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Theory of characteristic classes is intimately connected with the notion of push-forward in coho-
mology theory. We need some basic constructions. We will start with general formalism, but primarily
we are interested in the standard cohomology theory and K-theory. Many seemingly nontrivial theorems
follow from abstract nonsense. The topological spaces we deal with are ,,decent”, they are the complex
algebraic varieties. Technically we can assume that they are of homotopy type of finite CW-complex.

1 Complex-oriented cohomology theories

A generalized cohomology theory is an assignment

pair of topological spaces −→ graded ring .

We can consider Z– or Z2–grading. We assume that cohomology theory satisfies all of Eilenberg-
Steenrod axioms (homotopy invariance, excision, long exact sequence) except the dimension axiom, i.e.
we do not assume anything about h∗(pt).

Let Pn = Pn(C) be the complex projective space of dimension n. The complex orientation (see
[Sto68, p. 61]) is a choice of elements en ∈ h2(Pn) such that 1, en, e

2
n, . . . , e

n
n is a free basis of h∗(Pn)

over the ring coefficient ring h∗(pt). We assume that en+1
n = 0 and en|Pn−1 = en−1. Moreover enn is

the image of a generator of h∗(Pn,Pn−1) ' h∗(S2n, pt) ' h∗−2n(pt) with respect to the natural map
h∗(Pn,Pn−1)→ h∗(Pn). These data allow to define

- c1(L) for a topological line bundles,
- Chern classes,
- push forward for proper maps of complex manifolds (more general: for normally nonsingular

maps).
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1.1 Classical cohomology. The usual choice is en = c1(OPn(1)) ∈ H∗(Pn;Z), but we might have
chosen en = c1(OPn(−1)).

1.2 K-theory. K-group of a compact space (CW-complex) X is defined as the

K0(X) = K(X) = Grothendieck group of isomorphism classes of vector bundles ,

[V1]− [V2] = [W1]− [W2] if V1 ⊕W2 'W1 ⊕ V2 .

Of course K(pt)
dim' Z.

Exercise: K(S1) → K(pt) is an isomorphism, K(P1) ' Z2 is spanned by the trivial line bundle and
the Hopf bundle OP1(−1) a.k.a. the tautological bundle.

The K0-groups extends to the cohomology theory: we set

K̃0(X) = ker
(
K(X)→ K(pt)

)
,

The K-groups of a pair are defined as

K0(X,A) = K̃(X/A) .

The K theory of a pair (X,A) can be presented as a formal difference of two bundles E−F with given
isomorphism E|A ' F|A. Alternative description is via the complexes of vector bundles 0 → E0 →
E1 → . . . En → 0 which are exact on A.

The negative gradations are defined by taking the n-fold topological suspension:

K̃−n(X) := K̃(ΣnX) ,

(n ≥ 0). The K theory in positive gradations is defined by the Bott Periodicity Theorem

K̃(X) ' K̃(Σ2X) .

Precisely, the isomorphism is given by multiplication by the Bott element

β ∈ K̃(Σ(X ∪ {pt}) = K(P1 ×X, {{∞} ×X})

β = OP1 −OP1(−1) ,

which defines the isomorphism

[V ] 7→ β × [V ] = [OP1 � V ]− [OP1(−1)� V ] .

Here OP1 is understood as the trivial 1-dimensional bundle and OP1(−1). To make this definition
correct we note, that (OP1(−1)� V )|{∞}×X and (OP1 � V )|{∞}×X are canonically isomorphic.

The choice of an orientation
en = OPn −OPn(−1)

is motivated by the exact sequence of sheaves

0→ OPn(−1)→ OPn → OH → 0 ,

where H is a hyperplane in Pn.

1.3 Complex bordism theory. We assume that X is compact a C∞-manifold, Ωk(X) is generated
by the maps f : M → X, where M is a C∞-manifold, and the bundle f∗(TX) − TM has a stable
complex structure. Then en = [Pn−1 ↪→ Pn]

1.4 Non-standard orientations in H∗(−;Q). Instead of en = c1(OPn(1)) we can take en :=
f(c1(OPn(1))) where f(x) = x+ a2x

2 + a3x
3 + · · · ∈ Q[[x]] is any power series. An interesting choice is

the Jacobi theta function θτ (x) which depends on the parameter τ ∈ Cim(τ)>0.
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1.5 The first Chern class c1. Each line bundle over a compact space is a pullback of OPn(1) for
some n. The choice of en allows to choose in a coherent way the first Chern class by taking the pull
back from Pn.

1.6 Construction of Chern classes. Let E be a complex vector bundle over X of dimension
n. Let ξ = c1(OP(E)(−1)) ∈ h2(P(E)) then h∗(P(E)) is a free module over h∗(X) (via p∗, where
p : P(E) → X is the projection) with the basis 1, ξ, ξ2, . . . ξn−1. This follows from the Leray-Hirsch
theorem. The Chern classes are defined as the coefficients of the relation

n∑
i=0

(−1)ici(E)ξn−i = 0

and c0(E) = 1. (Note that if E = L is a line bundle, then P(E) = X, ξ = L. The relation is trivial
c1(L)− c1(L) = 0.)

Example: If h∗ = H∗, then the relation (∗) =
∑

(−1)ici(E)ξn−i = 0 is satisfied. It is either the
definition of the Chern classes or it follows from another property:

(∗) = cn
(
Hom(OP(E)(−1), E)

)
.

The Hom-bundle has a section, since OP(E)(−1) ⊂ E is the tautological bundle. The top Chern class
of any bundle with section vanishes.

Example: Let h∗ = K be the K-theory. Then

ξ = c1(OP(E)(−1)) = 1−OP(E)(1) .

The Koszul complex

0→ p∗(ΛnE∗)⊗OP(E)(−n)→ p∗(Λn−1E∗)⊗OP(E)(1− n)→ . . . p∗(Λ1E∗)⊗OP(E)(−1)→ OP(E) → 0

with differentials induced by the contraction

p∗(ΛiE∗)⊗OP(E)(−1)→ p∗(Λi−1E∗)

is exact. Thus after tensoring with OP(E)(n) we obtain the relation∑
(−1)n−i[p∗ΛiE∗ ⊗OP(E)(n− i)] = 0 ,

Since (−1)n−i[OP(E)(n− i)] = (ξ − 1)n−i we have∑
(ξ − 1)n−i[p∗ΛiE∗] = 0 .

Example: Let n = 2:
(ξ − 1)2 + (ξ − 1)E∗ + Λ2E∗ = 0

(1− E∗ + Λ2E∗)− ξ(2− E∗) + ξ2 = 0 ,

Hence
c1(E) = 2− E∗ , c2(E) = 1− E∗ + Λ2E∗ .

For arbitrary n we deduce that formally

ci(E) = ei(δ1, δ2, . . . , δn) ,

provided that E =
⊕n

i Li, δi = 1− L∗i . Here ei is the elementary symmetric function.

Theorem: Let i : Y → X be the inclusion map of smooth complex manifolds of codimension n, then

i∗i∗(α) = cn(νY/X)α .

This statement is well known in H∗(−) or K-theory. In general it follows from the construction
below. The top Chern class is called the Euler class and denoted by eu(−), or euh(−) to remember the
cohomology theory.

Page 3



2019/09/14

1.7 Thom class and Thom isomorphism.

Lemma: The sequence

0→ h∗(P(E ⊕ 1),P(E))→ h∗(P(E ⊕ 1))→ h∗(P(E))→ 0

is exact.

The Thom class of E is the element τ(E) ∈ h∗(E,E \ X)) ' h∗(P(E ⊕ 1),P(E)) which maps to∑
(−1)n−kck(E)ξn−k under the natural map h∗(P(E ⊕ 1),P(E))→ h∗(P(E ⊕ 1)). It has the property,

that restricted to the fiber is a generator τ(E)|Ex ∈ h∗(Ex, Ex \ 0) ' h∗(Cn,Cn \ 0). The multiplication
by τ(E) defines an isomorphism

h∗(X)→ h∗(E,E \X) ,

again by Leray-Hirsch theorem.

The Thom class is natural with respect to pull-back’s and direct sums.

Example: if h∗ is the K-theory then the Thom class of E is given by the Koszul complex p∗(Λ•E∗)
with the differential on p∗(Λk(E∗))v = Λk(E∗)p(v) given by the contraction with v.

1.8 Push forward. The case of inclusion Y ⊂ X: we assume that the normal νX/Y bundle has a
structure of a complex vector bundle. We define the push-forward by the composition of the maps

h∗−2 codimY (Y )
Thom' h∗(νY/X , νY/X \ Y ) ' h∗(Tub(Y ), Tub(Y ) \ Y )→ h∗(X,X \ Y )→ h∗(X) .

Every (at least in topology) proper map of smooth manifolds can be factorized as a composition
Y ↪→ E → X for some complex vector bundle E. The push-forward is defined when the normal bundle
of X has a complex structure:

h∗(Y )→ h∗+dimE−dimY (Tub(Y ), Tub(Y ) \ Y )→ h∗+dimE−dimY (E,E \X)
Thom' h∗+dimX−dimY (X) .

1.9 Generalized Riemann-Roch Theorem. See e.g. [FF16, §42] Suppose that we have a trans-
formation of oriented cohomology theories Θ : k∗ → h∗ in general the push forwards do not match.
Since the push-forwards are defined by the Thom isomorphism, let us check what happens there. Let
τk(E) ∈ k∗(E,E \ X) and τh(E) ∈ h∗(E,E \ X) be the Thom classes. The Thom isomorphism in
k∗ sends α ∈ k∗(X) to τk · p∗(α) where p : E → X. Let TΘ(E) = (Thomh)−1

(
ΘE(τk(E))

)
. The the

following diagram is commutative

k∗(X)

Thomk

��

TΘ(E)·ΘX // h∗(X)

Thomh

��
k∗(E,E \X)

ΘE
// h∗(E,E \X) .

For α = 1 ∈ k∗(X)

1

Thomk

��

// TΘ(E)

Thomh

��

= (Thomh)−1
(
ΘE(τk(E))

)

τk(E) // ΘE(τk(E))

and in general
α

Thomk

��

// TΘ(E) ·ΘX(α)

Thomh

��
τk(E) · p∗α // ΘE(τk(E) · p∗α) = ΘE(τk(E)) · p∗(ΘX(α)).
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1.10 Grothendieck-Riemann-Roch and Hirzebruch-Riemann-Roch. For a complex mani-
fold X we define Td(X) = TΘ(ν(X)) = TΘ(TX)−1 (or Tdθ to underline dependence of Θ), where ν(X)
is the normal bundle1. Let f : Y → X be a holomorphic proper map. Then

k∗(X)

fk∗
��

Td(X)·ΘX // h∗(X)

fh∗
��

k∗(Y )
Td(Y )·ΘY

// h∗(Y ) .

In the special case when X = pt

Θpt(f
k
∗ (α)) = fh∗ (Td(X) ·ΘX(α)) .

Suppose

• k∗ is the K-theory,

• h∗(−) = H∗(−,Q),

• Θ = ch the Chern character, i.e. ch(L) = ec1(L) = 1 + c1(L) + 1
2c1(L)2 + · · ·+ 1

(dimX)!c1(L)dimX ,

• α = [E] the class of a holomorphic vector bundle,

• TdHK(X) = Td(TX), where Td(−) is the multiplicative characteristic class associated to the power
series

x

1− e−x
.

This means that

Td(E ⊕ F ) = Td(E) · Td(F ) , Td(L) =
c1(L)

1− e−c1(L)
,

then the last equality reads

χ(X,E) =

∫
X
Td(TX) · ch(E) .

The point is that the push forward in topological K-theory coincides with the push-forward in the
algebraic K-theory

falg∗ ([E]) =

dimX∑
k=1

(−1)k[Rkf∗(E)] .

Assuming that f is a projective morphism it is enough to check the compatibility of push-forwards for
inclusions of manifolds and for projections in Pn bundles.

2 Algebraic theories

We assume that X is a (complex) algebraic variety

2.1 Algebraic K-theories built from coherent sheaves and locally free sheaves. Consider
the category of coherent sheaves CohX and its full subcategory LocFreeX whose objects are locally free
sheaves. Both are so called exact categories, i.e. there is distinguished a class of short exact sequences.
In that situation we define K-theory as the free group spanned by the isomorphism classes of objects
divided by the relation generated by

[A] + [C] = [B] whenever 0→ A→ B → C → 0 is a short exact sequence.

Then

1The bundle ν(X) satisfies ν(X)⊕TX is a trivial bundle. It always exists in topology provided that X is paracompact
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Kalg(X) := K(LocFreeX) , behaves well with respect to f∗ ,

G(X) := K(CohX) , behaves well with respect to falg∗ :=
∑dimX

k=1 (−1)k[Rkf∗(−)] .

If X is smooth, quasiprojective, then Kalg(X) = G(X), since every sheaf has a finite resolution con-
sisting of locally free sheaves (Hilbert syzygy theorem).

2.2 Chow groups. This is an analogue of homology theory. The group Ak(X) is generated by
algebraic subvarieties of dimension k.

2.3 Comparison. Suppose X is a smooth variety of dimension n. Then there is a class map cl :
Ak(X)→ H2(n−k)(X). If X is singular, then we have a map to Borel-Moore homology HBM

2k (X) which
can be identified with H2k(X̄, ∂X), where X̄ is a compatification (completion) of X and ∂X = X̄ \X,
see §6.1.

2.4 Chern character. If X is smooth, then there is a compatibility

Kalg(X)

chalg

��

forgetting // K(X)

ch
��

A∗(X)⊗Q
cl⊗Q

// H2∗(X;Q) .

2.5 Higher Chow/K-theory. Suppose Y ⊂ X is a smooth subvariety of a smooth variety,
U = X \ Y . It is possible to extend the sequences

Kalg(Y )
i∗ // Kalg(Y )

j∗ // Kalg(U) // 0

Ak(Y )
i∗ // Ak(X)

j∗ // Ak(U) // 0.

The existence of these extensions is important for some proofs, but we will not discuss that.

3 Equivariant complex-oriented cohomology theories

The equivariant cohomology theory is a contravariant functor

(compact group G , pair of G-spaces) 7→ graded commutative ring .

The group G and the space X are assumed to be compact. We assume usual axioms of nonequiva-
riant theory (G-homotopy invariance, excision, long exact sequence). In addition there are natural
isomorphism for a subgroup H ⊂ G and a H-space

h∗G(G×H X) ' h∗H(X) .

In particular
h∗G(G/H) ' h∗H(pt) .

There is given the Thom class τhG ∈ h2 dimE(E,E \X) for any complex G-bundle E. We assume
that the given class is natural with respect to pull-back’s and direct sums. This class allows to define
a push-forward in the equivariant theory.

Remark: comparing with the nonequivariant case we impose existence of the Thom class for any
equivariant vector bundle. One can view the equivariant definition, as a choice of c1 for line bundles.
This would not be enough for general G since we have to care about all equivariant bundles, which
possibly do not split into line bundles.

By functoriality the ring h∗G(X) is an algebra over h∗G(pt).
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3.1 Equivariant K-theory. Construction by Segal [Seg68]. This theory is more natural than
equivariant cohomology, so we present it first. Let V ectGX be the exact category of G-vector bundles on
a compact topological space X. Then the equivariant K-theory of X is defined as the K-theory of that
category.

K0
G(X) = KG(X) = K(V ectGX) .

This category is semisimple, hence the construction in §1.2 applies. The extension of K0 to cohomology
theory is possible due to Thom isomorphism (equivariant Bott periodicity)

K̃G(X) ' KG(E,E \X) ,

given by Koszul complex (see §1.7). Straight from the definition

K0
G(pt) = R(G)

is the representation ring and
K1
G(pt) = K̃0

G(S1) = 0

If G = T = (C∗)n then
KT(pt) = R(T) = Z[t±1

1 , t±1
2 , . . . , t±1

n ] ,

where ti denotes the representation given by the projection on the i-th factor T→ S1 ↪→ C∗ = GL1(C).
Invariantly KT(pt) = Z[T∨] where T∨ denotes the group of characters of T.

Suppose G is a (complex) algebraic group and X is a (complex) algebraic G-variety. Algebraic

K-theory Kalg
G (0) is the K-theory of the exact category of algebraic G-bundles over X.

Theorem: [FRW18] Suppose that GC is a linear algebraic group, G ⊂ GC a maximal compact
subgroup. Let X be a smooth algebraic GC-variety, consisting of a finite number of orbits. Then the
natural forgetting map ι : Kalg

GC
(X)→ K0

G(X) is an isomorphism and K1
G(X) = 0.

3.2 Eqivariant cohomology. If G acts on X freely, then H∗G(X) = H∗(X/G). Otherwise we
substitute X by a homotopy equivalent space on which G acts freely. The formal definition is the
following:

H∗G(X) = H∗(EG×G X) ,

where EG is a contractible G-space with a free G-action. If G = S1 then EG = S∞ ⊂ C∞. The
classifying space BG for G is defined as EG/G. For a torus T = (S1)n we have BT = (P∞)n and
H∗T(pt) = H∗(BT) = Z[x1, x2, . . . , xn], where xi = c1(ξi), ξi = ET×TC→ BT, with T acting on C via
ti. Invariantly: H∗T(pt) = Sym(T∨)

If X is a manifold then it is possible to define equivariant cohomology using de Rham theory. For
G = T = S1

H∗T(M ;R) ' H∗((Ω•X)T, dT) , dT(ω) = dω + ιvω .

where v is the vector filed defined by the circle action, see [AB84].

3.3 Chern character. To define Chern character in equivariant theory we have to complete the
cohomology, since in general EG×G X is of infinite dimension:

chT : KG(X) → Ĥ∗G(X;Q)

[V ] 7→ ch(EG×G V )

For example
chT : KT(pt)→ Ĥ∗T(pt;Q)

is the map
Z[t±1

1 , t±1
2 , . . . , t±1

n ] → Q[[x1, x2, . . . , xn]]

t±1
i 7→ e±xi
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4 Localization

4.1 Abstract localization theorem. Let S ⊂ h2∗
G (pt) be a multiplicative system. Let

XS = {x ∈ X : S ∩ ker(h∗G(pt)→ h∗G(G/Gx)) = ∅} .

Example: Suppose G = T, h∗ = H∗(−,Q), S is generated by h2
T(pt) = Q[t1, t2, . . . tn]1 \ {0}, i.e. by

the nontrivial linear forms (or simply S = H∗T(pt) \ {0}). Then XS = XT.
Proof: If T′ ( T, there exists a character 0 6= f : T→ C∗ such that T′ ⊂ ker(f). Then

f ∈ ker(H2
T(pt)→ ker(H2

T(T/T′)) = ker(T∨ → T′∨) .

Example: G = T, h∗ = K∗, S is generated by (1 − f), where f is a nontrivial character. Then
XS = XT.

Theorem: The restriction map S−1h∗G(X)→ S−1h∗G(XS) is an isomorphism.

Proof. If X = G/H, such that s ∈ S ∩ h∗G(G/H), then S−1h∗G(G/H) = 0. If X is a decent
topological space, (e.g. G-CW-complex), then applying an induction by equivariant cells we have

S−1h∗G(X,X \XS) = 0 .

Finally we use the the long exact sequence argument.

Example: h∗ = H∗(−,Q), G = T = (S1)n+1, X = Pn:

H∗T(Pn) = Q[t0, t1, . . . , tn, h]/(Π(h− ti)) , H∗T((Pn)T) =
n⊕
i=0

Q[t0, t1, . . . , tn] .

The restriction map
f 7→ (f|h→−ti)i=0,1,...n

This is a monomorphism. The image consists of the sequences (gi)i=0,1,...n, such that gi− gj is divisible
by ti − tj . Hence the cokernel of the restriction map is killed by S generated by the monomials ti − tj .

For torus C∗ action on compact algebraic manifolds the localization theorem leads to the conclusion
that

dimH∗(M ;Q) = dimH∗(MT;Q) .

For example for M = P1 we have dimH∗(P1) = dimH∗({0,∞}) = 2. The relation between coho-
mologies of M and MT was studied by Bia lynicki-Birula [BB73]. The decomposition of cohomology
following from the decomposition into BB-cells gives stronger stronger result

Hk(M ;Q) '
⊕
F⊂MT

Hk−2nF (F ;Q) ,

where nF is the dimension of the subbundle of ν(F ) with positive weights of torus action.
The localization theorem is meaningful for G = T. Otherwise, e.g. when G is connected, then

H∗G(pt;Q) → H∗G(G/H;Q) = H∗H(pt;Q) is a monomorphism, provided that H contains the maximal
torus. This follows from the formula

H∗G(X;Q) = H∗T(X;Q)W

where W = NT/T is the Weyl group of G. For S = H∗G(pt) \ {0} and a homogeneous space X = G/P
we have S−1H∗G(G/P ) = 0 which agrees with the fact that (G/P )G = ∅.

4.2 Localization formula. Suppose X is a smooth complex T-manifold. The composition map

h∗T(XT)
i∗→ h∗T(X)

i∗→ h∗T(XT)
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is the multiplication by the eu(νF ) on each component of XT. If we can invert

eu(νXT) = (eu(νF ))F⊂XT ,

then the composition 1
eu(ν

XT ) i
∗ ◦ i∗ is an identity. Then (under some finiteness assumptions) the com-

position i∗ ◦ 1
eu(ν

XT ) i
∗ is the identity as well.

Theorem: If S ⊂ h∗T(pt) contains c1(Cχ) for χ appearing in the normal bundles νF then eu(νXT) is
invertible.

For the proof in the case of Chow groups see [EG98]. This proof generalizes easily to a wider setup.
Theorem is obvious if XT is finite. As a corollary we have:

Theorem: Localization Theorem. For α ∈ h∗T(X)

α =
∑
F⊂XT

iF ∗

(
i∗F (α)

eu(νF )

)
.

The equality holds in the localization of h∗T(X).

Taking the push-forward to the point we obtain classical theorems:

Theorem: Atiyah-Bott-Berline-Vergne. Suppose that X is a compact complex manifold, XT is
finite, α ∈ H∗T(X) ∫

X
α =

∑
p∈XT

α|p

eu(p)

where eu(p) = euH(p) ∈ H∗T(pt) is the product of weights appearing in the tangent representation at p.

Example: X = Pn, α = c1(O(1))k via residues

n∑
i=0

(−xi)k∏
j 6=i(xj − xi)

= (−1)n−k
n∑
i=0

xki∏
j 6=i(xi − xj)

= (−1)n−k
n∑
i=0

Resz=xi
zk∏n

j=0(z − xj)
=

= −(−1)n−kResz=∞
zk∏n

j=0(z − xj)
= (−1)n−kCoeff

[
w−k∏n

j=0(w−1 − xj)
, w, 1

]
=

= (−1)n−kCoeff

[
wn−k∏n

j=0(1− wxj)
, w, 1

]
= (−1)n−kCoeff

[
1∏n

j=0(1− wxj)
, w, k − n

]
=

= (−1)k−n
∑

|I|=k−n+1

xI ,

i.e. the complete symmetric function of degree k − n.

Theorem: Atiyah-Bott, Grothendieck. Suppose that X is a complex manifold, XT is finite,
[E] ∈ KT(X)

χ(X,E) =
∑
p∈XT

Ep
euK(p)

where euK(p) ∈ K∗T(pt) ' Z[t±1
1 , t±1

2 , . . . , t±1
n ] is the product of factors (1− t−w), where w is the weight

appearing in the tangent representation at p.

Example: X = P(V ) = Pn, E = O(k) for k ≥ 0: modifying the previous calculation

χ(Pn;O(k))Ti:=t−1
i

=
∑
|I|=k

T I .

Note that we obtain the character of Symk(V ∗).
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Example: X = Gr(k, n), h∗ = H∗, α = c1(L)k(n−k), where L = O(−1) = Λkγk,n, γk,n is the
tautological bundle: ∫

Gr(k,n)
c1(L)k =

∑
I⊂n |I|=k

(∑
i∈I xi

)k(n−k)∏
i∈I, j∈I∨(xj − xi)

.

Example: In K-theory let us compute χ(Gr(k, n);L∗) of the previous example

χ(Gr(k, n);L∗) =
∑

I⊂n |I|=k

∏
i∈I t

−1
i∏

i∈I, j∈I∨(1− ti
tj

)
.

After simplification the answer is e2(t−1
1 , t−1

2 , t−1
3 , t−1

4 ). Computing further powers of L−1:

χ(Gr(k, n);L−2) = e2 − e1e3

L−1 7→ e2

L−2 7→ e2
2 − e1e3

L−3 7→ e3
2 − 2e1σ3e2 − e4σ2 + e2

3 + e2
1e4

L−4 7→ e4
2 − 3e1σ3e

2
2 − 2e4e

2
2 + 2e2

3e2 + 2e2
1e4e2 + σ2

1e
2
3 + σ2

4 − 2e1e3e4
...

Can you see the pattern?

4.3 Example. Weyl character formula. Let X be the complete flag variety

GLn/B = {0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn | dimVi = i} .

The maximal torus of GLn is acting. The fixed points are indexed by permutations. The K-theoretic
Euler class at σ is equal to

∏
i<j(1 − tσ(i)/tσ(j)). Let E be the line bundle L (λ) := GLn ×B C−λ.

Suppose λ = (λ1 ≥ λ2 ≥ . . . λn ≥ 0), i.e. λ is dominant

∑
σ∈Σn

∏n
i=1 t

−λi
σ(i)∏

i<j(1−
tσ(i)

tσ(j)
)

= χ(V ∗λ ) ,

where Vλ is the simple representation of G with the highest weight λ. by Borel-Weyl-Bott theorem (see
e.g. [FuHa91, §23.3]. For example n = 2, λ = (k, 0):

t−k1

1− t1
t2

+
t−k2

1− t2
t1

=
t−k−1
1

t−1
1 − t

−1
2

+
t−k−1
2

t−1
2 − t

−1
1

=
t−k−1
1 − t−k−1

2

t−1
1 − t

−1
2

= t−k1 + t−k+1
1 t−1

2 + · · ·+ t−k2 .

Setting ti := t−1
i The formula can be transformed to

∑
σ∈Σn

∏n
i=1 t

αi
σ(i)∏

i<j(tσ(i) − tσ(j))
=

∣∣∣∣∣∣∣∣∣
tα1
1 tα2

1 . . . tαn1

tα1
2 tα2

2 . . . tαn2
...
tα1
n tα2

n . . . tαnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
tn−1
1 tn−2

1 . . . 1

tn−1
2 tn−2

2 . . . 1
...

tn−1
n tn−2

n . . . 1

∣∣∣∣∣∣∣∣∣
where αk = λk + n− k.
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4.4 Lefschetz-Riemann-Roch. Relative generalization of AB-BV localization theorem theorem
is the commutativity of the following diagram:

Theorem: [Nie77],[CG97, Thm. 5.11.7] Suppose f : X → Y is a map of complex manifolds.
Then the following diagram diagram is commutative

h∗(X)

f∗
��

resX // S−1h∗(XT)

(f|XT )∗
��

h∗(Y ) resY
// S−1h∗(Y T) ,

where

resX(α) =
i∗(α)

eu(νXT)
=
∑
F⊂XT

i∗F (α)

eu(νF )

and S ⊂ h∗T(pt) is generated by c1(Cw), where w 6= 0.

If Y is a point we obtain the localization of the previous section. One can consider this theorem
as a special case of the Riemann-Roch for (equivariant) generalized cohomology theories:

h∗1(−) := h∗T(−)
i∗−→ h∗2(−) := S−1h∗T((−)T) .

5 GKM

5.1 Formality. We say that a topological G-space X is equivariantly formal (with respect to the
theory h∗) if h∗G(X) is a free module over h∗T(pt).

Theorem: Let G be a compact group, GC its complexification. If X is a smooth, compact algebraic
variety, on which GC acts algebraically, then X is equivariantly formal with respect to H∗(−;Q).

(Similarly for K-theory tensored with Q, see [Um13] for the flag variety case.)
If X is equivariantly formal then h∗T(X) → h∗T(XT) is a monomorphism. The following lemma is

a description of the image.

5.2 Chang-Skjelbred Lemma. Suppose X is equivariantly formal, then the following sequence is
exact

0→ H∗T(X;Q)
i∗→ H∗T(XT;Q)

δ→ H∗+1
T (X1, X

T;Q) ,

where X1 is the union of 0- and 1-dimensional orbits and δ is the differential in the long exact sequence
of the pair (X1, X

T). The statement is equivalent to

im(H∗T(X1;Q)→ H∗T(XT;Q)) = im(H∗T(X;Q)→ H∗T(XT;Q))

or
ker(H∗T(XT;Q)→ H∗+1

T (X1, X
T;Q)) = ker(H∗T(XT;Q)→ H∗+1

T (X,XT;Q)) .

See the proof in [Ful, Lecture 5] for a particular case of GKM spaces. For K-theory see [RK03].

5.3 GKM spaces. Instead of compact torus let now T ' (C∗)n. We assume, that there is a
finite number of fixed points and 1-dimensional orbits. If X is smooth and the tangent characters at
each fixed point are pairwise not proportional then the second condition holds provided that the first
condition holds. The GKM graph is defined as follows

• V vertices=fixed points

• E edges=one dimensional orbits, joining fixed points: from the tail t(e) to head h(e)

• each edge e is labeled by the weight w(e) through which T acts on the corresponding orbits.
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Having such abstract data (V,E,w) we define the GKM algebra as the kernel of the map

A (V,E,w) = ker(
⊕
v∈V

Λ
δ→
⊕
e∈E

Λ/(w(e))) ,

where Λ = H∗T(pt;Q)
δ
(
(gv)v∈V

)
e

= gh(e) − gt(e) .

Theorem: [GKM98] Suppose that X is equivariantly formal, then

H∗T(X;Q) ' A (V,E,w) .

The theorem is a reformulation of the original Chang-Skjelbred Lemma, since we have

H∗+1
T (P1, {0,∞}) = H∗T(C∗) = Λ/(weight),

hence
H∗+1

T (X1, X
T) =

⊕
e∈E

Λ/(w(e)).

The K-theoretic version Λ is replaced by K∗T(pt) = R(T) and

K (V,E,w) = ker(
⊕
v∈V

R(T)Q
δ→
⊕
e∈E

R(T)Q/(1− t−w(e))) .

Theorem: [RK03] Suppose that KT(X)Q is a free R(T)Q-module, then

K∗T(X)Q ' K (V,E,w) .

Geometric interpretation:

Spec(H∗T(X;C)) =
⊔
v∈V

Cn/glued along a configuration of hypersurface .

Here Cn is identified with the Lie algebra t. The (dual of the) restriction map

(i∗)∗ : Spec(H∗T(XT;C))Spec(H∗T(X;C))

is the gluing map ⊔
v∈V

Cn −→
⊔
v∈V

Cn/ ∼ .

Similarly

Spec(KT(X)C)) =
⊔
v∈V

T/glued along a configuration of subtori of codimension 1 .

The map (i∗)∗ is again is the gluing map⊔
v∈V

T −→
⊔
v∈V

Tn/ ∼ .

One can guess, that the similar picture appears for ,,equivariant elliptic cohomology”. There

“Spec”(E``∗T(pt)) = En

for (C∗)n is the product of an elliptic curve E which is an analogy to

Spec(H∗(C∗)n(pt;C)) = Cn , Spec(K(C∗)n(pt)C) = (C∗)n ,

see [Gj94]. The point is that E``∗(C∗)n(pt) itself does not exist, since the expected variety is not affine.
Instead we consider the algebra of sheaf sections over a space glued from the products of an elliptic
curve.
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5.4 Example of the Grassmannian. The associated GKM graph is the following:

• vertices are the subsets A ⊂ {1, 2, . . . , n}, |A| = k.

• the edges: if A1 differs from A2 by one element: A1 = (A1 ∩A2) ∪ {ti1}, A2 = (A1 ∩A2) ∪ {ti2},
then there is an edge A1 → A2 with the label ti2 − ti1 .

For projective algebraic varieties GKM graph has a natural embedding to Rn, where n = dimT, see
the moment map below.

5.5 Moment map without symplectic geometry. Let t be the Lie algebra of the torus T.
Suppose that L is a T-equivariant line bundle over X. There is well defined map µ0 = XT → t∗,

µ0(x) = weight of the T action on Lx .

Example: If X = Pn, µ0([εi]) = ε∗i ∈ t∗R ' Rn+1, where εi is the standard basis vector. This map
extends to

µPn : Pn → Rn+1

µPn([z0 : z1 : · · · : zn]) =

(
|z0|2

|z|2
,
|z1|2

|z|2
, . . . ,

|zn|2

|z|2

)
.

The image is equal to the simplex conv(ε0, ε1, ε2, . . . , εn).
Suppose that L is a T-equivariant very ample bundle. It defines an equivariant embedding

X ↪→ P := P(H0(X;L)) .

Let Tmax be a maximal torus in GL(H0(X;L)), such that the image of T is contained in Tmax. Then
we have a sequence of maps

X ↪→ P µP−→ t∗max −→ t∗ .

The composition is the moment map µX : X → t∗, which can be constructed straight from the
symplectic form ω = (ωFubini−Study)|X by the method of (real) symplectic geometry.

Theorem: Atiyah, Guillemin-Sternberg. If X is a compact manifold, with T-equivariant (very)
ample bundle, then µX(X) = conv(µX(XT)). In particular µX(X) is convex.

The original formulation of this theorem is for real symplectic manifolds with Hamiltonian action
of the compact torus. See [McDSal, §5]. The moment map satisfies 〈dµ(x), λ〉 = ιvλω for x ∈ X, λ ∈ t,
where vλ is a vector field on X generated by λ.

Example: Let µ : Gr(k, n)→ Rn, µ(pI) =
∑

i∈I εi; e.g. for G(2, 4) we have

µ(Gr(2, 4)) = conv{(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)}.

This is the octahedron contained in a hyperplane in R4.

Example: The flag variety can be embedded into the product of projective spaces

Fl(Cn) ↪→
n−1∏
k=1

Gr(k, n) ↪→
n−1∏
k=1

P(ΛkCn) ↪→ P(CN )
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The fixed points of the homogeneous space G/B are in bijection with the Weyl group via the
obvious map

NT/T→ (G/B)T nT 7→ nB .

Proof: if TgB = gB then g−1Tg ⊂ B. In B all tori ale conjugate, so there exists b ∈ B such that
b−1g−1Tgb = T. Hence gb = n ∈ NT and gB = nB. The conclusion follows since NT ∩B = T.

Proof using compact groups: G/B = K/T where K ⊂ G is the maximal compact group, and T ⊂ T is
the compact torus. Then from the general group properties: (K/T )T = NT/T .

Below we give some example of moment polytopes.

The picture for Fl(C4) - permutahedron.

Fl(C4) with a different ample bundle. The picture for Sp3/B.

5.6 Kirwan surjectivity.

Theorem: Let GC be a reductive group. Let M//GC be a smooth GIT quotient of a compact manifold.
Then the natural map H∗G(M ;Q)� H∗(M//G;Q) is surjective.

There exists an equivariant version for a normal subgroup G0 E G manifold:

H∗G(M ;Q)� H∗G/G0
(M//G0;Q)

Example: : Grassmannian of k-dimensional spaces in Cn can be presented as the GIT-quotient.

Gr(k, n) = Mono(Ck,Cn)/GLk = Hom(Ck,Cn)//GLk(C) = P(Hom(Ck,Cn))//PSLk(C) .

The induced homomorphism is surjective

H∗Tn×GLk
(Hom(Ck,Cn))� H∗Tn×GLk

(Mono(Ck,Cn)) = H∗T(Gr(k, n)) ,
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Z[x1, x2, . . . , xn, y1, y2, . . . , yk]
Σk � H∗T(Gr(k, n)) .

We obtain a presentation of H∗T(Gr(k, n)) as

Z[x1, x2, . . . , xn, y1, y2, . . . , yk]
Σk/Ik,n ,

where I is the ideal of functions such that for any {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n}, the substitution
f|{sj :=xij j=1,2,...,k} ∈ Z[x1, x2, . . . , xn] vanishes.

Similarly for the flag variety

FLn = GLn/B
htp∼ GLn/T = End(Cn)//T

H∗T×T(End(Cn)) = Z[x1, x2, . . . , xn, y1, y2, . . . , yn]� H∗T(FLn) ,

The class of the point w0B, where w0 is the longest permutation, is presented by the polynomial∏
i+j≤n

(xi − yj) .

For example for n = 2

x1 − y1 7→ (x1 − x1, x1 − x2) = (0, x1 − x2) = [w0B] .

For n = 3
(x1 − y1)(x1 − y2)(x2 − y1) 7→ (0, 0, 0, 0, 0, (x1 − x2)(x1 − x3)(x2 − x3)) .

(To agree with the previous convention we have to switch xi 7→ −xi)

6 Fundamental classes of singular varieties

6.1 Fundamental classes of algebraic subvarieties in HBM
∗ (−) and in K-theory. If M is a

compact algebraic variety, X a closed subvariety, then X (e.g. after triangulation) can be treated as
a homology cycle, and thus defines the fundamental class [X] ∈ H2 dimX(M). If M is not compact,
then in general X is not compact, and after triangulation we obtain a cycle which is locally finite. The
cohomology group built from locally finite chains is called Borel-Moore homology. If M is smooth, then
canonically

HBM
2 dimX(M) ' H2 codimX(M) .

The cohomology class has the property, that

[X]|M\Sing(X) = i∗(1) , where i : X \ Sing(X) ↪→M \ Sing(X) .

Similarly a G-invariant subvariety defines a class [X] ∈ H2 codimX
G (M). If M is singular, then we would

have to define equivariant Borel-Moore homology, whose construction is quite involving.

6.2 Fundamental class in K-theory. This class seems natural, but for bad singularities we have
several choices: in algebraic K-theory of coherent sheaves take just the class of OX . If the ambient
space M is smooth, then we can replace OX by its locally free resolution, thus defining an element
in Kalg(M). In the equivariant context the locally free resolutions exist as well, hence we have a well

defined element of Kalg
G (M). But here (also in a nonequivariant case) a problem appears. Suppose

f : X̃ → M is a resolution of X then [f∗(OX̃)] in general differs from [OX ]. The equality holds if
X has rational singularities (i.e. f∗OX̃ = OX and higher images vanish). For arbitrary singularities
the class f∗OX̃ (not taking into account the higher images) does not depend on the resolution, but
it is not an ultimate solution. There is another candidate ,,mC0” coming from the work on motivic
classes [BSY10], which will be discussed later in §11.7. It satisfies the additivity condition: whenever
we have a resolution of singularities f : X̃ → X ⊂M and a closed set Y ⊂ X such that f|f−1(X\Y is an
isomorphism to its image, then

mC0(X)−mC0(Y ) = f∗(mC0(X̃)−mC0(f−1(Y )) .
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The above formula allows to compute mC0(X) inductively with respect to the dimension.

If X has rational singularities, then all three notions coincide. The class in the topological K-theory
is defined as an image of [OX ] ∈ Kalg

G (M).

If M = Cn with linear action of the torus, and X is a hypersurface given by a homogeneous
function (with respect of the torus action) of the weight w, then

[OX ] = [OM ]− [OM (−X)] = 1− t−w .

Example: Suppose M = Hom(C2,C2) with T = (C∗)2×(C∗)2, the first factor acts on the source with
the characters s1, s2 and the second factor acts on the target with the characters t1, t2. Let X ⊂M be
the set of linear maps of rank ≤ 1. In local coordinates

X = {x11x22 − x12x21 = 0} .

The character of the equation t1t2
s1s2

. Hence

[OX ] = 1− s1s2

t1t2
∈ KT(M) ' KT(pt) = R(T) = Z[s±1

1 , s±1
2 , t±1

1 , t±1
2 ] .

7 Characteristic classes of Schubert varieties in G/B

7.1 Cohomology and K-theory of G/B as representation spaces of some algebras. Let
πsk = πk : G/B → G/Pk denote the contraction associated to the simple root αk.

Consider the following endomorphism in h∗T(G/B)

• multiplication by a ∈ h∗T(pt),

• multiplication by c∗(Lk) (or by [L∗k] in K-theory),

• Dsk = Dk := π∗kπk∗

These operations generate a reach structure. The resulting algebra was considered e.g. by Lusztig in
[Lu85] in K-theory. Only the case of cohomology and K-theory is considered. In the remaining theories
(with a small exception) the key braid relations are not satisfied. Thus the obtained formulas e.g. for
a candidate for [Σw] would depend on the presentation of x as a reduced word presentation of w.

7.2 Fundamental classes in H∗(−): the nil-Hecke algebra.
According to [BGG73, Dem74] if w = w′sk, `(w) = `(w′) + 1 then the operation βk := π∗k ◦ πk∗ in

cohomology satisfies
βk([Σw′ ]) = [Σw] , βk ◦ βk = 0.

The algebra generated by the operations βk is called the nil-Hecke algebra.

Theorem: The operators βk satisfy the braid relations and βk ◦ βk = 0.

Theorem: [BGG73] The operations βk acting on

H∗(Fl(n)) ' H∗T(End(Cn))/In = Z[x1, x2, . . . , xn]/(e1, e2, . . . , en)

lift to the polynomial ring. The braid and square zero relations are preserved. The formulas do not
depend on n.

The operations

βi(f) =
f(. . . xi, xi+1, . . . )− f(. . . xi+1, xi, . . . , )

xi − xi+1
=

f

xi − xi+1
+

sif

xi+1 − xi
.
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are called the divided difference operators, they are known in algebraic combinatorics. The starting
point is

∏n
i=1 x

n−i
i . For n=3 we have

id x2
1x2

s1 x1x2

s2 x2
1

s2s1 x1 + x2

s1s2 x1

s1s2s1 = s2s1s2 1

In the equivariant version we consider the presentation

H∗T(Fl(n)) ' H∗T×T(End(Cn))/In = Z[x1, x2, . . . , xn, y1, y2, . . . , yn]/In.

The formulas for βi remain the same and do not involve yi. The calculus in equivariant cohomology
gives ,,double Schubert polynomials”. The starting point is

∏n
i+j≤n(xi − yj). For n = 3 we have

id (x1 − y1) (x1 − y2) (x2 − y1)
s1 (x1 − y1) (x2 − y1)
s2 (x1 − y1) (x1 − y2)
s2s1 x1 + x2 − y1 − y2

s1s2 x1 − y1

s1s2s1 = s2s1s2 1

.

Let us identify elements of H∗T(G/B) with their res-image, where

res : H∗T(G/B)→ H∗T(G/B)⊗Q(t) =
⊕
σ∈W

Q(t), α 7→
{

α|σ

euH(Tσ(G/B))

}
σ∈W

.

Here Q(t) is the field of rational functions on t, and euH(−) is the equivariant cohomological Euler class.
The action of the Demazure operations on the right hand side is given by the formula

βk({f•})σ = 1
c1(Lk)σ

(fσ + fσsk).

Here Lk is the line bundle, the relative tangent to the contraction πk : G/B → G/Pk. For G = GLn
we have c1(Lk)σ = xσ(k+1) − xσ(k) (where x1, x2, . . . , xn are the basic weights of T ⊂ GLn).

7.3 Fundamental classes in K-theory. There is an operation, which allows to compute K-
theoretic fundamental class. The resulting polynomials were constructed by Lascoux and Schutzen-
berger, see e.g. [LaSc82, Bu02, RiSz18] and references therein. Similarly let dk = π∗kπk∗ in K-theory.
We have: dk ◦ dk = dk.

Theorem: The operations dk acting on

K(Fl(n)) ' Z[t±1
1 , t±1

2 , . . . , t±1
n ]/Jn

lift to the Laurent polynomial ring. The braid and idempotent relations are preserved. The formulas do
not depend on n.

dk(f) =
zkf(. . . , zk, zk+1, . . . )− zk+1f(. . . , zk+1, zk, . . . )

zk − zk+1
=

f

1− zk+1

zk

+
skf

1− zk
zk+1

.

We obtain the ,,isobaric” divided difference operators from algebraic combinatorics.

There are different distinguished elements of K(G/B), namely ξw = [Σw]− [∂Σw]. They are equal
to the motivic Chern classes mCy=0(Σ◦w ↪→ G/B) considered in §11.7. To compute ξw we modify the
operators dk. Let T 0

k = dk − id. We have

ξw = T 0
k (ξw′) if w = w′sk `(w) = `(w′) + 1 .

Let us note that
T 0
k ◦ T 0

k = −T 0
k

and T 0
k ’s satisfy the braid relation as well.
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7.4 Double Grothendieck polynomials. We have a presentation

K∗T(Fln) = Z[z±1
1 , z±1

2 , . . . , z±1
n , t±1

1 , t±1
2 , . . . , z±1

n ]/J ′n .

Since
FLn = GLn/B

htp∼ GLn/T = End(Cn)//T

the surjection is constructed via Kirwan map:

K∗T×T(End(Cn)) = Z[z±1
1 , z±1

2 , . . . , z±1
n , t±1

1 , t±1
2 , . . . , z±1

n ]� KT(FLn) ⊂
⊕
w∈W

K∗T(pt) ,

f 7→ (f|zi:=tw(i)
)w∈W .

The action of dk lifts to the Laurent polynomial ring (given the by same formula as in nonequivariant
case). The starting point is

f0 =
∏

i+j≤n
(1− zi

tj
) .

Note that for n = 3 the restrictions of f0 are the following:(
{1, 2, 3} {1, 3, 2} {2, 1, 3} {2, 3, 1} {3, 1, 2} {3, 2, 1}

0 0 0 0 0
(

1− t1
t2

)(
1− t1

t3

)(
1− t2

t3

) )

We obtain the class of p321. (To agree with our convention the variables should be inverted. Our
tangent characters at p321 are equal t1

t2
, t1
t3

and t2
t3

, and in the formula for [p321] the inverses should
appear.) We list the Grothendieck in that case

id
(

1− t1
z1

)(
1− t2

z1

)(
1− t1

z2

)
s1

(
1− t1

z1

)(
1− t1

z2

)
s2

(
1− t1

z1

)(
1− t2

z1

)
s2s1 1− t1t2

z1z2
s1s2 1− t1

z1
s1s2s1 = s2s1s2 1

The restrictions to the fixed points are the following:

id s1 s2 s2s1 s1s2 s1s2s1

id 0 0 0 0 0
(

1− t1
t2

)(
1− t1

t3

)(
1− t2

t3

)
s1 0 0 0

(
1− t1

t2

)(
1− t1

t3

)
0

(
1− t1

t2

)(
1− t1

t3

)
s2 0 0 0 0

(
1− t1

t3

)(
1− t2

t3

) (
1− t1

t3

)(
1− t2

t3

)
s2s1 0 1− t2

t3
0 1− t1

t3
1− t2

t3
1− t1

t3
s1s2 0 0 1− t1

t2
1− t1

t2
1− t1

t3
1− t1

t3
w0 1 1 1 1 1 1

In literature the polynomials are indexed by permutations in the reversed order, such that Gid = 1.

7.5 Affine Hecke algebra. The folowing algebra was considered by Lusztig in [Lu85]. He considers
the equivariant K-theory of G/B with respect to the group G× C∗, where the factor C∗ acts trivially
on G/B. Then

KG×C∗(G/B) ' KG(G/B)⊗ Z[q, q−1] ,

where q is the fundamental representation of C∗. Lusztig defines the operations

Ts : KG×C∗(G/B)→ KG×C∗(G/B)

Ts(x) = Ds

(
(1− qΩ1

s)x
)
− x, x ∈ KG×C∗(G/B)
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for each simple reflections s = sk ∈W . Here Ω1
s = L (−αs) is the line bundle of the differentials along

the fiber of πs : G/B → G/Ps. For λ ∈ t∗ the multiplication by L (λ) is denoted by θλ.

Theorem: [Lu85] Let W̃ = tZ oW be the affine Weyl group. (We use multiplicative notation in
tZ = Hom(T,C∗).) The operations Ts and θλ satisfy:

(Ts + 1)(Ts − q) = 0 (1)

TsTtTs · · · = TtTsTt . . . (2)

(number of factors on the both sides is equal to the order of st ∈W ),

θλθλ′ = θλ′θλ (3)

Tsθλ = θλTs = 0 if s(λ) = λ ∈ t∗ , i.e. sλ = λs ∈ W̃ (4)

Tsθs(λ)Ts = qθλ if s(λ) = λ− αs ∈ t∗ , i.e. sλs−1λ−1 = α−1
s ∈ W̃ , (5)

where αs is the simple (positive) root corresponding to the reflection s.

The resulting algebra is called the affine Hecke algebra. We can check the above formulas using
localization formula for T ⊂ G, since KG(G/B) = KT(G/B)W .

Example: Let G = SL2. Lets look how the operation T1 acts on images of the restrictions
KT(P1)[q]→ KT((P1)T) = Z[t±1

1 , t±1
2 , q]⊕ Z[t±1

1 , t±1
2 , q]:

T1(a1, a2) =

(
a1 − a1qt1

t2

1− t1
t2

+
a2 − a2qt2

t1

1− t2
t1

− a1,
a1 − a1qt1

t2

1− t1
t2

+
a2 − a2qt2

t1

1− t2
t1

− a2

)
=(

a1qt1 − a1t1 − a2qt2 + a2t1
t1 − t2

,
−a1qt1 + a1t2 + a2qt2 − a2t2

t2 − t1

)
In [AMSS17] it is shown that the motivic Chern classes of the Schubert cells can be computed

using the dual operations

T∨s (x) = (1− qΩ1
s)Ds(x)− x, x ∈ KG×C∗(G/B)

The operations T∨s satisfy the same relations as the original Lusztig operations Ts.

7.6 Motivic Chern classes.
(The basics about motivic Chern classes are given in the appendix.)

To agree with the standard notation set q = −y. Then

T∨k = (1 + yL−1
k )π∗kπk∗ − id ,

where Lk = L (αk) is the line bundle, the relative tangent to the contraction πk : G/B → G/Pk.
Suppose w = w′sk, `(w) = `(w′) + 1 then

T∨k (mCy(Σ
◦
w′)) = mCy(Σ

◦
w) , (6)

see [AMSS19]. In the local presentation, i.e. after restriction to the fixed points and division by the
K-theoretic Euler class, the operator T∨k takes the form

T∨k ({f•})σ =
(1 + y)(L−1

k )σ

1− (L−1
k )σ

fσ +
1 + y(L−1

k )σ

1− (L−1
k )σ

fσsk .

Here for example, for G = GLn we have (Lk)
−1
σ = tσ(k)/tσ(k+1).

Example: Let G = SL2. Lets look how the operation T1 acts on images of the restrictions
KT(P1)[y]→ KT((P1)T) = (Z[t±1

1 , t±1
2 , y])2 (without division by the Euler class). We have

T∨1

(
1− t1

t2
, 0

)
=

(
(1− q) t1

t2
, 1− qt2

t1

)
.

Since the motivic Chern classes were defined via resolution of singularities, we to show the formula
(6) analyse the Bott-Samelson resolution.
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7.7 CSM-classes: the group ring Z[W ]. A similar result holds for CSM-classes. It is shown in
[AlMi16, AMSS17] that the CSM classes of Schubert cells satisfy the recursion: if w = w′sk, `(w) =
`(w′) + 1 then

Ak(c
sm(Σ◦w′)) = csm(Σ◦w)

where
Ak = (1 + c1(Lk))Dk − id .

In terms of res-images
Ak({f•})σ = 1

c1(Lk)σ
fσ + 1+c1(Lk)σ

c1(Lk)σ
fσsk .

Theorem: [AlMi16, AMSS17] or by straightforward calculation we find that Ak ◦ Ak = id and the
operators Ak satisfy the braid relations.

We obtain a representation of the group ring Z[W ].

8 The end

8.1 Continuation. There are several extensions possible. One choice is to force the Schubert calcu-
lus to other cohomology theories. The elliptic cohomology is of special interest. Other possibility is to
develop theory for the Kac-Moody groups. A lot of work was done for loop groups/affine Grassmanians
by Thomas Lam and his coauthors. See for example [LaSh13].
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[AMSS17] P. Aluffi, L. C. Mihalcea, J. Schürmann, Ch. Su. Shadows of characteristic cycles,
Verma modules, and positivity of Chern-Schwartz-MacPherson classes of Schubert cells,
arXiv:1709.08697
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10 Some exercises

10.1 Compute Kalg
G (pt) for G = B being the group of invertible upper-triangular matrices 2× 2.

10.2 Let S1 act on X = S1 by (ξ, z) 7→ ξnz. Compute KS1(C∗).

10.3 Compute K∗S1(P1) for all possible linear actions.

10.4 Let X be a T-manifold, F ⊂ XT a component of the fixed poit set. Show that eu(νF ) is
invertible in S−1KT(F ), wher S contains the elements (1− t−w) for the weghts appearing in νF .

10.5 Let Gr(k, n) = An−1(k) be the Grassmanian of k-dimensional spaces in V = Cn. Prove that
the tangent vector bundle TGr(k,n) ' Hom(γk,n, V/γk,n) = Q⊗ S.

10.6 Compute χ(Pn;O(k)) by localization formula.

10.7 Compute χ(Gr(2, 4);O(1)) by localization formula.

10.8 Prove χ(Gr(k, n); γ∗k,n) =
∑n

i=1 t
−1
i by localization formula.

10.9 Compute χ(Gr(k, n);TGr(k,n)).

10.10 Show that there are finitely many orbits of the torus action for Grassmannians, complete flag
varieties, and in general for homogeneous spaces G/P .

10.11 Draw GKM graphs and their maps corresponding to the contarctions for B2 = C2 and G2.

10.12 Check the affine Hecke relations for G = SL2.

11 Appendix 1: Characteristic classes of singular varieties

An important one-parameter deformation of the notion of the fundamental class is the equivariant
Chern-Schwartz-MacPherson (CSM, in notation csm(−)) class.

11.1 Constructible functions. The topological Euler characteristic of a complex algebraic variety
satisfies

χtop(X) = χtop(Y ) + χtop(X \ Y )

whenever Y is a closed subvariety of X. Moreover if X is smooth and compact, then

χtop(X) =

∫
X
cdimX(TX) .

The question arises: how to define in a natural way a (co)homology class c(X) which after pushing to
the point would give χtop(X). This question seems to be ambiguous.
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11.2 Question of Grothendieck and Verdier about transformation of functions. Instead
we will be looking for a homology class

c(X) = [X] + lower terms ∈ HBM
∗ (−) .

which behaves well with respect to proper push forwards. To say what it mans, we consider another
object, the constructible functions

F (X) = {φ : X → Z | ∀n ∈ Z φ−1(n) is a constructible set} .

The group F (X) is generated by the characteristic functions 1Y of subvarieties Y ⊂ X. Such functions
behave covariantly. For a map f : X1 → X2 we define

f∗1Y (x) = χ(f−1(x) ∩ Y ) .

Clearly for f : X → pt we have f∗(1X) = χ(X). Grothendieck and Verdier asked if there exist a natural
transformation of functors

c : F (−)→ HBM
∗ (−)

Such that for a smooth variety X
c(1X) = c∗(TX) ∩ [X] . (7)

Here c∗(TX) =
∑dimX

k=0 ck(X) denotes the total Chern class of the tangent bundle. This formula makes
sense only when X is nonsingular. Otherwise there is no good candidate for the tangent bundle2. The
functorial class c (if exists) is unique: Let f : X̃ → X be a resolution. Then

f∗(1X̃) = 1X + something supported by the set of dimension < dimX .

Proceeding inductively we find that if c exists, then it is unique. It exists by the work of Schwartz and
MacPherson and it will be denoted csm.

The question has been positively answered by MacPherson. Later it came out that the classes
constructed by MacPherson coincide with earlier constructed classes of M. H. Schwartz. Now this
class, which can be constructed in several ways, is called Chern-Schwartz-MacPherson classes (CSM)
and denoted by csm.

11.3 Chern-Schwartz-MacPherson: Aluffi approach via logarithmic tangent bundle. Aluffi
have shown that if V ⊂ M is a smooth subvariety (not necessarily closed) then csm can be computed
in the following way: Let f : Y →M be a resolution of Ū , such that f|f−1(U) is an isomorphism on its
image. Let U ′ = f−1(U), D = Y \ U ′. We assume that D is a simple divisor with normal crossings,
D =

⋃
Di. Then

csm1U = f∗(c
sm(U ′)) (8)

csm(U ′) = csm(1Y )−
∑
i

csm(1Di) +
∑
i,j

csm(1Di∩Dj )− . . . . (9)

The later class is the Poincaré dual of the Chern class of the vector bundle Ω1
X(logD)∗, whose associated

sheaf is the sheaf of the vector fields which are tangent to the stratification given by D.

11.4 Generalization: K(V ar/M) instead of constructible functions. Brasselet, Shürmann
and Yokura were searching for the characteristic class, which admit a functorial generalization for
singular varieties. That is, one would like to assume a normalization condition different than (7). It
turns out, that except Chern-Schwartz-MacPherson classes there does not exists anything essentially
different. Instead, it is interesting to consider a very formal object: the Grothendieck group of varieties
over M denoted by K(V ar/M). It is generated by maps Y → X (not just inclusions) and the additive
relations hold

[f : X →M ] = [f|Y : Y →M ] + [f|X\Y : X \ Y →M ]

2In fact there are too many choices and none of them has all expected properties.
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for a closed subvariety Y ⊂ X. It is a highly nontrivial result of Bittner (following from the weak
factorization theorem) that K(V ar/M) is generated by proper maps with smooth domain and the
relations are generated by the blow-up relation

[f : X →M ]− [f|Y : Y →M ] = [f̃ : BlYX →M ]− [f̃|E : E →M ] (10)

for a closed submanifold Y ⊂ X. The corresponding results hold in the equivariant category as well.

11.5 Hirzebruch class constructed by Brasselet-Schurman-Yokura in H∗(−)[y]. Brasselet,
Shürmann and Yokura have constructed a transformation of functors

tdy : K(V ar/M)→ HBM
∗ (M ;Q)[y] ,

where y is indeterminate. The normalization condition is given by

tdy(f : X →M) = f∗(Td(TM) · ch(λyT
∗X) ∩ [X]) ,

where
λy(E) = 1 + yE + y2Λ2E + . . . .

This class is called the Hirzebruch class. For smooth varieties it appears in the Hirzebruch work from
50-ties on topological methods in algebraic geometry, [Hir56]. If M is smooth, then

tdy(idM ) = Tdy(TM) ,

where Tdy(−) is a multiplicative characteristic class such, that for line bundles

Tdy(L) = c1(L)
1 + y e−c1(L)

1− e−c1(L)
.

By Hirzebruch-Riemann-Roch theorem∫
M
Tdy(TM) =

dimM∑
k=0

χ(M ; Ωk
M )yk =

∑
p,q

(−1)qhp,qyp .

This is the Hirzebruch χy-genus. For example

χy(Gr(k, n)) =

(
(qn − 1)(qn − q) . . . (qn − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)

)
q:=−y

.

11.6 Special values: y = −1, 0, 1. For the special value y = 0 we have the Todd class. If y = 1
then we obtain the L-class ∫

M
Tdy=1(TM) = signature(M) .

After the normalization

T̃ dy(L) = c1(L)
1 + e−(y+1)c1(L)

1− e−(y+1)c1(L)

in the limit with y → −1 we obtain the Chern-Schwartz-MacPherson class. That is because

lim
y→−1

x
1 + e−(y+1)x

1− e−(y+1)x
= 1 + x .

11.7 Motivic Chern classes of BSY. Instead of considering the characteristic classes with values
in H∗(X)[y] it is natural to define the classes in K-theory of coherent sheaves, called ,,motivic Chern
class” with the normalization condition

mC(f : X →M) = f∗(λy(Ω
1
X)) ∈ K(M)[y]
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for proper morphism from a smooth domain. The existence of such class can be shown by checking the
blow-up relation (10).

For y = 0 we obtain a candidate for the fundamental class. If X has rational singularities, then

mC0(X ↪→M) = [OX ] .

There can be given a meaning to the variable y. Let y = −h−1. Consider the equivariant K theory
for C∗ action. Let q be the character of the natural representation. Any vector bundle is automatically
C∗-bundle with respect to the scalar multiplication. In that theory consider a characteristic class with
the the normalization condition

mc(idM ) = equivariant K-theoretic Euler class of TM .

Then
mc(idM ) ∈ KC∗(M) = K(M)[h, h−1]

if C∗ acts trivially on M . That class is equal to

mc(idM ) = 1− h−1T ∗M + h−2Λ2T ∗M − · · · ± h−nΛnT ∗M

= 1− h−1Ω1
M + h−2Ω2

M − · · · ± h−nΩn
M

12 Appendix 2: Equivariant classes of singular varieties

12.1 Simplification. For convenience assume that X is contained in (or mapped to) a smooth
ambient space, otherwise we would have to deal with equivariant homology or equivariant K-theory built
from coherent sheaves. For smooth variety M (not necessarily complete) we obtain the transformations:

csmG : FG(M) −→ H∗G(M,Z) ,

(tdy)G : KG(V ar/M) −→ H∗G(M,Q)[y] ,

mCG : KG(V ar/M) −→ K∗G(M)[y] ,

where FG(M) andKG(V ar/M) denote the group of equivariant constructible functions and the Grothendieck
group of equivariant maps. For introduction to equivariant characteristic class see, [Ohm06, Web12,
AMSS17] for CSM-classes, [Web16] for tdy, [FRW18, AMSS19] for mC.

12.2 Fundamental computation. Let M = C with the standard C∗-action. Then

mC tdy csm

C→ C 1 + y t−1 x1+y e−x

1−e−x 1 + x

{0} → C 1− t−1 x x

C∗ → C (1 + y)t−1 x (1+y)e−x

1−e−x 1

This formula allows to compute locally characteristic classes of a resolution.

12.3 Rigidity. The class mC (and hence the remaining ones) has the following property

Theorem: Let G = T, M = pt. Then

mCT(X → pt) = mC(X → pt) .

In other words the equivariant global invariants do not see the group action.
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12.4 Example: Schubert variety Σ1 ⊂ Gr(2, 4). The canonical neighborhood of the point p1,2

in Gr2(C4) is identified with
Hom(span(ε1, ε2), span(ε3, ε4))

and the variety Σ1 intersected with this neighbourhood is identified with

{φ ∈ Hom(C2,C2) : det(φ) = 0} .

The corresponding elements of Σ1 are the planes spanned by the row-vectors of the matrix(
1 0 a b
0 1 c d

)
.

The variety Σ1 is defined by vanishing of the determinant of the 2× 2 matrix

det

(
a b
c d

)
= 0 .

Before performing computations let us draw the Goresky-Kottwitz-MacPherson graph3 ([GKM98,
Th. 7.2]) with the variety Σ1 displayed.

Schubert variety Σ1 in Gr2(C4).

The numbers attached to the edges indicate the weights of the T actions along the one dimensional
orbits. For example at the point p1,3 in the direction towards p1,2 the action is by the character x2−x3.
The variety Σ1 is singular at the point p1,2 and it is smooth at the remaining points. For example at
the point p1,3 the coordinates are (

1 a 0 b
0 c 1 d

)
and the equation of Σ1 is b = 0. For that point the local equivariant Chern class is equal to

(x4 − x1)(1 + x2 − x1)(1 + x2 − x3)(1 + x4 − x3) .

By AB-BV localization theorem we have

5 = χtop(Σ1) =

= res(csm(Σ1))p12 + res(csm(Σ1))p13 + res(csm(Σ1))p14 + res(csm(Σ1))p23 + res(csm(Σ1))p24 (11)

3To avoid intersections, edges in the second picture do not have right directions, i.e. the second picture is not the
image of the moment map.
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The first summand is unknown, while the remaining points are smooth and for example

res(csm(Σ1))p13 =
(x4 − x1)(1 + x2 − x1)(1 + x2 − x3)(1 + x4 − x3)

(x4 − x1)(x2 − x1)(x2 − x3)(x4 − x3)
=

=

(
1 +

1

x2 − x1

)(
1 +

1

x2 − x3

)(
1 +

1

x4 − x3

)
Simplifying the sum (11) we find the formulas for the restrictions of the CSM classes

0 deg = 0
x3 + x4 − x1 − x2 deg = 1
(x3 + x4 − x1 − x2) 2 deg = 2
(x3 + x4 − x1 − x2) (2x1x2 − x3x2 − x4x2 − x1x3 − x1x4 + 2x3x4) deg = 3
(x3 − x1) (x3 − x2) (x4 − x1) (x4 − x2) deg = 4

The computation for mCT(Σ1 → Gr(2, 4)) is similar:

res(mC(Σ1))p13 =

(
1 + y t1t3

)(
1 + y t2t3

)(
1 + y t2t4

)
(

1− t1
t3

)(
1− t2

t3

)(
1− t2

t4

)
and χy(Σ1) = χy(Gr(2, 4))− y4 = 1− y + 2y2 − y3. We obtain using some software

res(mC(Σ1))p12 = y3 t1t2
t3t4

(
1− t1t2

t3t4

)
+ y2

(
t21t

2
2

t23t
2
4

+
t21
t3t4

+
t22
t3t4

+
t1t2
t23

+
t1t2
t24

+ 3
t1t2
t3t4
− 2

t1t2
t3t4

(
t1
t3

+
t1
t4

+
t2
t3

+
t2
t4

))
+ y

(
1− t1t2

t3t4

)(
t1
t3

+
t1
t4

+
t2
t3

+
t2
t4
− t1t2
t3t4

)
+ 1− t1t2

t3t4
.

The coefficient at y0 is equal to 1− t−w, where w = (−1,−1, 1, 1) is the weight of the defining equation
ad−bc = 0, since the weight of the variable a, b, c, d are (−1, 0, 1, 0), (−1, 0, 0, 1), (0,−1, 1, 0), (0,−1, 0, 1).
That is so because Σ1 has rational singularities (as any Schubert variety, by the work of Ramanathan),
hence mC(Σ1)y=0 is equal to [OΣ1 ].

Our goal will be not to compute the particular classes of Schubert varieties, but to find some
structure governing these wild formulas. The solution for Schubert cells in G/B will be presented in
final section in the language of Hecke algebra action.

12.5 Local classes, application of localization theorem. Assume that G = T. To compute
the characteristic classes of open possibly singular variety U ⊂ M we apply the formula (8). Suppose
both MT and Y T are finite. Let p ∈MT be a fixed point. Then

mCT(U →M)|p

euK(p)
=

∑
q∈f−1(p)

mCT(U ′ → Y )|q

euK(q)
.

The quotients
mCT(U ′→Y )|q

euK(q)
are easy to compute. If locally D = {z1 = z2 = · · · = zk = 0}, then

mCT(U ′ → Y )|q

euK(q)
=

k∏
i=1

(1 + y)t−wi

1− t−wi
·

dimY∏
i=k+1

1 + y t−wi

1− t−wi
,

by, §12.2 where wi’s are the weights of torus actions on coordinates at q.
This strategy is be applied to compute the characteristic classes of Schubert varieties in homoge-

neous spaces G/B.
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