
Characteristic classes of Borel orbits of square-zero
upper-triangular matrices

Piotr Rudnicki∗ and Andrzej Weber†

April 12, 2022

Abstract

Anna Melnikov provided a parametrization of Borel orbits in the affine variety of square-zero
n× nmatrices by the set of involutions in the symmetric group. A related combinatorics leads to a
construction a Bott-Samelson type resolution of the orbit closures. This allows to compute cohomo-
logical and K-theoretic invariants of the orbits: fundamental classes, Chern-Schwartz-MacPherson
classes and motivic Chern classes in torus-equivariant theories. The formulas are given in terms
of Demazure-Lusztig operations. The case of square-zero upper-triangular matrices is rich enough
to include information about cohomological and K-theoretic classes of the double Borel orbits in
Hom(Ck,Cm) for k + m = n. We recall the relation with double Schubert polynomials and show
analogous interpretation of Rimányi-Tarasov-Varchenko trigonometric weight function.

The most prominent example of singular spaces with linear group action present in literature is the
case of the closures of nilpotent orbits in the Lie algebra of a reductive group. The new discoveries
concerning characteristic classes for singular varieties were not applied to nilpotent orbits so far. The
exception is the whole nilpotent cone. It has well known desingularization – the Springer resolution.
This resolution can be identified with the cotangent bundle of the generalized flag variety. The Springer
resolution was studied by many authors in the context of characteristic classes, starting from [9] and
recently in particular [5, 6, 27, 43]. By [19] any symplectic resolution of the nilpotent orbit is of the
form of the cotangent bundle T ∗G/P , where P is a parabolic subgroup. The symplectic resolution is
not unique. Any such pair of resolutions differ by a sequence of locally trivial family of special flops,
[34]. The nilpotent orbits not admitting any symplectic resolution appear in all types except An and
G2. Now we will study only the case An.

Each nilpotent G-orbit decomposes into Borel orbits. It is remarkable that there is a finite number
of B-orbits for elements of nilpotence order (height) two. For higher nilpotence order the number
of B-orbits is infinite except low dimensional cases. Bender-Perrin [8] has described a resolution of
2-nilpotent B-orbit closures. The construction is inductive, similar to the construction of the Bott-
Samelson resolution of Schubert varieties. It is a mixture of the Bott-Samelson resolution and it forms
an associated vector bundle. We present that construction in a constructive way, so that it can be used
to compute cohomological invariants of orbits.
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We are primarily interested in the characteristic classes. One can think about characteristic classes
as a deformation of the notion of the fundamental class, as advertised in a review article [39]. We will
focus on the invariants listed below. They are of cohomological nature and live in Borel equivariant
cohomology or in equivariant K-theory. We will consider the equivariant theories for the maximal
torus.

• The fundamental classes in equivariant cohomology and equivariant K-theory serve as a starting
point, as well as an occasion to compare our approach with classical Schubert calculus.

• The Chern-Schwartz-MacPherson classes are the invariants of singular varieties having good co-
variant functorial properties. Their existence was conjectured by Grothendieck and Verdier. The
first functorial construction was given by MacPherson [29]. It demands possibility of resolving
singularities. Thus the theory is available for varieties in characteristic zero. In a series of papers
Aluffi (e.g. [2, 3, 4]) computed many examples, gave an alternative definition and connected this
theory with various problems in enumerative geometry. An equivariant version was introduced
by Ohmoto [35, 45].

• The χy-genus defined by Hirzebruch for smooth varieties admits an extension for singular vari-
eties and the underlying homology class was defined in [10]. An equivariant version (especially
for torus action) were defined and studied in [46]. A need and profits from introducing equiv-
ariant version is clear when one deals with classical singular varieties like Schubert varieties.
By the localization theorem computation may be reduced to local calculus of power series. The
K-theoretic counterpart of the Hirzebruch class seems to be more natural for problems originating
from representation theory. The definition was given in [10] and the equivariant version was
introduced in [18, 6].

The structure allowing to compute the characteristic classes of Schubert varieties in the generalized
flag varietyG/B serves as the model situation. The equivariant cohomology and K-theory with respect
to the maximal torus T ⊂ B admit actions of the Demazure-Lusztig-type operations. According to
[6] the Demazure-Lusztig operations permute the motivic Chern classes of Schubert varieties. The
construction is motivated by a geometric interpretation of the Hecke algebra as presented in [12].
An elliptic version of the Demazure-Lusztig operations were used in [42] to compute the elliptic
characteristic classes for Schubert varieties in G/B and to identify them with stable envelopes of
Okounkov [1]. There are two families of operations constructed on the elliptic cohomology of G/B.
The operations are indexed by the simple reflections s ∈W , the generators of the Weyl group. Let’s
denote the mentioned operations (for the purpose of this exposition) by BSs andRs. The Schubert
varieties are indexed by the elements of the Weyl group. According to the main result of [42] the
elliptic classes E``(Xw) satisfy two recursions

BSs(E``(Xw)) = E``(Xws) if length(ws) > length(w) ,

Rs(E``(Xw)) = E``(Xsw) if length(sw) > length(w) .

The Bernstein-Gelfand-Gelfand-type formulas serve as a prototype for the first relation, it is called the
Bott-Samelson recursion. The second one (corresponding to the left action of simple reflections) is a
rewritten R-matrix relation. The elliptic class of any Schubert variety Xw can be computed inductively
with respect to the length of w, starting from the class of Xid which is a point. For cohomology
(including quantum cohomology) and K-theory such operations were described in [33]. We find
analogous relations for characteristic classes of 2-nilpotent B-orbits.
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The nilpotent elements of nilpotence order at most two for the group GLn are the matrices, whose
square is zero

A2 = 0 .

In addition we assume that A is upper-triangular. The variety of such matrices were studied in [30].
The B-orbits are indexed by certain combinatorics. To see the first nontrivial example of nilpotent
orbits consider the 2-nilpotent elements contained in N ⊂ gl3. These are the matrices(

0 a b
0 0 c
0 0 0

)
with ac = 0.

There are three 2-nilpotent upper-triangular B-orbits of rank one

O1 = {a = 0, c 6= 0} , O2 = {a 6= 0, c = 0} , O3 = {a = 0, c = 0, b 6= 0} .

The characteristic classes of O1 and O2 can be obtained from the minimal one – the fundamental class
O3 – by suitably modified Demazure operations. In this case the closures of orbits are smooth, but
starting from n = 4 singularities appear. The closure of the B orbit of the matrix0 0 0 0

0 0 1 0
0 0 0 0
0 0 0 0


consists of the block matrices

(
0 A
0 0

)
, where A is a 2×2 singular matrix.

The Bender and Perrin resolution of 2-nilpotent B-orbits allows to apply the methods of [42, 26]
and to give recursive formula for characteristic classes. Let us present the geometric picture. All the
square-zero matrices of a fixed order r are conjugate. They form a GLn orbit. Every such matrix A is
characterized by its kernel K, the imageW and a nondegenerate map Cn/K → W . From this data
one constructs a resolution of the closure of the GLn-orbit. Let F`(r, n− r, n) be the 2-step flag variety
consisting of pairs of subspacesW ⊂ K in Cn with dim(W ) = r, dim(K) = n− r. There are natural
maps

Hom(Cn/K,W )
ϕ−→ GLn ·A ⊂ Hom(Cn,Cn)

↓
F`(r, n− r, n).

Moreover the resolution map ϕ factorizes through the bundles

Hom(Cn/W,W ) and Hom(Cn/K,K)

over the corresponding Grassmannians giving rise to symplectic resolutions. The natural action of the
Borel subgroup decomposes the singular space GLn ·A as well as its resolutions. To construct a resolu-
tion of the Borel orbit closure it is enough to resolve a suitable Schubert variety in the Grassmannian
and pull back the bundle of Hom’s. A precise algorithm is given by Theorem 3.6.

In the present paper the Chern-Schwartz-MacPherson classes cSM and motivic Chern classes mC
are computed, as well as the fundamental classes. The ambient space here is the vector space of strictly
upper-triangular matrices in gln, denoted by N .
Theorem (Theorems 4.1 and 5.1). There exist operators βi and Ai acting on the fraction field of H∗T(N ) '
Z[t1, t2, . . . tn] and βKi and AKi acting on the fraction field of KT(N )[y] = Z[t±1

1 , t±1
2 , . . . t±1

n , y] having the
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following properties. Suppose O1 ⊂ N is an B-orbit of a square-zero matrix, and suppose O2 = BsiO1 ⊂ N ,
where si is the matrix of a simple reflection. Assume dimO2 = dimO1 + 1. Then the fundamental classes,
Chern-Schwartz-MacPherson classes and Motivic Chern classes can be computed by the formulae

[O2] = e(N ) · βi
(

[O1]
e(N )

)
∈ H2codimO2

T (N ) , cSM(O2 ⊂ N ) = e(N ) ·Ai
(
cSM(O1⊂N )

e(N )

)
∈ H∗T(N ) ,

[O2]K = eK(N ) · βKi
(

[O1]K
eK(N )

)
∈ KT(N ) , mC(O2 ⊂ N ) = eK(N ) ·AKi

(
mC(O1⊂N )
eK(N )

)
∈ KT(N )[y] .

Here e(N ) and eK(N ) stand for the equivariant Euler classes in cohomology and K-theory. The
operators appearing in the theorem are versions of Hecke operators from [5] or [6]. The notion of the
K-theoretic class in not ambiguous in this case, since the singularities of the square-zero orbit closures
are rational, see Remark 4.3.

At the first sight the space of square-zero matrices may seem quite innocent and not very interesting,
but the B-equivariant geometry of this space contains information about classically studied objects,
such as Schubert classes in cohomology of flag varieties. Note that Hom(Cn,Cn) can be embedded as
square-zero matrices of the size 2n× 2n

A 7→
(

0A
0 0

)
.

This was already noticed by [25, §2,2]. The Borel orbit of the big matrix consists of matrices of the
same shape with A replaced by B1AB2, where B1 and B2 are upper-triangular n× nmatrices. The
fundamental classes in the equivariant cohomology of Hom(Cn,Cn) are the double Schubert polyno-
mials. Thus cohomological properties of B orbits of square-zero matrices contain information about
classical Schubert calculus. In our approach two sets of variables of the double Schubert polynomials
have equal role and can be exchanged by the Hecke action. Exchanging such variables corresponds to
leaving the upper-right block. For example if n = 2, in the doubled dimension we have three rank 2
upper triangular orbits:

A1 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , A2 =


0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

 , A3 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .
The first matrix belongs to the minimal rank 2 orbit and it corresponds to the 0-dimensional Schubert
cell in the flag variety F`(2) ' P1. The second one corresponds to the open Schubert cell in F`(2). The
third one belongs to an exterior orbit, not visible in cohomology of P1. Beside these three orbits we have
orbits of rank 1 and 0. There is an action of permutations on the set of the B2n-orbits. In the presented
example the simple reflections act as follows:

s1 ·A1 = s3 ·A1 = A2 , s2 ·A1 = A3 .

This action1 agrees with the left and right actions of permutations on the set of Schubert cells. From
our point of view right and left operations belong to the same family. Right operations are obtained by

1In our setup this is a partial action. The orbits of A2 and A3 are maximal among the upper-triangular orbits. The matrices
s2·A2, s1·A3 and s3·A3 are not upper triangular. The resolution of [8] does not assume upper-triangularity of the B-orbit.
Nevertheless we do not want to extend the exposition in the current paper.
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conjugation with the block matrix
(
I 0
0σ

)
and left operations are those obtained by conjugation with(

σ 0
0 I

)
. Additionally w have the middle operation which destroys the block-upper-triangular structure.

For an extended discussion about right and left Demazure-Lusztig operations see the introduction
of [33]. We hope that our approach will shed a new light in on theory of characteristic classes in the
classical situation.

Quite analogously to Schubert polynomials one can find interpretation of the trigonometric weight
function of Rimányi-Tarasov-Varchenko. We describe here only the case of the full flag variety. This time
we present the flag variety as the quotient F`(n) = Hom(Cn−1,Cn)//Bn−1 and embed Hom(Cn−1,Cn)
into the space of upper-triangular matrices of the size (2n − 1) × (2n − 1). Surprisingly the weight
functions are exactly equal to the motivic Chern class of orbits (up to the factor corresponding to Bn−1).

At the end we would like to remark that the classes of B-orbit closures of square-zero matrices were
studied by Di Francesco and Zinn-Justin in [14, 13], later by Knutson and Zinn-Justin in [24, 25]. The
results of their work include our formulas for fundamental classes in (usual) equivariant cohomology.
The main feature of the mentioned papers is certain Temperley-Lieb algebra, an extension of Hecke
algebra, which governs the fundamental classes of square-zero B-orbits in the Lie algebra, as well
as certain classes in the resolutions of the nilpotent orbit. The relevant formalism of Temperley-Lieb
algebra action for K-theory was introduced in [47]. The structure considered there is quite rich. The
classes obtained by the Temperley-Lieb action are related to our fundamental classes in K-theory,
although the exact relation is involving, see [loc. cit. §5.4]. Novelty of our results is computation
of Chern-Schwartz-MacPherson an motivic Chern classes for square-zero Borel orbits. Moreover
geometric interpretation of Tarasov-Rimányi-Varchenko weight function is new. We concentrate on
the trigonometric weight function and its relation with motivic Chern classes of Bn−1 ×Bn-orbits in
Hom(Cn−1,Cn). The parallel statement for homological version follows by well known specialization.

Content: After introducing the notation in §1 we provide in §2 geometric description of orbits
corresponding to the involutions consisting of one or two transpositions. The general case is treated
in the main part of the paper. In §3 we describe the resolution of singularities of closures of orbits by
specializing the construction of Bender and Perrin. The formulas allowing to compute characteristic
classes by the action of a suitable Hecke algebra are given in §4 and §5. In the remaining sections we
show connection with classical Schubert calculus and the theory of weight functions.

We would like to thank the Referee for suggesting many improvements of the manuscript.
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1 Parametrization of Borel orbits in N
Let N be the space of (strictly) upper triangular n × n matrices with complex coefficients. Hence
N is an affine space of dimension (n−1)·n

2 . The square-zero matrices form an affine subvariety {A ∈
N | A2 = 0} ⊆ N . Let GLn = GLn(C) be the general linear group and B = Bn be the standard Borel
subgroup of GLn, consisting of upper triangular matrices. The Borel group acts on N by conjugation.
It is known that for n ≥ 6 the number of Bn orbits in N is infinite, while the number of square-zero
B-orbits is finite. We review now the combinatorial description provided by Melnikov in [30, §1].

The set of Bn-orbits is in bijection with involutions in the symmetric group Sn. Let us fix w ∈ Sn.
If w is an involution then it can be written uniquely as a composition of disjoint transpositions w =
(i1, j1) (i2, j2) . . . (ik, jk) for i1 < i2 < · · · < ik and is < js for any s = 1, 2, . . . , k. We always assume
that involutions are written in this order without making explicit appealing to this. Let us denote the
set of all involutions in Sn by Invn. For any w ∈ Sn let Mw ∈ GLn be the permutation matrix. For
w ∈ Invn we define the matrix Nw by erasing the lower-triangular and diagonal part fromMw, that is

(Nw)ij =

{
0, if i ≥ j,
(Mw)ij , otherwise.

For example, take w = (1, 3) (2, 4) ∈ Inv4. Then

Mw =


0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

 , Nw =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Theorem 1.1 ([30, 2.2]). For each square-zero Bn-orbit in O ⊂ N there exists a unique involution w ∈ Invn
such that O = ONw .
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In the sequel we will just write Ow as a shorthand for ONw . We will often refer to
Lemma 1.2 ([30, §3]). For w = (i1, j1) (i2, j2) . . . (im, jm) ∈ Invn one has

dim (Ow) = mn+

m∑
k=1

(ik − jk)−
m∑
k=2

rk(w) (1)

where for k ≥ 2 we put
rk(w) = ]{` < k | j` < jk}+ ]{` < k | j` < ik} . (2)

Quick use of the above formula is a bit problematic. There is a graphical representation of the
involution, from which one can read easily the dimension of the orbit. We draw arcs connecting the
transposed numbers. For example if w = (2, 6) (4, 7) ∈ S8 the corresponding picture is the following:

1 2 3 4 5 6 7 8

The dimension of the orbit is equal to

m(n−m)− ](intersections)−
∑

fixed points
](arcs passing over) .

In our example the dimension of the orbit O(2,6)(4,7) is equal to 2(8− 2)− 1− (0 + 1 + 2 + 0) = 8. We
refer for details in [32].

2 Geometric description of lower rank orbits
2.1 Orbits corresponding to transpositions
Let us fix 1 ≤ k < ` ≤ n and consider transposition w = (k, `) ∈ Invn. Any matrix belonging to Ow
satisfies three conditions

1. it is of the block form
(

0 A
0 0

)
with A of the size k × (n− `+ 1)

2. the rank of Nw is one.
3. the entry (Nw)k,` is non-zero.

Let Xw be the closure of Ow in N .
Proposition 2.1. The variety Xw is defined by the conditions 1. and 2. above.

Proof. The variety Y defined by 1. and 2. (or equivalently rk(A) = 1) is a classical rank locus. It is
irreducible of dimension n+ k − `. The orbit O(k,`) is of the same dimension by Lemma 1.2. Since it is
contained in Y , its closure is equal to Y .

The orbit closureX(k,`) admits a resolution of singularities which is the bundleO(−1)⊕(n−`−1) over
P(Ck). Here Ck is identified with the space of the columns having zeros at the positions below k. The
resolution sends the tuple of proportional vectors v`, v`+1, . . . , vn (lying in the same fiber of O(−1)) to
the matrix with columns equal to vi for i ≥ ` and the remaining columns are zero.
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2.2 Orbits corresponding to double transpositions
Let w = (i, j) (k, `) ∈ Invn. We have 3 cases of the value of r2(w). Namely, r2(w) is equal to 0, 1 or 2.
Clearly X(i,j)(k,`) is contained in the algebraic sum

X(i,j)(k,`) ⊂ X(i,j) +X(k,`) = {x+ y | x ∈ X(i,j), y ∈ X(k,`)}

but in general there is no equality.
j

i

`

k

0. The case r2(w) = 0. For the pattern i k ` j (the dashed lines indicate, that the subsequent
vertices do not have to be adjacent) the matrices belonging to Xw are nested

The bigger rectangle corresponds to the k×(n−`+1) matrix, the smaller one to the i×(n−j+1)-matrix.

We describe a partial resolution of the varietyXw. Let F`(1, 2;Ck) be the 2-step flag variety consist-
ing of lines and planes in Ck. Let π : Ck → Ck−i be the projection onto last (k − i)-coordinates. Let
Ω ⊆ F`(1, 2;Ck) be the Schubert variety defined by the condition

Ω = {(L,P ) ∈ F`(1, 2;Ck) | dimπ(P ) ≤ 1} = {(L,P ) ∈ F`(1, 2;Ck) | dim(P ∩ Ci) ≥ 1} .

We have the tautological bundles of lines L and planes P over the flag variety F`(1, 2, n). Consider the
restricted bundle

E =
(
L`−j ⊕ Pn−j−1

)
|Ω .

Let p : E → N be the map which sends the coordinates of E to the columns of the matrix. The
varietyX(i,j) +X(k,`) is contained in the image of p. Counting the dimensions (Lemma 1.2) we see that

X(i,j)(k,`) = X(i,j) +X(k,`) = p(E) .

The map p : E → Xw is proper but it is not a resolution of singularities of Xw since E is a bundle over
the singular base Ω. Resolving the singularities of the Schubert variety Ω we obtain a resolution of Xw.
Corollary 2.2. If w = (i, j) (k, `) and i < k < ` < j then the orbit closure Xw is defined by rank conditions.

We will not give a detailed explanation of the above statement, since in general the ideal defining
Xw is given in [31, Sec. 3, Theorem §3.5]. In this case the ideal is generated by the conditions which
can be expressed in terms of geometric position of the “north-east” rectangles2 NE(i, j) and NE(k, `)
determined by the pairs (i, j) and (k, `):

2For example the “noth-east” rectangleNE(i, j) determined by the pair (i, j) consist of the entries (i′, j′)with 1 ≤ i′ ≤ i
and j ≤ j′ ≤ n.
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• rk(A) ≤ 2;
• the 2 × 2 minors of the submatrices not intersecting with the intersection NE(i, j) ∩ NE(k, `)

vanish;
• the entries of the matrix which do not lie in any rectangle are zero.

1. The case r2(w) = 1. For the pattern i k j ` the matrices belonging toXw are of the shape:

Note that both rectangles are contained in a bigger one, which is entirely located above the diagonal.
Let us consider the (smooth) Schubert variety

Ω = {(L,P ) ∈ F`(1, 2;Ck) | L ⊆ Ci} .

The variety Ω fibers over P(Ci) with the fiber isomorphic to P(Ck−1), therefore dim Ω = i + k − 3.
Similarly as in the previous case we set

E =
(
L`−j ⊕ Pn−`+1

)
|Ω .

Here
dim(E) = i+ k − 3 + (`− j) + 2(n− `+ 1) = 2n+ (i− j) + (k − `)− 1 .

As before we define the projection map p : E → N . By the construction Xw ⊂ p(E). The variety p(E) is
irreducible and by Lemma 1.2 dim(Xw) = 2n+ (i− j) + (k − `)− 1 as well. ThusXw = p(E) and p is
a resolution of singularities.
Corollary 2.3. If w = (i, j) (k, `) and i < k < j < ` then the orbit closure Xw is defined by rank conditions.

2. The case r2(w) = 2. For the pattern i j k ` matrices belonging to Xw are of the shape:

This shape of matrices in Xw is analogous to the previous case. The difference is that the North-East
rectangle spanned by coordinate (k, j) does not lie in the strictly upper triangular part of n×nmatrices.
Rank conditions do not suffice to defineXw in this case. One equation is missing,Xw is a hypersurface
in p(E). It turns out we just need to intersect the rank conditions variety with the condition A2 = 0.
Geometrically this means that we do not take the whole bundle E (defined analogously as in the
previous cases) but we have to restrict to a naturally defined quadric Q ⊆ E . The singularities in this
case are quadratic and they are easy to resolve.
Corollary 2.4. If w = (i, j) (k, `) and i < j < k < ` then the orbit closure Xw is defined by rank conditions
and the condition A2 = 0.

Further investigation by hand of Xw singularities is troublesome. We stop here our consideration.
For a general description of the ideal of Xw see [31]. The precise form of the ideal of Xw is irrelevant
for our purposes. We will be primarily interested in resolution of singularities of Xw. As we can see
the resolution of B-orbit closure is intimately related to resolving singularities of Schubert cells.
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3 Inductive construction of resolution
In the article [8] Bender and Perrin proved a general result about resolution of singularities for B-orbits
in 2-nilpotent cones in simple simply-laced groups (i.e. in the type ADE). In this section, we will give a
precise form of this resolution in the special case G = SLn(C). In subsequent sections we will apply
the resolution obtained here to compute fundamental classes of orbit closures and characteristic classes
of orbits.
Theorem 3.1 ([8, Corollary 3.2.1]). Let G be a simple simply-laced group and B its Borel subgroup. Let
x ∈ g be nilpotent element of height 2 and let X be its B-orbit closure. Then, there exists a sequence of minimal
parabolic subgroups P1, . . . , Pm and a vector space Y , such that

f : P1 ×B · · · ×B Pm ×B Y → X, [p1, . . . , pm, x] 7→ p1 . . . pm · x,

is a resolution of singularities.

In our context, G = GLn(C), but results for nilpotent orbits apply.

3.1 The minimal orbit of a fixed rank
All the square-zero matrices of a fixed rank are conjugate. Each adjoint orbit GLn ·Nw contains a
minimal Bn orbit. It is closed in GLn ·Nw. It is elementary to check that the following orbit is minimal,
for example computing its dimension by Lemma 1.2.
Proposition 3.2. The minimal orbit in GLn ·Nw is of the form Nwm , wherem = rk(Nw) and

wm = (1, n−m+ 1)(2, n−m+ 2) . . . (m,n) .

• • • • • • • •
oo

m
//

The closure of Owm is the linear space Xwm consisting of the matrices A having the entries aij = 0 for
j + i ≤ 2n−m.

m

3.2 A combinatorial lemma
We will need the following lemma:
Lemma 3.3. Let w = (i1, j1) . . . (im, jm) ∈ Sn be an involution. Let k1 < k2 < · · · < kn−2m be the fixed
points of w. Suppose πw ∈ Sn is the permutation, written in one-line notation as

πw = i1, i2, . . . , im, k1, k2, . . . , kn−2m, j1, j2, . . . , jm

10



i.e. πw(1) = i1, πw(2) = i2, . . . , πw(n) = jm. Then

πw ·Nwm = MπwNwmM
−1
πw = Nw (3)

Moreover
dim(Ow) = `(πw) + m(m+1)

2 (4)
Proof. The first assertion is clear. Let us compute the length of πw counting the number of the inversions
in πw. The set {1, 2, . . . , n} is the sum of three intervals: I = [1,m], K = [m + 1, n − 2m] and
J = [n− 2m+ 1, n]. The permutation πw preserves the orders of the first two sets. Therefore

`(πw) = in(I,K) + in(I, J) + in(K,J) + in(J, J)

= in(I,K ∪ J) + in(I ∪K,J)− in(I, J) + in(J, J) ,

where
in(X,Y ) = ]{(x, y) ∈ X × Y | x < y, πw(x) > πw(y)} .

Also note that if ` ≥ k then j` > i` ≥ ik. Therefore
in(I, J) = ]{` < k | j` < ik} .

in(J, J) = ]{` < k | j` > jk} = m(m−1)
2 − ]{` < k | j` < jk} .

By the definition (2)
m∑
k=2

rk(w) = m(m−1)
2 + in(I, J)− in(J, J) .

Moreover
in(I,K ∪ J) =

m∑
k=1

ik − k =

m∑
k=1

ik − m(m+1)
2 .

Let (j′1 > j′2 > · · · > j′m) be the sequence of indices jk written in the reverse order. We have

in(I ∪K,J) =

m∑
k=1

(n− j′k + 1)− k = nm−
m∑
k=1

jk − m(m−1)
2 .

Finally we obtain

`(πw) =

(
m∑
k=1

ik − m(m+1)
2

)
+

(
nm−

m∑
k=1

jk − m(m−1)
2

)
−

(
m∑
k=2

rk(w)− m(m−1)
2

)

= nm+

m∑
k=1

(ik − jk)−
m∑
k=2

rk(w)− m(m+1)
2 .

Conclusion follows from Lemma 1.2.
Remark 3.4. The permutation πw defined in the Lemma 3.3 in general is not the unique one satisfying
(3) and (4). Let w = (1, 5) (2, 6) (3, 4)

1 2 3 4 5 6

there are three permutations conjugating Nw3
to Nw: 123564, 132546 and 312456. They all have the

minimal length equal to 2.

11



3.3 Multi-twisted product
Definition 3.5. Let 0 < i < n.

• The transposition (i, i+ 1) ∈ Sn is denoted by si.
• The subgroup of GLn generated by Bn and Nsi is denoted by Pi. It is a minimal parabolic group

(properly) containing Bn.
Now let us define the main protagonist of this section. Let π = (si1 , si2 , . . . , si`) be a reduced word

representing πw. We define the multiple twisted product

Xπ = Pi1 ×B · · · ×B Pi` ×B Xwm .

with respect to the Borel group B = Bn. In addition B acts on Xπ and the morphisms

Xπ g = Mn×n(C)

Pi1/B
∼= P1

fπ

gπ

(pi1 , . . . , pi` , y) pi1 . . . pi` · y

pi1B

are B-equivariant. The map gπ is a fibration with fiber Xπ′ , where π′ = (si2 , . . . , si`). In fact, we have
Xπ = Pi1 ×B Xπ′ .
Theorem 3.6. Let w = (i1, j1) . . . (im, jm) ∈ Invn and let πw be as in Lemma 3.3. Let π = (si1 , si2 , . . . , si`)
be a reduced word representing πw. Then

fπ : Xπ → Xw ⊂ N

is a B-equivariant resolution of singularities of the closure of Ow.

Proof. The map fπ is a composition of two proper morphism. The first is the Springer resolution
GLn×BN → gwith the Bott-Samelson resolution of the (bundle over) Schubert variety (BπB)×BXwm .
Therefore the map fπ is proper.

The map fπ sends the sequence w = [si1 , si2 , . . . , sim , Nwm ] to (si1si2 . . . sim) ·Nwm = Nw. (Here
we identified the transposition sia with its matrixMsia

to avoid staircase indices.) Therefore the whole
orbit Ow is contained in the image. By Lemma 3.3 dimOw = dimXπ , therefore the map fπ restricted to
the orbit of w is a covering. On the other hand (by an elementary argument) the stabilizer of Nw in B
is connected. Therefore this covering is trivial. Hence fπ is a resolution of singularities.

We have described in a constructive way the resolution of Xw of Theorem [8, Corollary 2.4.3].
Compare [Lemma 7.3.1, loc. cit.].

Remark 3.7. Suppose π = si1si2 . . . si` is a reduced word. Then for 0 ≤ k ≤ ` the composition
τ = sik ◦ sik+1

◦ · · · ◦ si` is a permutation which preserves upper-triangularity of Nwm , i.e. τNwmτ−1

is upper triangular. This follows from the fact that if a < b and π(a) < π(b) then the inequality is
preserved for the truncated word. Suppose Xπ → Xw is a resolution of singularities or equivalently
Nw = π · Nwm and dim(Xπ) = dim(Xw). Let τ = (sik , sik+1

, . . . , si`). Then at each step the matrix
N = τ ·Nwm is upper-triangular and Xτ is a resolution of the B-orbit of N .
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Example 3.8. Let w = (1, 6) (3, 4) ∈ Inv7. The permutation given by Lemma 3.3 is equal to π =
s2s6s4s5s6.

Let us analyze all the intermediate steps obtained inductively which lead to the resolution of the
orbit closures. We call whole process evolution of the dots.

1 2 3 4 5 6
s6

7 1 2 3 4 5
s5

6 7 1 2 3 4
s4

5 6 7

s6→ s5→ s4→

1 2 3 4 5 6
s6

7 1 2
s2

3 4 5 6 7 1 2 3 4 5 6 7

s6→ s2→

3.4 Torus fixed points in the resolution
Let T = Tn × C∗, where Tn ⊂ Bn is the maximal torus consisting of the diagonal matrices. The torus
Tn acts on N , Xπ , Xw, Pi/B etc. as a subgroup of the Borel group. The factor C∗ of T acts on N as the
scalar multiplication. The resolution Xπ is a fiber bundle over the Bott-Samelson variety

Zπ = Pi1 ×B Pi2 ×B · · · ×B Pi`/B ,

which is a resolution of the Schubert variety BπB/B ⊂ GLn /B, see [11, §2.2]. The action of the factor
C∗ lifts to Xπ as the scalar multiplication in the fibers of the projection Xπ → Zπ .

The fixed points of the torus Tn (as well as of T) on Xπ are contained in the zero section, i.e. in Zπ .
They are indexed by the subwords of π, see [42, §3.2]. Hence |X T

π | = 2m. Our further computation is an
induction based on the fibration gπ : Xπ → Pi/B ' P1. The fixed pointB/B ∈ Pi/B will be denoted by
p0 and the other fixed point siB/B will be denoted p∞. The fiber over p0 is equivariantly isomorphic
to Xπ′ where the word π′ arises by omitting the first letter in π. The fiber over p∞ is isomorphic to Xπ′
too but the action of the torus is twisted. For t ∈ T and [si1 , x] ∈ g−1

π (p∞)

t · [si1 , x] = [tsi1 , x] = [si1si1tsi1 , x] = [si1 , si1tsi1x] ,

i.e. the action is twisted by si1 .

4 Fundamental classes: localization and induction
4.1 Equivariant push-forward
We briefly describe the main tool which allows efficient computation of fundamental classes in the
situation when a torus is acting and there are finitely many fixed points. The method is based on the

13



equivariant push-forward and may be applied in many contexts, for various cohomology theories. We
are primarily interested in ordinary cohomology and K-theory, but for sake of compactness we present
the general formula.

Suppose hT(−) is a T-equivariant version of a complex oriented cohomology theory in the sense
[28, §1]. Let f : M → N be a proper map of smooth complex varieties. Let us assume that the fixed
point setsMT and NT are finite. From the formal properties of complex oriented theories (see [44]) it
follows that for any class α ∈ hT(M) and any fixed point p ∈ NT

f∗(α)|p

eh(TpN)
=

∑
q∈f−1(p)∩MT

α|q

eh(TqM)
. (5)

Here for a T representation V the class eh(V ) ∈ hT(pt) denotes the Euler class in the cohomology
theory h(−). For the classical cohomology the Euler class of a one dimensional representation is equal
to the weight of the action, i.e.

e(L) = ω ∈ Hom(T,C∗) ' H2
T(pt) .

For K-theory
eK(L) = 1− L∗ ∈ R(T) ' KT(pt) .

Formula (5) holds in the fraction field of hT(pt), denoted by (hT(pt)), therefore it allows to compute
the direct image provided that hT(N)→ (hT(pt))⊗hT(pt) hT(N) is injective. Otherwise the direct image
is computed up to the hT(pt)-torsion. We will apply the localization theorem for N = N , for which
hT(N ) ' hT(pt).

Let X ⊂ N be a singular variety and let f : M → N be a proper map, which is a resolution of
singularities of X = f(M). The push forward of the unit element 1M ∈ hT(M) plays the role of the
fundamental class of X in the theory h(−). In general it depends on the resolution except very few
cases. For classical cohomology theory it agrees with the usual notion of the fundamental class. For
K-theory it does not depend on the resolution in general, and it has good properties when X has
rational singularities, see [16]. To compute f∗(1M ) we specialize the formula (5) and we obtain the
expression

f∗(1M )|p

eh(TpN)
=

∑
q∈f−1(p)∩MT

1

eh(TqM)
. (6)

In our case, for X = Xw,M = Xπ and f = fπ : Xπ → N .

4.2 The induction
We will use the notation introduced in §3.4. All the formulas below hold in the fraction field of hT(pt).
The simple reflections si act on hT(pt) through the automorphisms of the torus. Below tj denotes
the one dimensional representation given by character, which is the projection of the torus on j-th
coordinate.
Theorem 4.1. For x ∈ (hT(pt)) let

βhi (x) =
x

eh(ti+1t
−1
i )

+
si(x)

eh(tit
−1
i+1)

.

14



Suppose π = (si1 , si2 , . . . , si`), π′ = (si2 , si3 , . . . , si`). Then

fπ∗(1Xπ )

eh(N )
= βi1

(
fπ′∗(1Xπ′ )

eh(N )

)
.

Proof. Let p = p0 or p∞. The tangent space at q ∈ g−1
π (p) fits to the exact sequence

TqXπ′ ↪→ TqXπ � TpP1 .

The tangent space at p0 ∈ Pi/B is equal to ti+1t
−1
i , at the point p∞ it is dual. The fixed point set

decomposes into two parts.
• The points belonging to g−1

π (p0): here

eh(TqXπ) = eh(TqXπ′)eh(ti+1t
−1
i ) .

• The points belonging to g−1
π (p∞): the action of T at the fiber g−1

π (p∞) is twisted by si1 :

eh(TqXπ) = si1
(
eh(TqXπ′)

)
eh(tit

−1
i+1) .

From the localization formula (6) we obtain

fπ∗(1Xπ )

eh(N )
=

∑
q∈g−1

π (p0)

1

eh(TqXπ′)
· 1

eh(ti+1t
−1
i )

+
∑

q∈g−1
π (p∞)

1

si1(eh(TqXπ′))
· 1

eh(ti+1t
−1
i )

=
fπ′∗(1Xπ′ )

eh(N )
· 1

eh(ti+1t
−1
i )

+ si1

(
fπ′∗(1Xπ′ )

eh(N )

)
· 1

eh(tit
−1
i+1)

.

For the classical theory the operator βi specializes to the divided difference (up to the sign)

βHi (x) =
x

ti+1 − ti
+

si(x)

ti − ti+1
= −x− si(x)

ti − ti+1
= −∂i(x) . (7)

In the case of ordinary cohomology our computation coincides with [24, §4.1, Lemma 1].
For K-theory we obtain a variant of the isobaric divided difference

βKi (x) =
x

1− tit−1
i+1

+
si(x)

1− ti+1t
−1
i

=
ti+1x− tisi(x)

ti+1 − ti
.

If we considered the lower-triangular matrices with the action of B− we would obtain the classical
formulas.

It remains to give a formula for the starting point of the induction. The variety Xwm is smooth and
closed (a vector subspace), thus its fundamental class in any theory is well defined. It is equal to the
product of the Euler classes of coordinates eh(u tit

−1
j ) for (i, j) not belonging to the corner defining

Xwm .
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Proposition 4.2. The class of the closure of the minimal orbit of rankm divided by the Euler class is equal to

[Xwm ]h
eh(N )

=
∏

n−m+i≤j≤n

eh(u tit
−1
j )−1 .

In particular
[Xwm ]

e(N )
=

∏
n−m+i≤j≤n

(u+ ti − tj)−1 .

and
[Xwm ]K
eK(N )

=
∏

n−m+i≤j≤n

(1− u tj/ti)−1 .

Remark 4.3. We note that Xw has rational singularities by [8, Cor. 0.0.4]. This is clear from the form of
the resolution given in Theorem 3.6. Therefore the following notions coincide:

• f∗([OX̃w ]) for any resolution of singularities f : X̃w → N , f(X̃w) = Xw,
• the class of the coherent sheaf OXw ,
• the specialization of the motivic Chern class mC(Xw ⊂ N )y=0.

See [46, §14], [16].

5 Characteristic classes
5.1 The induction
For a generalized equivariant cohomology theory h−(−) we define the characteristic classes enlarging
the transformation group. For a vector bundle E → X , possibly equivariant with respect to a group G
we define

ch(E) = eh(E ⊗ Cè) ∈ hG×C∗(X) ' hG(X)⊗ hC∗(pt) ,

where Cè is the natural representation of C∗. In this section we only consider two generalized coho-
mology theories: the classical one and K-theory. Then for a line bundle L

cH(L) = è + c1(L)

cK(L) = 1− (èL)−1 .

Setting è = 1 in the first case we obtain the usual notion of the Chern class. For K-theory substituting
è = −y−1 we arrive to λyE∗, which is used to construct motivic Chern classes. (See [18, Rem. 2.4] for
a similar convention.) Suppose f : M → N is a proper map of smooth varieties. We define

ch(f : M → N) = f∗(c
h(TM)) .

For classical homology andK-theory this assignment can be extended toKG(V ar/N )—theGrothendieck
ring of G-varieties over N , see [10, 6].
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Let X oπ ⊂ Xπ be the open B-orbit. If π ·Nwm = Nw and dim(X oπ ) = dim(Ow) then X oπ is mapped
isomorphically to Ow. The orbit X oπ can be described geometrically:

X oπ =
(
Pi1 ×B X oπ′

)
\ g−1

π (p0) .

The effect on characteristic classes is the following:
Theorem 5.1. For x ∈ (hT(pt)) let

Ahi (x) =

(
ch(ti+1t

−1
i )

eh(ti+1t
−1
i )
− 1

)
x+

ch(tit
−1
i+1)

eh(tit
−1
i+1)

si(x) .

Suppose π = (si1 , si2 , . . . , si`), π′ = (si2 , si3 , . . . , si`). Then

ch(X oπ → N )

eh(N )
= Ahi1

(
ch(X oπ′ → N )

eh(N )

)
.

Note that our construction is valid also for the permutations π which are not given by Lemma 3.3.
Proof. We use the additivity relation:

ch
(

(Pi1 ×B X oπ′) \ g−1
π (p0)→ N

)
= ch(Pi1 ×B X oπ′ → N )− ch(g−1

π (p0)→ N )

= ch(Pi1 ×B X oπ′ → N )− ch(X oπ′ → N ) .

We argue as in the proof of Theorem 4.2. We note that

ch
(
Pi1 ×B X oπ′ → N

)
q

= ch(X oπ′ → N )q · ch(TpP1) .

The torus action on the first factor has to be twisted by si if p = p∞. Comparing with the calculation
for fundamental classes we multiply the summands by ch(TpP1)

eh(TpP1)
, not just by 1

eh(TpP1)
.

Remark 5.2. The operator Ahi can also be written as

Ahi (x) = βhi

(
ch(ti+1t

−1
i )

eh(ti+1t
−1
i )

x

)
− x .

For Chern-Schwartz-MacPherson classes we have
Corollary 5.3. Suppose that dim(Ow) = dim(Ow′) + 1 and si ·Nw′ = Nw. Then

cSM(Ow ⊂ N )

e(N )
= Ai

(
cSM(Ow′ ⊂ N )

e(N )

)
,

where
Ai(x) =

1

ti+1 − ti
x+

1 + ti − ti+1

ti − ti+1
si(x) .

Alternatively

Ai(x) = βi

(
1 + ti+1 − ti
ti+1 − ti

x

)
− x = βi (x) + si(x) = −∂i (x) + si(x) .
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For the motivic Chern classes in K-theory
Corollary 5.4. Suppose that dim(Ow) = dim(Ow′) + 1 and si ·Nw′ = Nw. Then

mC(Ow ⊂ N )

eK(N )
= AKi

(
mC(Ow′ ⊂ N )

eK(N )

)
,

where
AKi (x) =

(1 + y)ti/ti+1

1− ti/ti+1
x+

1 + y ti+1/ti
1− ti+1/ti

si(x) .

Alternatively

AKi (x) = βKi

(
1 + y ti/ti+1

1− ti/ti+1
x

)
− x .

The operator Ai has appeared in [5, §5] (denoted by L∨). The K-theoretic version is present in [6]
(denoted by T ∨). In both cases these operators are dual to those computing the classes of the open
orbits.

Similarly as in Proposition 4.2 we find the beginning of the induction.
Proposition 5.5. The class of the minimal orbit of rankm divided by the Euler class is equal

[Owm ]h
eh(N )

=
∏

n−m+i<j≤n

ch(u tit
−1
j )

eh(u tit
−1
j )
·

∏
n−m+i=j≤n

(
ch(u tit

−1
j )

eh(u tit
−1
j )
− 1

)
.

In particular

cSM(Owm ⊂ N )

e(N )
=

∏
n−m+i<j≤n

1 + u+ ti − tj
u+ ti − tj

·
∏

n−m+i=j≤n

1

u+ ti − tj
.

and
mC(Owm ⊂ N )

eK(N )
=

∏
n−m+i<j≤n

1 + y tj/(u ti)

1− tj/(u ti)
·

∏
n−m+i=j≤n

(1 + y) tj/(u ti)

1− tj/(u ti)
.

5.2 Example of computations
Example 5.6. Suppose n = 4, w = (1, 2) (3, 4)

1 2 3 4 Xw =

{0 a b c
0 0 0 d
0 0 0 e
0 0 0 0

 | ad+ be = 0

}
.

Since Nw = s2(Nw2
) we have in cohomology

[Xw] = −e(N ) ∂2

(
1

(t1 − t3 + u)(t1 − t4 + u)(t2 − t4 + u)

)
= e(N )

t1 − t4 + 2u

(t1 − t2 + u)(t1 − t3 + u)(t1 − t4 + u)(t2 − t4 + u)(t3 − t4 + u)
.
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cSM(Ow ⊂ N ) = e(N )A2

(
1 + t1 − t4 + u

(t1 − t3 + u)(t1 − t4 + u)(t2 − t4 + u)

)
= e(N )

(1 + t1 − t4 + u)(t1 − t4 + 2u+ (t1 − t3 + u)(t2 − t4 + u))

(t1 − t2 + u)(t1 − t3 + u)(t1 − t4 + u)(t2 − t4 + u)(t3 − t4 + u)
.

In K-theory we have

[Xw]K = eK(N ) δ2

(
1

(1− t3
ut1

)(1− t4
ut1

)(1− t4
ut2

)

)

= eK(N )
1− t4

u2t1

(1− t2
ut1

)(1− t3
ut1

)(1− t4
ut1

)(1− t4
ut2

)(1− t4
ut3

)
.

mC(Ow ⊂ N ) = eK(N )AK2

(
(1 + y)2 t3

ut1
t4
ut2

(1 + y t4
ut1

)

(1− t3
ut1

)(1− t4
ut1

)(1− t4
ut2

)

)

= eK(N )
(1 + y)2 t4

u2 t1

(
1 + y t4

u t1

)(
1− t2

u t1
+ t2

t3
− t4

u t3
+ y
(
1− t4

u2 t1

))
(1− t2

ut1
)(1− t3

ut1
)(1− t4

ut1
)(1− t4

ut2
)(1− t4

ut3
)

.

Example 5.7. We come back to the Example 3.8: let w = (1, 6) (3, 4) ∈ Inv7, π = s2s6s4s5s6. Then
[Xw] = (−1)5e(N ) · ∂2∂6∂4∂5∂6

(
1

(t1−t6)(t1−t7)(t2−t7)

)
∈ H16

T (N ) ,

cSM(Xw ⊂ N ) = e(N ) ·AH2 AH6 AH4 AH5 AH6
(

1+t1−t7
(t1−t6)(t1−t7)(t2−t7)

)
∈ H∗T(N ) ,

[Xw ⊂ N ]K = eK(N ) · βK2 βK6 βK4 βK5 βK6
(

1
(1−t7/t1)(1−t6/t1)(1−t7/t2)

)
∈ KT(N ) ,

mC(Xw ⊂ N ) = eK(N ) ·AK2 AK6 AK4 AK5 AK6
( (1+y t7/t1)((1+y)t6/t1)((1+y)+t7/t2)

(1−t6/t1)(1−t7/t1)(1−t7/t2)

)
∈ KT(N )[y] .

The results are too long to present them in print, although they are easily obtained by computer.

6 Relation with classical Schubert calculus
Amazingly from the case of square-zero matrices one can deduce formulas for the classes of Schubert
varieties in the classical flag variety GLn /Bn. We explain that relation below.

6.1 From nilpotent orbits to Schubert cells
We consider equivariant cohomology, but a parallel discussion applies to K-theory. The construction
presented in this section is closely related to [23, 22]where an interpretation of the Schubert polynomials
is given. We have the Kirwan surjective map:

κ : H∗Tn×Tn(Hom(Cn,Cn)) −→ H∗Tn(GLn /Bn) . (8)
Classes of the Schubert varieties are images of the classes of Bn×Bn orbits in Hom(Cn,Cn). Further-
more, let us consider the embedding Hom(Cn,Cn) ↪→ Hom(C2n,C2n) as the block matrices

(
0 A
0 0

)
. This

map is B2n-equivariant, given that B2n acts on Hom(Cn,Cn) via the natural surjection B2n � Bn×Bn(
B1 C
0 B2

)
7→ (B1, B2) .
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The Bn×Bn orbits in Hom(Cn,Cn) are mapped to B2n-orbits in Hom(C2n,C2n) which are contained
in the upper-right corner. Therefore the case of 2-nilpotent matrices contains all information about
Schubert classes. It is remarkable that in addition there are involved “boundary” classes corresponding
to degenerate matrices A and “exterior” classes, which are the classes of orbits not contained in the
upper-right corner. This simple observation can be generalized
Proposition 6.1. Consider the embedding of Hom(Ck,Cn) to Hom(Ck+n,Ck+n) as the upper-right block
matrices. Then Bk ×Bn-orbits in Hom(Ck,Cn) are exactly the Bk+n orbits contained in the upper-right block.

The recursive formulas of the previous sections may serve as tools to compute fundamental classes
of the orbit closures, as well as characteristic classes of orbits themselves.

Considering nilpotent orbits has an advantage, which allows us to look at the variables of the
double Schubert polynomial as one set, not divided into equivariant parameters and Chern classes
of the line bundles. From the point of view of square-zero matrices there is no such distinction and
exchanging variables between these groups results transgressing the boundary of the upper-right
block, as explained in the introduction.

6.2 Schubert and Grothendieck polynomials
We consider the upper-triangular square-zero matrices of the size 2n× 2n. In this section we neglect
the additional variable u, since the extended polynomials with this variable can be recovered by a
suitable substitution, provided that we do not apply the operation βn = −∂n.

For the B2n-orbits contained in the upper-right block we recover the class in Hom(Cn,Cn) multiply-
ing [Xw]

e(N ) by the class of the block

e(Hom(Cn,Cn)) =

n∏
i=1

2n∏
j=n+1

(ti − tj)

and then changing variables (to agree later with the Schubert polynomials convention)

t1 = xn , t2 = xn−1 , . . . tn = x1 . (9)

tn+1 = y1 , tn+2 = y2 , . . . t2n = yn . (10)

Let us recall the inductive definition of the double Schubert polynomials [7, Def. 6.1]:

(i) Sπn =
∏

i+j≤n

(xi − yi)

(ii) Sπsi = ∂xi Sπ if `(πsi) > `(π)

Here πn is the longest permutation and the divided difference ∂xi is the standard one

∂xi (f) =
f − fxi↔xi+1

xi − xi+1
.
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In addition the double Schubert polynomials satisfy

(iii) Ssiπ = −∂yi Sπ if `(siπ) > `(π) ,

see [21, Theorem 1.1]. Suppose w ∈ Inv2n is an involution such that Nw is contained in the upper right
block and the rank of Nw is maximal. Then the upper right block is a n× n permutation matrix. Let us
reverse the order of rows. The resulting matrix is the matrix of a permutation π−1

w .
Example 6.2. Let n = 3, w = (1 4)(2 6)(3 5) ∈ Inv6. The resulting permutation is obtained by the
following sequence of operations:

◦◦◦•◦◦◦◦◦◦◦•◦◦◦◦•◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

 7→
[•◦◦◦◦•◦•◦]yx 7→

[◦•◦◦◦••◦◦] 7→
(
πw(1) = 2, πw(2) = 3, πw(3) = 1

)
= s1s2 .

Proposition 6.3. For Xw contained in the upper-right block

e(Hom(Cn,Cn)) · [Xw]

e(N )
= Sπw (11)

after the substitution given by (9–10).

This proposition is not new, see [25, §2, Prop. 2]. We include the proof for completeness.
Proof. First let us note that for a polynomial in t1, t2, . . . , t2n the operations βi for i 6= n commute with
multiplication by e(Hom(Cn,Cn)), since that class is symmetric with respect to the groups of variables
{t1, t2, . . . tn} and {tn+1, tn+2, . . . t2n} separately. Therefore

e(Hom(Cn,Cn)) · βi1 βi2 . . . βi`
(

[Xwn ]
e(N )

)
= βi1 βi2 . . . βi`

(
e(Hom(Cn,Cn)) · [Xwn ]

e(N )

)
.

The induction starts with wn

e(Hom(Cn,Cn)) · [Xwn ]
e(N ) =

∏
i<j

(ti − tj) .

After the change of variables this product is equal to Sπn , i.e. the Schubert polynomial associated to
the longest permutation. The operators βi for i ≤ n become ∂xn−i (in addition βi for i > n become
−∂yi−n). Therefore both sides of the equation (11) satisfy the same recursion.

Applying exactly the same proof we obtain a parallel result for Grothendieck polynomials, confirm-
ing the conclusion of the formula in [47, §5.4].
Proposition 6.4. For Xw contained in the upper-right block

eK(Hom(Cn,Cn)) · [OXw ]

eK(N )
= Gπw (12)

after the substitution given by (9–10).
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Here the Grothendieck polynomial of the longest permutation is equal to

Gπn =
∏

i+j=n

(
1− yj

xi

)
.

To compute Grothendieck polynomials of smaller length permutation we apply he isobaric divided
differences are taken with respect to the variables xi

(∂x,Ki f)(x; y) =
f(. . . , xi, xi+1 . . . ; y)

1− xi+1/xi
+
f(. . . , xi+1, xi . . . ; y)

1− xi/xi+1
,

Gπsi = ∂x,Ki Gπ

according to the convention of [40, §2.1].
Let us come back to the Schubert polynomials. The equivariant variables in the classical convention

are yi’s: H∗Tn(pt) = Z[y1, y2, . . . , yn]. The Kirwan map (8) is multiplicative but the formulas known
from intersection theory of flag varieties do not hold in H∗Tn×Tn(Hom(Cn,Cn)). The boundary terms
contribute to the formulas.
Example 6.5. Consider the case n = 2. Then GL2 /B2 ' P1 and the cohomology ring is isomorphic to

Z[x1, x2, y1, y2]/(x1 + x2 − y1 − y2, x1x2 − y1y2) .

The Kirwan map is the quotient map from Z[x1, x2, y1, y2]. The class of the zero dimensional cell, the
point p0, is equal to x1 − y1. We have

[p0]2 = (y2 − y1)[p0] ∈ H4
T2

(GL2 /B2)

On the level of Hom(C2,C2) we have [Xw2 ] = (t2 − t3) = (x1 − y1) and
[Xw2

]2 = (x1 − y1)2 = (y2 − y1)(x1 − y1) + (x1 − y2)(x1 − y1) = (y2 − y1)[Xw2
] + [X(13)] (13)

since
[X(13)] = (t2 − t3)(t2 − t4) = (x1 − y1)(x1 − y2) .

Graphically we present the relation (13) as[•◦◦•]2 = (y2 − y1)
[•◦◦•]+

[•◦◦◦] .
The Kirwan map sends [Xw2

] to [p0] and the boundary class [X(13)] to zero.
Example 6.6. Let n = 3. The corresponding Bn-orbits in Hom(C3,C3) have the following classes[•◦◦◦•◦◦◦•] = (t3 − t4)(t3 − t5)(t2 − t4),

[•◦◦◦◦•◦•◦] = (t3 − t4)(t2 − t4),
[◦•◦•◦◦◦◦•] = (t3 − t5)(t3 − t4),[◦•◦◦◦••◦◦] = (t2 + t3 − t4 − t5),

[◦◦••◦◦◦•◦] = t3 − t4,
[◦◦•◦•◦•◦◦] = 1 .

After the substitution we obtain the double Schubert polynomials[•◦◦◦•◦◦◦•] = (x1 − y1)(x1 − y2)(x2 − y1) ,
[•◦◦◦◦•◦•◦] = (x1 − y1)(x2 − y1) ,

[◦•◦•◦◦◦◦•] = (x1 − y1)(x1 − y1) ,[◦•◦◦◦••◦◦] = (x1 + x2 − y1 − y2) ,
[◦◦••◦◦◦•◦] = x1 − y1 ,

[◦◦•◦•◦•◦◦] = 1 .
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[•◦◦◦•◦◦◦•] = S321 ,
[•◦◦◦◦•◦•◦] = S231 ,

[◦•◦•◦◦◦◦•] = S312 ,
[◦•◦◦◦••◦◦] = S132 ,

[◦◦••◦◦◦•◦] = S213 ,
[◦◦•◦•◦•◦◦] = S123 .

We do not list all boundary classes except the following example[◦•◦•◦◦◦◦◦] = β4 β5 β4[Xw2
] = β5 β4 β1[Xw2

] = (x1 − y1)(x1 − y2)(x1 − y3) .

The multiplication formulas differ from those for Schubert classes. We have an equality of polynomials[◦◦••◦◦◦•◦] · [•◦◦◦◦•◦•◦] = (y3 − y1)
[•◦◦◦◦•◦•◦]+

[◦•◦•◦◦◦◦◦] .
The class

[◦•◦•◦◦◦◦◦] restricts to zero in the cohomology of flag varieties since it corresponds to the orbit
consisting of degenerate matrices. We will not expand the subject of multiplication in the present
paper.

6.3 Porteous formula
We return to the case of upper-triangular matrices of the size n × n. The following computation
demonstrates a relation between various Schubert classes on the example of rank one matrices. Similar
relations hold for higher ranks.

Suppose w = (i, j). The varietyX(i,j) is contained in the upper-right block of the size i× (n− j+ 1).
Let Ni,j ⊂ N be the vector space of the matrices having zeros outside that block. By Proposition 2.1
the variety X(i,j) ⊂ Ni,j is identified with the set of matrices of the rank ≤ 1. The fundamental class in
Ni,j is described by the Porteous formula, see [20, Theorem 14.4] or [15, 12.4]

[X(i,j)]
T
Ni,j = ∆ i−1

n−j (c
[i,j]
• ) = det

({
c
[i,j]
i−1+r−s

}
1≤r,s≤n−j

)
. (14)

where c[i,j]• is given by
c
[i,j]
• =

∏i
r=1(1 + tr)∏n
s=j(1 + ts)

= 1 + c
[i,j]
1 + c

[i,j]
2 + . . . . (15)

Example 6.7. Consider n = 8 and w = (4, 6) ∈ Inv8. Then by the considerations above we obtain

[Xw]TN4,6
= ∆ 4−1

8−6 (c
[4,6]
• ) = det

(
c3 c4
c2 c3

)
= c23 − c2c4 .

To get rid of the dependence on the ambient space we divide by the Euler class

[X(i,j)]
T

e(N )
=

∆ i−1
n−j (c

[i,j]
• )

e(Ni,j)
, (16)

where the Euler class of Ni,j is given by the formula

e(Ni,j) =

i∏
r=1

n∏
s=j

(tr − ts) .

By Theorem (4.1) applying βi to the class (16) we obtain a relation
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Proposition 6.8. Suppose i+ 1 < j. Then

∆i
n−j(c

[i+1,j]
• )

e(Ni+1,j)
= βi

(
∆ i−1
n−j (c

[i,j]
• )

e(Ni,j)

)

An analogous relation we obtain when we switch the roles of rows and columns. The above
procedure may serve to compute ∆i−1

n−j(c
[i,j]
• ) using various path recursion, not having to compute

virtual Chern classes. For example, if n = 8 and w = (4, 5), then the following two walks from the
north-east corner to (4,5)

1
2
3
4

5 6 7 8

correspond to reduced word expressions β3 β5 β2 β1 β6 β7 and β5 β6 β3 β2 β7 β1.

7 Relation with RTV weight function
In a series of papers, see e.g. [37, 38] Rimányi, Tarasov and Varchenko have studied certain rational
functions, called trigonometric weight functions. Their homological analogue were described in [41]. The
weight functions are the limits of elliptic weight functions which are rational combinations of Jacobi
theta functions. The trigonometric weight functions define elements in K-theory of flag varieties, which
satisfy axioms of the K-theoretic stable envelopes in the sense of Okounkov, [36]. The trigonometric
functions depend on a choice of the Schubert cell and the slope. For a preferred choice of the slope
the trigonometric weight function defines (by certain substitutions of parameters) an element in the
K-theory of the flag variety. This element is equal to the motivic Chern class of the Schubert cell. This
was proven in [18] by verification of the axioms of stable envelopes. The weight function itself remained
mysterious.

Let us discuss the case of the full flag varieties F`(n) = GLn /Bn. We will not give here all the
technical definitions. We just want to point out how one can interpret the recursion obtained in Theorem
5.1. For our purposes it is the most convenient to consider the modified version of the weight function
given in [17], or the limit of the modified elliptic weight function ŵω from [42, §6]. The function
considered by us depends on two sets of variables {γi}1≤i≤n−1 and {zi}1≤i≤n. It is obtained from the
weight function of [17, §5.4] by the substitution α(k)

i = γi for i ≤ k < n. The trigonometric weight
function satisfies the R-matrix relations, which result in the recursion [38, Theorem 3.2, (3.13)] (for the
distinguished slope ∆ = {mk,l ≡ −1})

W∆
saτ (ααα, z) =

1− h−1za+1/za
1− za+1/za

W∆
τ (ααα, sa(z)) + (h−1 − 1)

1

1− za+1/za
W∆
τ (ααα, z) (17)

if `(siτ) > `(τ). After substitution h = −y−1 and reorganizing the second summand we obtain

W̃saτ (γγγ, z) =
1 + yza+1/za
1− za+1/za

W̃τ (γγγ, sa(z)) + (1 + y)
za/za+1

1− za/za+1
W̃τ (γγγ, z) . (18)
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This is exactly the recursion of Corollary 5.4 with the variables ti replaced by zi. Our goal in this section
is to give a topological interpretation of the trigonometric weight function.

We present the flag variety F`(n) as the quotient of the Stiefel variety

Stief(n− 1, n) = {ϕ ∈ Hom(Cn−1,Cn) : ϕ is injective} ,

p : Stief(n− 1, n)→ F`(n) = Stief(n− 1, n)/Bn−1 .

The resulting (Kirwan) map

κ : KTn−1×Tn(Hom(Cn−1,Cn))→ KTn(F`(n))

is surjective. Let γ1, γ2, . . . , γn−1 be the equivariant variables of Tn−1 and let z1, z2, . . . , zn be the
equivariant variables of Tn. According to [17, §8] applied to the quotient Stief(n− 1, n)/Bn−1 for a
Bn−1×Bn orbit O ⊂ Stief(n− 1, n) we have

mC(p(O) ⊂ F`(n)) = κ
(

mC(O ⊂ Hom(Cn−1,Cn))/λy(bn−1)
)
,

where
λy(bn−1) =

∏
i≤j

(
1 + y

γj
γi

)
.

Let us identify the space Hom(Cn−1,Cn) with the subspace ofNn,n−1 ⊂ Hom(C2n−1,C2n−1) consisting
of the a upper-right block matrices. We set

t1 = z1 , t2 = z2 , . . . tn = zn , (19)

tn+1 = γ1 , tn+2 = γ2 , . . . t2n−1 = γn−1 , (20)
and

y = −h−1 . (21)
(The last substitution is already present in [18, 17].) As in §6.2 the Borel orbit classes mC(Ow ⊂
N )/eK(N ) satisfy the recursion of Corollary 5.4. If we restrict our attention to the recursion not
involving γ-variables, i.e. AKi for i < n, we can multiply by eK(Hom(Cn−1,Cn)). Hence

mC(Osiw ⊂ Hom(Cn−1,Cn)) = AKi
(
mC(Ow ⊂ Hom(Cn−1,Cn)

)
.

This is exactly the recursion (18). It remains to compare the motivic Chern class with the weight
function for the minimal orbit:

mC
(
Own−1 ⊂ Hom(Cn−1,Cn)

)
=

n−1∏
1=j

j−1∏
i=1

(1 + y
γj
zi

) · (1 + y)
γj
zj
·

n∏
i=j+1

(1− γj
zi

)

 .

We leave as an exercise to specialize the definition of the weight function (e.g the one given in [17,
§5.4]) and see that

W̃id =
mC(Own−1

⊂ Hom(Cn−1,Cn))∏
i≤j

(
1 + y

γj
γi

) .

By the recursion it follows that
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Corollary 7.1. Let τ ∈ Sn be a permutation and wτ the nilpotent matrix given by the map defined on the
standard basis {εi}i≤2n−1

εi 7→ 0 for 1 ≤ i ≤ n, εn+j 7→ ετ(j) for 1 ≤ j ≤ n− 1 .

Then
W̃τ =

mC(Owτ ⊂ Hom(Cn−1,Cn))

λy(bn−1)

after the substitutions (19–21).

This shows that (up to the factor corresponding to the groupBn−1 bywhichwe divide) themodified
weight function is the motivic Chern class of the nilpotent B2n−1-orbit.
Example 7.2. Following the definition of [17, §5.4] we compute the trigonometric weight function for
the flag variety F`(2):

W̃12 =
γ1

z1
· (1− γ1

z2
), W̃21 = (1 + y

γ1

z2
) · γ1

z2
.

The trivial permutation corresponds to the minimal orbit in N3 of rank 1:

After the substitution (z1, z2, γ1) = (t1, t2, t3) the above class is equal to
(y + 1)−1 mC(O(3,1) ⊂ Hom(C,C2)) .

Here C is given the weight γ1 = t3 and C2 the weights z1 = t1 and z2 = t2. Note that (1 + y) = λy(b1).
For the open orbit in Hom(C1,C2) ⊂ N3

after the substitution h = −y the weight function W̃21 is equal to
(y + 1)−1 mC(O(2,3) ⊂ Hom(C,C2)) .

Example 7.3.

The 0-dimensional cell in F`(3) corresponds to the minimal rank 2 orbit inN5. Following the definition
of [17, §5.4] we find that the weight function is equal to

W̃123 = (1 + y γ2γ1 )−1 γ1γ2
z1z2

(1 + y γ2z1 )(1− γ1
z2

)(1− γ1
z3

)(1− γ2
z3

)

This function can be written as(
(y + 1)2(1 + y γ2γ1 )

)−1 · (1 + y)γ1z1 (1 + y γ2z1 ) · (1− γ1
z2

)(1 + y)γ2z2 · (1−
γ1
z3

)(1− γ2
z3

)

Which is clearly equal to λy(b2)−1 ·mC(Ow2 ⊂ Hom(C2,C3))
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Remark 7.4. The original weight function depends on the parameters{
α

(k)
i

}
i≤k<n and {

zi
}
i≤n ,

while the modified weight function is obtained by the substitution α(k)
i = γi for i ≤ k < n and by the

division by λ−h(
⊕n−1

k=1 glk). Presumably the original weight function is related to the motivic Chern
classes of orbits of

G =

n−1∏
k=1

GLk ×Bn

in the representation space
V =

n⊕
k=2

Hom(Ck−1,Ck) .

It is desirable to write an explicit resolutions of orbit closures and write formulas for characteristic
classes of all orbits of G in V , not only those descending to F`(n). We leave this task for future.
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