	We study complex algebraic varieties,	Theorem (AW, Topology 43)	The essential content of the theorem:
	possibly singular.	(a) If X is smooth,	
	$\mathbf{dim}(\mathbf{X}) = \mathbf{n}$	then $\mathbf{IM}_{\mathbf{k}}(\mathbf{X}) = \mathbf{H}_{\mathbf{k}}(\mathbf{X})$,	X equidimensional,
TOPOLOGICAL PROPERTIES	Maps = algebraic maps.	(b) If $f: X \to Y$ algebraic map,	$\widetilde{\mathbf{X}}$ - a resolution of X,
		then $f_*IM_k(X) \subset IM_k(Y)$,	then
OF THE WEIGHT FILTRATION	We will define subspaces	(c) If $f: X \to Y$ proper, surjective	$\mathbf{im}(\mathbf{H}_{\mathbf{k}}(\widetilde{\mathbf{X}}) \to \mathbf{H}_{\mathbf{k}}(\mathbf{X})) =$
	$\mathbf{IM}_{\mathbf{k}}(\mathbf{X}) \subset \mathbf{H}_{\mathbf{k}}(\mathbf{X})$	then $\mathbf{f}_*\mathbf{IM}_{\mathbf{k}}(\mathbf{X}) = \mathbf{IM}_{\mathbf{k}}(\mathbf{Y})$,	$\mathbf{im}(\mathbf{IH}_{\mathbf{k}}(\mathbf{X}) \to \mathbf{H}_{\mathbf{k}}(\mathbf{X}))$
Andrzej Weber	Name: Image homology.	(d) If X is complete,	
		then $IM_k(X) = W^kH_k(X)$,	Annother approach:
Venezia, June 2006	Homology has coefficients in Q.	$(pure \ weight \ subspace)$	Generalization for Borel-Moore ho-
,		(e) If X is equidimensional,	mology for noncomplete X.
		then $IM_k(X) = im(IH_k(X) \rightarrow H_k(X))$.	(Hanamura-M. Saito)

WEIGHT FILTRATION IN HOMOLOGY		
X complete		
$W^kH_k(X)\subset W^{k-1}H_k(X)\subset\ldots\subset H^k(X)$		
$\mathbf{W^{i}H_{k}(X)}=\textit{annihilator of W_{i-1}H^{k}(X)}$		
$\mathbf{W^kH_k(X)}$ pure Hodge structure		
dual to $H^{k}(X)/W_{k-1}H^{k}(X)$.		

1

Remarks

 $\mathbf{IM}_*(\mathbf{X})$ well defined for:

- integer coefficients,
- noncomplete varieties,
- complex analytic varieties,
- real varieties^{*}, coefficients Z/2

2

* the set of real points

Problem:

∜

Give a topological description/ /estimation of weight filtration.

McCrory (1984), F. Guillen (1987): a relation between weight and Zeeman filtrations

3

only lower bound $IM_k(X) \supset im(H^{2n-k}(X) \to H_k(X))$ (image of Poincaré map $[X] \cap -)$

INTERSECTION (CO)HOMOLOGY

4

Goresky-MacPherson, Beilinson, Bernstein, Deligne, Gabber IH_k(X) = $\mathbf{H^{2n-k}}(X, IC_X)$ IC_X constructible sheaf an object of the derived category IC_{X_{reg} = $\mathbf{Q}_{X_{reg}}$ Verdier duality}

 $\mathbf{D}(\mathbf{IC}_{\mathbf{X}})\simeq \mathbf{IC}_{\mathbf{X}}[\mathbf{2n}]$

5

6

Definition is purely topological: $Stratification X = \coprod S_{\alpha}$ k-cycle ξ defines a class in $IH_k(X)$ if $\dim_R(\xi \cap S_{\alpha}) < k - codim_C(S_{\alpha})$ for singular strata. $IH_*(X)$ is a topological invariant	 For X complete: Finite characteristic analogue IH_*(X_{Fq}) is pure IH_*(X) can be equipped with a pure Hodge structure M. Saito, De Cataldo - Migliorini. Purity on the level of sheaves 	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
9	10	11	12
Level of sheaves on X $ \begin{array}{c} \mathbf{R}\pi_*\mathbf{Q}_{\widetilde{\mathbf{X}}}[2\mathbf{n}] \\ ? \nearrow \qquad \downarrow \\ \mathbf{IC}_{\mathbf{X}}[2\mathbf{n}] \longrightarrow \qquad \mathbf{D}_{\mathbf{X}} \\ \end{array}$ $ \begin{array}{c} \mathbf{IC}_{\mathbf{X}}[2\mathbf{n}] \longrightarrow \qquad \mathbf{D}_{\mathbf{X}} \\ \end{array}$ $ \begin{array}{c} \mathbf{Commutativity of the triangle:} \\ \mathbf{Hom}(\mathbf{IC}_{\mathbf{X}}[2\mathbf{n}], \mathbf{D}_{\mathbf{X}}) = \\ \qquad \mathbf{Hom}(\mathbf{Q}_{\mathbf{X}}, \mathbf{IC}_{\mathbf{X}}) = \mathbf{Q} \\ \end{array}$ $ \begin{array}{c} \mathbf{for irreducible X.} \\ \end{array}$ $ \begin{array}{c} (topological property, without weight argument) \end{array}$	The map $IC_X \to R\pi_*Q_{\widetilde{X}}$ may be con- structed by decomposition theorem. IC_X is a direct summand of $R\pi_*Q_{\widetilde{X}}$ Another argument: Barthel-Brasselet- Fieseler-Gabber-Kaup (1995). Any map of varieties can be covered by a map $IC_Y \to Rf_*IC_X$. Their proof based on a local topologi- cal property + reduction to the codi- mension 1 inclusions. Recent proof by Hanamura-M. Saito	$\begin{split} \textbf{TOPOLOGICAL LOCAL PROPERTY}\\ X \subset Y \ a \ pair \ of \ varieties,\\ codim(X) = 1\\ a \ stratum \ S \ of \ codimension \ k \ in \ X,\\ L_X, \ L_Y \ links \ of \ S\\ & IC_{Y \setminus \overline{S}} \to IC_{X \setminus \overline{S}}\\ the \ (unique) \ sheaf \ morphism.\\ \hline \hline \textbf{Then} \ the \ induced \ map\\ & IH^k(L_Y) \to IH^k(L_X)\\ vanishes.\\ \end{split}$	$\begin{split} & Weights \ of \ link \ cohomology \\ & IH^i(L_X) \ has \ weights \ \left\{ \begin{array}{l} \leq i \ for \ i < k \\ > i \ for \ i \geq k , \end{array} \right. \\ & IH^i(L_Y) \ has \ weights \ \left\{ \begin{array}{l} \leq i \ for \ i < k+1 \\ > i \ for \ i \geq k+1 . \end{array} \right. \\ & In \ the \ crucial \ degree \\ & IH^k(L_X) \ has \ weights > k \\ & IH^k(L_Y) \ has \ weights \leq k \\ & IH^k(L_Y) \ has \ weights \leq k \\ & IH^k(L_Y) \ or \ IH^k(L_X) \end{split}$

Local topology of analytic varieties is	The opposite inclusion $\operatorname{im}(\mathbf{H}_{1}(\widetilde{\mathbf{X}})) = \operatorname{H}_{2}(\mathbf{X}) \subset \mathbb{R}^{2}$	Commutativity of the triangle	$\mathbf{X} \to \mathbf{Y}$
the same as of algebraic varieties:	$\operatorname{Im}(\operatorname{\mathbf{H}}_{\operatorname{\mathbf{k}}}(\operatorname{\mathbf{X}}) ightarrow \operatorname{\mathbf{H}}_{\operatorname{\mathbf{k}}}(\operatorname{\mathbf{X}})) \subset \ \subset \operatorname{Im}(\operatorname{IH}_{\operatorname{\mathbf{k}}}(\operatorname{\mathbf{X}}) ightarrow \operatorname{\mathbf{H}}_{\operatorname{\mathbf{k}}}(\operatorname{\mathbf{X}}))$	Commutativity of the triangle:	The sheaf map $IC_{\mathbf{Y}} \ \rightarrow \ IC_{\mathbf{X}}$ is not
THEOREM (Mostowski (1984)):	\mathbf{u} $(\widetilde{\mathbf{v}})$	$\mathbf{Hom}(\mathbf{R}\pi_{*}\mathbf{Q}_{\widetilde{\mathbf{X}}}[\mathbf{2n}],\mathbf{D}_{\mathbf{X}}) =$	unique, but can be made canonical.
Every germ of an analytic set is ho-	$\mathbf{n}_{\mathbf{k}}(\mathbf{x})$	$= \mathbf{Hom}(\mathbf{Q}_{\mathbf{X}}, \mathbf{R}\pi_{*}\mathbf{Q}_{\widetilde{\mathbf{X}}})$	
meomorphic to a germ of an algebraic	? ∠ ↓	$=\mathbf{H^{0}}(\widetilde{\mathbf{X}}).$	$\mathbf{E} \qquad \stackrel{\mathbf{codim 1}}{\subset} \mathbf{Bl_{graph(f)}X imes Y}$
set.	$\mathbf{IH}_{\mathbf{k}}(\mathbf{X}) \longrightarrow \mathbf{H}_{\mathbf{k}}(\mathbf{X})$	is determined by the restriction to an open-dense subset.	$ ext{ projective } \downarrow ext{ projective } \downarrow$
The result can be generalized for pairs.	Level of sheaves on X		$\mathbf{graph}(\mathbf{f}) \subset \mathbf{X} \times \mathbf{Y}$
	${f R}\pi_{*}{f Q}_{\widetilde{{f X}}}[2{f n}]$	(topological property, without weight	∥ ↓
Remains the problem of factorizing a map through a projection and codi-	?∠↓	argument)	X Y
mension one inclusions.	$IC_{\mathbf{X}}[2n] \longrightarrow \qquad D_{\mathbf{X}}$		
17	18	19	20
COROLLARY	OPEN QUESTIONS	\bigcirc \bigcirc	Example 1.
	\bullet For analytic varieties both IH_* and		Residue classes
The bottom term of the weight filtra-	\mathbf{IM}_* (the image of $\mathbf{H}^*(\widetilde{\mathbf{X}}))$ well defined.	$\sim \sim$	
tion for complete variety	From the factorization on p.20 and the		$\mathbf{M} \; \boldsymbol{smooth} \; \boldsymbol{of} \; \mathbf{dim} = \mathbf{n} + 1,$
	decomposition theorem for projective		X hypersurface.
$\mathbf{W^kH_k}(\mathbf{X})$	morphism $[M. Saito]$ it follows [*] that	Remark. For real varieties $IM_*(-, \mathbb{Z}/2)$	$\mathbf{H}^*(\mathbf{M} \setminus \mathbf{X}) \to \mathbf{H}^{*+1}(\mathbf{M}, \mathbf{M} \setminus \mathbf{X})$
	IM_* is the image of IH_*	is not a topological invariant.	
is topologically invariant.	*Added after the conference.	Is it invariant with respect to "arc- symmetric maps"?	$\mathrm{H}_{2n+1-*}^{\mathrm{BM}}(\mathrm{X})$

• For real varieties $IM_*(-, Z/2)$ well defined. How can be characterized?

21

22

 \sim maps preserving analytic arcs.

(Parusiński)

24

For smooth X target $\simeq H^{*-1}(X)$

 ω holomorphic n+1-form on $\mathbf{M} \setminus \mathbf{X}$ with

 $1^{\rm st}$ order pole along X

 $\mathbf{res}[\omega] \in \mathbf{H_n}(\mathbf{X})$

Also we have a form

 $\operatorname{res}\omega\in \Omega^{\mathbf{n}}_{\mathbf{X}_{\operatorname{res}}}.$

 $\pi: \widetilde{\mathbf{M}} \to \mathbf{M}$ embedded resolution of \mathbf{X}

Proposition: Suppose

$$\begin{split} \pi^*\omega \in \mathbf{W_{n+2}}\Omega^{n+1}_{\widetilde{\mathbf{M}}}(\log(\pi^{-1}\mathbf{X})) \\ \text{(no higher residues). Then } \pi^*\omega \text{ has no} \\ \text{other poles except those on } \widetilde{\mathbf{X}} \text{ and} \\ \mathrm{res}[\omega] = \mathrm{im}(\mathrm{res}[\pi^*\omega]) \in \mathrm{IM_n}(\mathbf{X}). \end{split}$$

(e.g. X has canonical singularities)

25

Suppose	Х	is	complete.	
---------	---	----	-----------	--

 $IH^*_{\mathbf{G}}(\mathbf{X})$ is always pure.

It is a free module over $H^*(BG)$

 $IH^*_G(X) \simeq H^*(BG) \otimes IH^*(X)$

Then

 $\mathbf{IH}^{*}(\mathbf{X}) = \mathbf{IH}^{*}_{\mathbf{G}}(\mathbf{X}) \otimes_{\mathbf{H}^{*}(\mathbf{BG})} \mathbf{Q}$

Note: $\operatorname{res}\omega\in\mathbf{L^2}\Omega^{\mathbf{n}}_{\mathbf{X}_{\operatorname{reg}}}$

 $\|\omega\| = C\,\int_{X_{\rm reg}}\omega\wedge\overline{\omega}$ does not depend on the metric

26

For homology we have Eilenberg-Moore

 $\mathbf{E}_{2}^{\mathbf{p},\mathbf{q}} = \mathbf{Tor}_{\mathbf{p},\mathbf{q}}^{\mathbf{H}^{*}(\mathbf{BG})}(\mathbf{H}_{\mathbf{G}}^{\mathbf{BM}}(\mathbf{X}), \mathbf{Q})$

The Eilenberg-Moore spectral sequence

spectral sequence

preserves weights.

If $H_{G^*}^{BM}(X)$ is pure, then

COROLLARY

converging to $H_*(X)$.

THEOREM (M. Franz, AW)

How to construct a lift of $res[\omega]$ to $IH_n(X)$?

Construct an action of res ω on semialgebraic chains not contained in X_{sing}

$$\begin{split} \xi \subset \mathbf{X} \\ \downarrow \\ \mathbf{proper \ transform} \ \tilde{\xi} \subset \widetilde{\mathbf{X}} \\ \downarrow \\ \int_{\tilde{\xi}} \mathbf{res} \pi^* \omega \end{split}$$
If $\xi = \partial \eta \ \mathbf{then}$ $\tilde{\xi} - \partial \tilde{\eta} \subset \pi^{-1} \mathbf{X_{sing}}$ Since $\dim(\mathbf{X_{sing}}) \leq \mathbf{n} - \mathbf{1}$ $\int_{\tilde{\xi}} \mathbf{res} \pi^* \omega = \mathbf{0}$

The same: a way lift to $H^n(X)$

27

Eilenberg-Moore spectral sequence for IH reduces to the first column.

Transformation of spectral sequences

$\mathbf{Tor}(\mathbf{IH}^*_{\mathbf{G}}(\mathbf{X}), \mathbf{Q})$	$Tor(H_{G,*}^{BM}(X), Q)$
*00000	*00000
*00000	*00000
*00000	* * 0 0 0 0
*00000 _	**0000
*00000	* * * 0 0 0
*00000	* * * 0 0 0
*00000	* * * * 0 0

Surjection on the first column.

Example 2.

An algebraic group G acts on X.

$$\begin{split} & Equivariant ~Borel-Moore~homology\\ & H^{BM}_{G, q}(X) = H^{-q}(EG \times_G X; D_X) \end{split}$$

In many cases $H^{BM}_{G,\ast}(\mathbf{X})$ has pure Hodge structure, e.g. when

• X finitely many orbits

(toric varieties, spherical varieties)

• there is a stratification of X admitting fibrations

 $\mathbf{G}/\mathbf{H} imes \mathbf{A}^{\mathbf{d}_{lpha}} \ \subset \ \mathbf{S}_{lpha} woheadrightarrow \mathbf{X}_{lpha}$

with X_{α} smooth, complete.

28

The weight filtration is the limit of the Eilenberg-Moore spectral sequence.

COROLLARY

The weight filtration is determined by topology of X and the action of G.

More results for integral homology of toric varieties.

and the \mathbf{W}^k space coincides with $\mathbf{q} \geq k.$

 $H_i(X) \simeq \bigoplus_{\mathbf{p}+\mathbf{q}=i} \text{Tor}_{\mathbf{p},\mathbf{q}}^{\mathbf{H}^*(\mathbf{BG})}(H^{\mathbf{BM}}_{\mathbf{G},*}(X),\mathbf{Q})$