace

22 / 30

Usage of namespaces and prefixes

<art:article code="A1250"
 xmlns:art="http://xml.mimuw.edu.pl/ns/article"
 xmlns:t="http://xml.mimuw.edu.pl/ns/text-document"
 xmlns:ad="urn:addresses">
 <art:title>Assignment in Pascal and C</art:title>
 <art:author>
 <fname>Jan</fname> <surname>Mądralski</surname>
 <ad:address>...
 <ad:code>01-234</ad:code>
 </ad:address>
 </art:author>
 <art:body>
 <t:paragraph>
 Assignment is written as <t:code>x = 5</t:code> in C
 and <t:code>x := 5</t:code> in Pascal.
 </t:paragraph>
 </art:body>
</art:article>

23 / 30

Namespaces – overriding and scopes

<pre:article code="A1250" xmlns:pre="http://xml.mimuw.edu.pl/ns/article">
 <pre:title>Assignment in Pascal and C</pre:title>
 <pre:author>
 <fname>Jan</fname> <surname>Mądralski</surname>
 <pre:address xmlns:pre="urn:addresses">...
 <pre:code>01-234</pre:code>
 </pre:address>
 </pre:author>
 <pre:body>
 <pre:paragraph xmlns:pre="http://xml.mimuw.edu.pl/ns/text-document">
 Assignment is written as <pre:code>x = 5</pre:code> in C
 and <pre:code>x := 5</pre:code> in Pascal.
 </pre:paragraph>
 </pre:body>
</pre:article>

24 / 30

Default namespace

Applies to element names which do not have a prefix.

Does not apply to attributes.

<article code="A1250" xmlns="http://xml.mimuw.edu.pl/ns/article">
 <title>Assignment in Pascal and C</title>
 <author>
 <fname>Jan</fname> <surname>Mądralski</surname>
 <address xmlns="urn:addresses">...
 <code>01-234</code>
 </address>
 </author>
 <body>
 <paragraph xmlns="http://xml.mimuw.edu.pl/ns/text-document">
 Assignment is written as <code>x = 5</code> in C
 and <code>x := 5</code> in Pascal.
 </paragraph>
 </body>
</article>

25 / 30

Namespaces – supplement

Qualified name – name with non-empty ns.URI

Unqualified name – name with null (not assigned) ns.
elements without prefixes when no default namespace
attributes without prefixes – always

Namespace name
Only identifier, even if in form of an address!
Should be in form of URI / IRI; some processors do not
check it, though
Pay attention to every character (uppercase/lowercase,
etc.) – most processors simply compare strings

XML namespaces may be used not only for element and
attribute names – e.g. type names in XML Schema

26 / 30

Namespace awareness

A document may be well-formed as XML while erroneous
from the point of view of namespaces.

For some applications (usually old ones...) such document
might be proper and usable.

Modern parsers can be configured to process
namespaces or not.

The mentioned document would be
parsed successfully by a parser which is not namespace-
aware,
revoked by a namespace-aware parser.

27 / 30

Modularisation options

Combining multiple files
DTD – external parameter entities
Schema – include, import, redefine

Reusing fragments of model definition
DTD – parameter entities
Schema – groups and attribute groups
(in practice equivalent to the above)
Schema – types, type derivation (no such feature in DTD)

Global and local definitions
In DTD all elements global, all attributes local
In schema both can be global or local, depending on case

28 / 30

Import or include?

xs:import
Imports foreign definitions to refer to

xs:redefine
Includes external definitions, but a local definition
overrides external one if they share the same name

xs:include
Basic command, almost like textual insertion
Imported module must have the same target namespace
or no target namespace

A multi-module, namespace-aware project with overused
xs:include leads to duplication of logic in the software that
processes documents (or enforces meta-programming tricks
to avoid it). /based on personal experience/

A multi-module, namespace-aware project with overused
xs:include leads to duplication of logic in the software that
processes documents (or enforces meta-programming tricks
to avoid it). /based on personal experience/

29 / 30

Schema and namespaces

DTD is namespace-ignorant

XML Schema conceptually and technically bound with
XML namespaces

Basic approach: one schema (file) = one namespace
Splitting one ns into several files technically possible

Referring to components from other namespaces available

Important attributes
targetNamespace – if given, all global definitions within
a schema go into that namespace
elementFormDefault, attributeFormDefault
– should local elements or attributes have qualified names?

default for both: unqualified
typical approach: elements qualified, attributes unqualified
setting may be changed for individual definitions

30 / 30

Using namespaces in XML Schema

Different technical approaches to handle namespaces in
XML Schema

XML Schema ns. bound to xs: or xsd:, no target
namespace

XML Schema ns. bound to xs: or xsd:, target namespace
as default namespace

Convenient as long as we don't use keys and keyrefs

Target namespace bound to a prefix (tns: by convention)

Then we can declare XML Schema as default namespace
and avoid using xs: or xsd:

See examples ns1.xsd – ns4.xsd

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30

