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Abstract. We show that the constructive predicate logic with positive
(covariant) quantification is hard for doubly exponential universal time,
i.e., for the class co-2-NEXPTIME. Qur approach is to represent proof-
search as computation of an alternating automaton. The memory of the
automaton is structured in a way that strictly corresponds to scopes of
the binders used in the constructed proof. This provides an application
of automata-theoretic techniques in proof theory.

1 Introduction

Constructive logics are basis for many proof assistants [4,15,19] and theorem
provers [2,16]. Since these tools are actively used for development of verified
software [13,10] and for formalization of mathematics [7,8] it is instructive to
study computational complexity of various fragments of the logics.

One such fragment consists of positive formulas (understood here as formulas
with positive quantification), shown decidable by Mints [14]. As defined there,
a formula is positive when it is classically equivalent to one with a quantifier
prefix of the form V*. If we restrict attention to formulas built with (¥, —) only,
we can equivalently say that a formula ¢ is positive if and only if all occurrences
of V in ¢ are positive, where:

— The position of Vx in Vx ¢ is positive;
— Positive/negative positions in ¢ are positive/negative in Vz ¢ and in ¢ — ¢.
— Positive/negative positions in 1 are respectively negative/positive in ¢ — .

Decision algorithms for formulas of minimal positive logic (and positive formulas
of System F) were given by Dowek and Jiang [5, 6], Rummelhoff [17], and Xue
and Xuan [21].

Despite the modesty of the positive minimal logic, the decision algorithms
given by these proofs are not easy, and the obtained upper bound is not ele-
mentary. This is because each instantiation of an internal universal quantifier
creates a new “local environment” of assumptions, opaque, and separated from
other such environments. With the unbounded depth of quantification, such lo-
cal environments may, in principle, represent arbitrary hereditarily finite sets.
We conjecture that this actually can be done. Unfortunately, our attempt to
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prove the non-elementary lower bound turned out to be incorrect [18] and the
question remains open.

However, as we show below, the inherent complexity (and thus also the ex-
pressive power) of positive quantification is enormous anyway. We prove that
the problem is hard for doubly exponential universal time, i.e., hard for the
class co-2-NEXPTIME. This holds even when only the connectives (V,—) and
unary predicates are used. The result stays in contrast with the situation in
classical logic where the analogous problem of satisfiability for 3*-sentences is
NP-complete [3, Thm. 6.4.3].

The lower bound is obtained by interpreting proof-search in terms of an ap-
propriate automaton. The idea is simple and, we believe, quite universal. When
attempting to construct a proof of a formula ¢, one encounters subproblems of
the form I' F a. We think of « as if it were a state of an automaton and of I" as
of some kind of memory storage. If we restrict attention to long normal proofs
then « is typically an atomic “subformula” of the initial proof goal . The finite
number of atoms in ¢ makes a finite set of states, if one can account for arbitrary
instantiations of individual variables. In our Eden automata (or “expansible tree
automata”) this is handled by a pointer addressing an adequate position in mem-
ory, organized as a tree of knowledge. The tree reflects the structure of instanti-
ated quantifiers and stores “knowledge” about proof assumptions. Computations
of Eden automata correspond directly to proofs (equivalently, A\-terms) and the
tree structure of memory makes it possible to manage the scopes of binders.

Related work Eden automata work on structured data. Simple data structures
in form of flat registers were used in tree automata by Kaminski and Tan [9].
However, there are significant differences between our approach and theirs. Our
automata store binary information in registers while the automata of Kaminski
and Tan store elements of an infinite set. Moreover, our registers are structured
in trees and the access to data is not random, but depends on a location of
a pointer in the tree. As to navigation of the pointer, it makes our model similar
to the tree-walking automata [1]. However, when passing from a father to a child
node, an Eden automaton cannot control which child is taken. What is most
prominent, our automata modify the tree data structure they operate on while
tree walking ones only examine it.

Eden automata store information in monotonic (non-erasing) fashion similar
to that in [20,12]; in addition the access to information resembles the use of
positive queries in [12] (the computation diverges on a negative response). But
in [12] every bit is identified by a fully addressable “relational pointer” while in
our case the access to data is mostly nondeterministic.

Structure of the paper In Section 2 we give some insight into the intricacy of
the problem. Then we introduce Eden automata and define the translation of
automata into formulas. In Section 3 we use examples to explain tools used in
programming Eden automata. The main technical development to encode Turing
Machines as Eden automata is done in Section 4.

Preliminary definitions We take n = {0,...,n} and we define exp,(n) = n and
expyy1(n) = 20%P1(") A tree is a finite partial order (T, <) with a least element
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er € T (the root) and such that every non-root element = € T has exactly one
immediate predecessor (parent). A node x with exactly h proper ancestors in T’
is said to be at depth h, and then we may write |x| = h. The depth of T is the
maximal depth of a node in T. A labeled tree is a function T : dom(T) — L,
where L is a set of labels. We sometimes identify T with dom(T). If L is a set
of m-tuples we may say that the dimension of T is m.

If f is any function then f[z +— a] stands for the function f’ such that
f'(x) = a, and f'(y) = f(y), for y # x. In particular, T[w — s] is a tree
obtained from 7" by replacing the label at w by s.

2 Computational content of positive logic

A naive idea of a decision algorithm is as follows: the only quantifier rule needed
to prove a positive formula is V-introduction. Therefore one essentially deals only
with open proof goals and routine methods are applicable. The complication here
is that one quantifier can be introduced several times in a proof and may require
several different “eigenvariables”. This is demonstrated by the following example.

Ezample 1. Let G1, Ga, QrLoop be nullary! and @ Body () a unary predicate. We
show a formula that represents a simple iteration over its subformulas. Let

o = 5 i QLoop» 6 - vm'(’)/Body (1')) - QLoop

where we use the abbreviations vypoqy(z) = ¢(z) — ¥(z) — H(x) = QBody (),
30(1') = (G1_>QLoop) - QBody(:E); ¢($) =G — (GQ_’QLoop) - QBody(x)J
and ¥(z) = G2—QBody(z). A long normal proof of the formula a (seen as
a lambda-term) must take the shape AX?. X?(\z1 AUV Y. My), with XP: 4,
Ur:o(x1), Vi @ Y(x1), Y1 @ 9(2z1), and My : QBody(x1). The term M; could
begin with either of Uy, V1, Y7 but the use of V; and Y; is impossible due to the
presence of blocking guards Gy, G in their types. So the only workable solution
must be M; = U1 (AZ;: G1. N) with N = XAz AU VaYs. My) : Q Loop- Here,
x2 is a new eigenvariable, and Us : ¢(x2), Vo : ¢(x2), Y2 : ¥(z2). If we look
at the possible shapes of My we find out that it may begin either with Us or
with V5, as G is now available, but cannot begin with Y5, as Gs is not. Observe
that the shortest inhabitant of ov must involve yet another iteration using ¢ and
introducing a variable x3. As a result, it has the form

AXP XP Ao UL VA YL UL (M Zy 2 Gh.
XP (N2 XU2VaYa. VaZi (A Zs : Ga.
XP(Az3\UsVaYs. Y3 Z))))).

This term represents a simple looping over the subformulas ¢(z), ¥ (z), and ¥(z).
With a little more effort one can give examples where a similar loop is executed
four or more times. In general, a proof can involve an unbounded number of
variables. In [5] it is shown how some eigenvariables may be eliminated, because

! Nullary atoms, used for clarity, can be easily replaced by unary ones.
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“equivalent” variables can replace each other. The term “equivalent” is under-
stood as “satisfying the same assumptions”.

The number of necessary non-equivalent eigenvariables is therefore essential
to determine the complexity. A closer analysis of the algorithm in [5] reveals
a super-elementary (tetration) upper bound, in other words the problem belongs
to Grzegorczyk’s class E4.

Indeed, a formula of length n has O(n) different subformulas, so if it only has
one quantifier Vz (like the one in our example) then the number of non-equivalent
copies of z is (in the worst case) exponential in n, as one has to account for
every selection from up to O(n) subformulas including free occurrences of z.
And here the quantifier depth comes into play. Consider a formula of the form
Va (...Vye(x,y)...). For every copy x' of x we now have O(n) subformulas
of p(z',y) and therefore up to exponentially many copies of y introduced as
eigenvariables for Vy o(z’,y). Any set of such eigenvariables may potentially be
created for a given copy of z, and this gives a doubly exponential number of
choices. Two copies of = may be assumed equivalent only when they induce the
same choice, so we get a doubly exponential number of possible non-equivalent
copies of xz. Every next quantifier now increases the number of non-equivalent
eigenvariables exponentially, and this yields the super-elementary upper bound.

2.1 Eden automata

In order to prove the lower bound we introduce an appropriate automata-
theoretic model. An FEden automaton (abbr. Ea) is an alternating computing
device, organizing its memory into a tree of knowledge of bounded depth but po-
tentially unbounded width. The tree initially consists of a single root node and
may grow during machine computation, not exceeding a fixed maximum depth.
The machine can access memory registers at the presently visited node and its
ancestor nodes. This access is limited to using the registers as positive guards:
it can be verified that a flag is up, but checking a flag which is down results in
a failure. Every flag is initially down, but once raised, it so remains forever.
Formally, an Ea is a tuple A = (k,m, M, Q, ¢",7), where:
— k € N is the depth of A;
— M is the finite set of registers; the number m = |M| is the dimension of A.
— @ is the finite set of states, partitioned as Q = |J,; ¢y Q;- In addition, each Q;
splits into disjoint sets Q) and Q7 and we also define Q¥ = J;, @7 and
Q7 = U, @7 States in Q7, Q7 are respectively universal and ezistential.
— ¢" : k — @ assigns the initial state ¢ € Q; to every i € k.
— J is the set of instructions.

Instructions in J awvailable in state q € @Q;,may be of the following kinds:

“

: jmp p”, where p € Q;, and |i — j| < 1;

: check R(h) jmp p”, where p € Q; and h < i;
: set R(h) jmp p”, where p € Q; and h < 3;
:new”’, for i < k.
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Instructions available in ¢ € QY, for any i, must be of kind 1, with j = i. If ¢ € Qp,
in 2 or 3 then we write R instead of R(h). An ID (instantaneous description)
of Ais a triple (¢, T, w ), where ¢ is a state and T is a tree of depth at most k,
labeled with elements of {0,1}™ (i.e. functions from M to {0, 1}), called snakes.
That is, if v is a node of T then T'(v) is a snake, and T(v)(R) € {0,1} for
any register R. When T is known from the context, we write R(v) for T'(v)(R).
A snake can be identified with a binary string of length m, for example 0 stands
for a snake constantly equal to 0. Finally, the component w is a node of T" called
the current apple. We require that ¢ € Q),,|. That is, the internal state always
“knows” the depth of the current apple.

The IDs are classified as ezistential and universal, depending on their states.
The initial ID is (q), Ty, <), where Ty has only one node ¢, the root, labeled
with 0 (all flags are down).

AnID C' = (p,T',w") is a successor of C = (q,T,w), when C’ is a result
of execution of an instruction I € J at C. We now define how this may happen.
Assume that ¢ € Q;, and first consider the simplest case when I = “q : jmp p”.

—If p € Q; then C' = (p,T,w) is the unique result of execution of I at C.
(The machine simply changes its internal state from ¢ to p.)

— If p € Q;_1 then the only possible result is ¢’/ = (p, T, w’), where w’ is the
parent node of w. (The machine moves the apple upward and enters state p.)

— If p € Qi1 then there may be many results of execution of I, namely all
IDs of the form C’ = (p,T,w’), where w’ is any successor of w in T. (The
apple is passed downward to a nondeterministically chosen child w’" of w.)
In case w is a leaf, there is no result (the instruction cannot be executed).

Let now I be of the form 2 and let v € T be the (possibly improper) ancestor
of w such that |v| = h. If register R at v is 1 (i.e., T'(v)(R) = 1) then the only
result of execution of I at C is (p,T,w ). Otherwise there is no result.

If I =“g:set R(h) jmp p” and v is the ancestor of w with |v| = h, then the
only result of execution of I at C'is C' = (p,T',w), where T" is like T, except
that in 7" the register R at node v is set to 1. That is, 7" = T'[v — T'(v)[R — 1]].
Observe that it does not matter whether T'(v)(R) =1 or T'(v)(R) = 0.

The last case is I = “q : new” with ¢ # k. The result of execution of I at C
is unique and has the form ¢’ = (¢, ,,7",w"), where T" is obtained from T' by
adding a new successor node w’ of w, with T"(w’) = 0. (The apple goes to the
new node and the machine enters the appropriate initial state.)

The semantics of Eas is defined in terms of eventually accepting IDs. We say
that an existential ID is eventually accepting when at least one of its successors
is eventually accepting. Dually, a universal ID is eventually accepting when all
its successors are eventually accepting. Finally we say that an automaton is
eventually accepting when its initial ID is eventually accepting.

Note that a universal ID with no successors is eventually accepting. By our
definition this may only happen when no instruction is available in the appro-
priate universal state; such states may therefore be called accepting states.

A computation of an Ea, an alternating machine, should be imagined in the
form of a tree of IDs. Every existential node represents a nondeterministic choice
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and has at most one child. Every universal node has as many children as there are
successor IDs. (In other words, a computation represents a strategy in a game.)
Such a computation is accepting if every branch ends in a universal leaf.

2.2 The encoding

The goal of this section is to encode an Ea with a formula of positive first order
predicate logic in such a way that the automaton is eventually accepting if and
only if the formula is provable. Given an automaton A = (k,m, M,Q,q°, 7),
our formula uses unary predicate symbols ¢ and R, for all ¢ € Q and R € M.
Each individual variable is of the form x; or z}’, where ¢ € k and w is a node in
some tree of knowledge. For a root node ¢, we identify z§ with xo.

Notation: If S is a set of formulas {«1,..., .} then S — (3 abbreviates the
formula oy — -+ — «a, — 0.

Convention: Without loss of generality we can assume that for every i < k
there is only one state ¢ € @; such that the instruction ¢ : new belongs to J.
Indeed, otherwise we can modify the automaton by adding designated “transfer
states” g to ); and adding ¢ : jmp ¢; to J when necessary.

Encoding instructions For every i € k, we define a set of formulas .S;. With
one exception (downward moves) formulas in \S; represent instructions available
in states ¢ € @;, The definition is by backward induction with respect to i.

Universal states: Let q € Q}Z, and let “q : jmp p1”,...,“q : jmp pi” be all the
instructions available in ¢. Then the following formula belongs to .S; :

pr(@i) = - = pr(@i) — q(zi).
Existential states (downward moves): For each instruction of the form “q: jmp p”,
where ¢ € Q;—1 and p € @, the following formula belongs to .S;:
p(xi) — q(zi-1).
In this case the instruction is executed at depth i — 1, but the formula is in S;.

Euistential states (other moves): Let now ¢ € Q3. For each of the following
instructions available in ¢, there is one formula in S;:

— for “q : jmp p”, where p € @, and j € {i, i —1}, the formula is p(z;) — g(=z;).
— for “q : check R(h) jmp p”, the formula is p(x;) — R(zp) — q(x;).

— for “q : set R(h) jmp p”, the formula is (R(zp) — p(z:)) — q(z:).

— for “q : new 7, the formula is Va;11(Siy1 — ¢2q (zit1)) — q(@i).

Note that S; contains only one copy of S;y1 (state q?_H is fixed and by our
convention so is ¢), whence the size of Sy is polynomial in the size of A. Also
note that the quantifier Vz; 1 occurs above at a negative position.
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Encoding IDs: Let now S be a set of formulas, and let w be a node in a tree of
knowledge and ¢ be its depth. For every j < i, replace all occurrences of z; in S
by z¥, where v is an ancestor of w of depth j. The result is denoted by S [w],
and is formally defined by induction with respect to |w|:
S, if w=c¢;
Slw] = {S[v] )| = 2y, ), if wis a child of v.

For a given tree of knowledge T, we define sets of formulas:
Iff = {R(f) |w e T A|w| =i AT(w)(R) = 1};
I =U{Silw] | we T Afw| =i}
Ir=rRfurs.
where S; is as defined above. Note that FV (I'r) = {z¥ |w € T A |w| = i}.

The purpose of this encoding is the following lemma, which states that the
halting problem for Ea is reducible to provability of positive formulas.

Lemma 2. Let A be an Eden automaton. An ID of A of the form (q,T,w)
is eventually accepting if and only if the positive formula I'r — q(z¥), where
i = |wl|, has a proof. In particular, the automaton A is eventually accepting if

and only if + Fﬁo — q3(z0), where Ty is the initial tree of knowledge.

3 Eden programming

In this section we show a number of examples demonstrating the computational
power of Eden automata. Each of these examples contributes a different tech-
nique to be later used in our hardness proof. We explain the behavior of our
automata using quite informal pseudocode “programs” involving for- and while-
loops, auxiliary variables etc. All these constructs can be implemented by actual
automata using e.g. the internal states.

The ,positive only” access to knowledge in an Eden automaton makes it
impossible to verify that a given bit is 0. This can be partly overcome by a simple
trick: use two bits to encode one, 10 for 0 and 01 for 1. This works as long as
one can ensure that the two bits are never set both to 1.

Ezample 3. To be more specific, if we fix 6 registers Lq, Ry, Lo, Ro, L3, R3 then
any word of length 3 can be represented by a snake where exactly one register in
each pair L;, R; is set to 1. For example, 101 is encoded by Ry = L, = Rz =1
andL1:R2:L3:O.

Consider an automaton A of depth 1, with ¢3 = qo, ¢¥ = ¢1, and with the
instructions (where gy € QF, q1,¢2, g3 € QY, and other states are in Q7):

qo : new;

q1 ¢ jmp g’ g2 : jmp q3'; g3 : jmp q3;

1 : jmp g1 g2 : Jmp g5 g3 : jmp q5';

qf :set Li(1) jmp go; qu :set Lo(1) jmp gs; qgf“ :set L3(1) jmp qu;

¢ :set Ri(1) jmp q2; ¢ : set Ro(1) jmp g3; ¢& : set R3(1) jmp q4.



8 Aleksy Schubert, Pawel Urzyczyn, and Daria Walukiewicz-Chrzaszcz

The automaton A starts in the initial ID in state g with a root-only tree of
knowledge. It creates an additional node w, a successor of the root, and enters
state g1 at node w. The procedure from state g; to state g4 constitutes a universal
for loop, informally written as follows:

g1 : for i =1 to 3 do [set L; AND set R;]; goto gs.

The computation of our automaton has 8 branches, each ending in an ID where
the only child of the root represents a word of length 3, different word at every
branch. The apple is at the child node and the machine is in state gq4. a

From now on we assume that our automata have two special registers L
and R. The idea is that, at any node of the tree of knowledge, register L set to 1
identifies the node as the “left” child of its parent, while register R is 1 in the
“right” child. It must be ensured by construction that exactly one of those bits is
set to 1 at every node but the root. The sequence of R’s and L’s read downward
from the root to w makes a location of node w. More precisely: the root has the
empty location, and a child w of node v has location 7L (resp. 7R) when v has
location 7 and L(w) =1 (resp. R(w) = 1).

Our second example demonstrates how an Eden automaton of size O(n) can
construct a tree of knowledge with at least 2™ leaves in which every location of
length n is present.

Ezample 4. This automaton has depth n and uses three registers R, L, and OK.
It builds a full binary tree of knowledge of depth n, and stops when this task is
completed. The automaton is purely nondeterministic: it has no universal states
(except onme final state g,”).

The “program” of the automaton consists essentially of two “subroutines”.
One is executed when the machine is in state ¢¥ (the initial state for depth i),
for 0 < i < n, the other when in state ¢;” € Q;, for 0 < ¢ < n. The computation
begins with the instruction:

q) : new.

The machine creates a new node at level 1 and enters state ¢7. Then, for all

t=1,...,n — 1, we run the first subroutine, informally described as follows:
@Y : Set register L(i) OR if OK (i — 1) then set register R(i);
nev ;

The notation OR represents nondeterministic choice. The instruction new cre-
ates a new node at level i + 1 and the machine enters state ¢}, ;. The bottom
level n is an exception, because it is no longer possible to go down. Thus, af-
ter choosing between L(n) and R(n), the automaton enters state ¢i? and this
activates the iteration of the second subroutine. Below we take 0 < 7 < n:

q2 ¢ Set register L(n) OR if OK(n — 1) then set register R(n);
jmp ¢y

¢ : check R(i) jmp ¢/, OR check L(i) jmp ¢;*;

" . set OK(i); new.
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Recall that the new instruction moves the control of the automaton to the state
q;f1, i.e., calls the first subroutine. State ¢y” is an accepting state (a universal
state with no applicable instructions).

How does it work? The first phase of computation builds the “leftmost path”
of the tree of knowledge (since registers OK are initially zero, there is no other
choice but to set L(i)). At the end of this phase, the current apple is at the only
leaf of the single “leftmost” branch.

Then we begin iterating the main loop, which starts in a node at level n in
state ¢?. The induction hypothesis (loop invariant) is as follows. The ID of the
automaton is of the form (¢“?,T,w) where |w| = n. All nodes above w, except
the root, have exactly one bit R or L set to 1.

Let v < w be the last node with T'(v)(L) = 1. Under these circumstances
the only possible behavior of our machine is to go up to node v and then to
its parent u, and enter state q;wp, where j = |u|. Indeed, the behavior of the
machine in state ¢;” is essentially this:

¢ : If R(i) then go to ¢/, else go to ¢;*%7.

At node u (in state ;") register OK is set to 1, and a new child 2 of u is created.
Then the first procedure is started at node = with ¢ = j 4+ 1. The difference with
the initial use of this procedure is that now OK (i — 1) holds, and the new node
may (but does not have to) be marked as a right node by raising the flag R.
In this case we go down to level n again and create a new leaf, the location of
which is the lexicographic successor of the location of w. Indeed, a suffix of the
form LR... R in the address of w is replaced by RL...L for the new leaf.

It does not have to be the case, and we may obtain a node with a location
ending with the suffix LL ... L. However, in order to successfully terminate, the
computation must eventually enter ¢;” at the root. For this, it must necessarily
create a node with location R™, and this is only possible after building a tree with
at least one leaf for every location. Indeed, by inspecting the graph of transitions
between states, one can show by induction that:

— The only way to reach state g,” is from location R™ visited in state ¢/?;
— State ¢? at location wRL...L is only reachable from state ¢;**” at location m;
— The only way to be in state ¢;*” at location 7 is to get there from location

i
mLR...R visited in state g;”.

That is, to visit any location of length n one must first see the lexicographic
predecessor of that location. Hence all of them must occur. a

A drawback of the above construction is that we cannot guarantee that the
tree T' has exactly one leaf for every location. But it is still possible to ensure
that only one leaf per location is actually used. This is demonstrated by the
next example (also purely nondeterministic). It shows how a tree of knowledge
of depth n can be used to store a word of length 2™ over the alphabet {0,1}.
This requires two additional registers, Z for 0 and J for 1. Locations in {L, R}"
can be read as binary numbers from 0 to 2" — 1, let us write #7 for the number
given by m.
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We say that a tree of knowledge T of depth n encodes a word x € {0,1}?" when:

— For every location m € {L, R}"™ there is exactly one leaf w in T with location 7
such that either J(w) =1 or Z(w) = 1;

— If w has location 7 and 7 = ¢ then J(w) = 1 if the ¢-th symbol in z is 1,
otherwise Z(w) = 1;

— It is never the case that J(w) =1 and Z(w) = 1.

Ezample 5. This is a modification of the machine in Example 4. The machine
behaves exactly as before, until it reaches state gy” at the root. The tree of
knowledge is now fully constructed, and we write data into the registers Z
and J at the leaf nodes, from “left” to ‘“right”. We use new internal states
i pStoP pl° piown ¢ Q. First we go down to a leaf with location L", using

the following instructions (where 0 < i < n):

@’ g pe.
p{**" : check L(i) jmp piity™;
In state pd°“™ we enter the main loop, first choosing between 0 and 1:

pdown . check L(n);[set Z(n) OR set J(n)]; jup p*%;

n—1»
The main loop is a search for a lexicographically next leaf:

p? . check R(i) jmp p'*; OR check L(i) jmp p*P (0 <i<n);

p" w jmp plYy (0<i<n);
p)° : check R(i) jmp piey™ (0 < i< n);

9¢ : check R(i);[set Z(i) OR set J(¢)]; jmp p,” .

n

Observe that the behavior of our automaton is essentially deterministic: making
an incorrect choice leads to a failure. The available transitions between states
enforce the following routine: the apple goes up from a location 7LR...R to 7
and then down to mRL...R. It follows that we visit exactly one leaf node per
location, ending up in state p,” at the root. At this point, the tree of knowledge
encodes a unique word of length 2". ad

The next example puts together the tricks introduced in Examples 3 and 5.

Ezxample 6. Consider an automaton which initially works as in Example 5, but
it creates a tree of knowledge of depth n + 1, rather than n. The set of registers
is now larger too: let M = {L, R, L1, Ry, Lo, Ra, ..., Ln, Ry, J, Z}. At the end of
the initial phase we have two main subtrees encoding two binary words x and y
of length 2" (and the apple is at the root).

The automaton can now verify that these two words are identical, using
universality. It starts 2™ parallel processes by a universal “for” loop:

for i =1 to n do set L;(0) AND set R;(0). (**

Executing the loop creates 2" independent computation branches, each one with
a different choice of n bits in the root snake. This choice indicates a certain
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location m € {L, R}™; let us suppose that {7 = £. The goal to be achieved now
is to verify that the ¢-th symbol of x and y is the same. (Remember that for
every ¢ we have a dedicated branch of computation.)

The automaton first guesses the bit in question and stores it using one of
the registers J, Z, at the root snake. Then it goes down into the left subtree
and reaches a leaf addressed by L. This requires a sequence of nondeterministic
steps but the result of such nondeterminism is fully determined. Upon getting
there, the machine verifies that the same register, say J, is true at the present
leaf and at the root. Then it goes back to the root and repeats the same effort
to get down to Rm. It remains to check the appropriate bit there.

The above procedure terminates successfully if and only if all the 2™ processes
correctly verify the information at the corresponding leaves of the two subtrees.

Observe that the universal verification routine cannot be replaced by a se-
quential one (comparing the corresponding nodes pair after pair), because the
location u has to be remembered and the space it occupies at the root cannot
be re-used.

A binary word of length 2" can be seen as a number between 0 and 22" — 1.
Our next exercise is to verify the successor relation on such numbers (the lexi-
cographic successor on words).

Ezample 7. We modify the automaton of Example 6 so that it can verify that
the word y encoded by the right subtree is the lexicographic successor of the
word z encoded by the left subtree. It happens when y = v10* and 2 = v01F,
for some v and k. We adjust the for loop (**) using the virtual variable position
(implementable using internal states).

position := Middle;
for i = 1 to n do if position = Middle then
((set L;(0); position := Left) AND set R;(0))
OR
((set L;(0) AND (set R;(0); position := Right)))
else (set L;(0) AND set R;(0)).

As in Example 6, the loop initiates 2" independent processes, each corresponding
to a different location of a leaf in a binary tree of depth n. In exactly one of
these processes, the value of position is Middle. This process identifies a certain
location 7; processes representing leaves to the left of 7 have position equal to
Left, to the right of m we have position = Right. Each of the processes now checks
the corresponding bits in  and y at w. Depending on position, we expect:

— equal bits in case of Left;
— 0in z, and 1 in y, in case of Middle;
— lin z, and 0 in ¥, in case of Right. a

At this point the reader should find it obvious that similar procedures can be
defined to verify various relations between words encoded as immediate subtrees
of the root of a given tree of knowledge. An easy exercise is to check that a given
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word consist of only zeros or only ones. A more involved one can be as follows:
given three subtrees encoding numbers my, meo, ms, respectively, assume that
the root of each of those subtrees has exactly one among registers Cy, ..., C, set
to 1, say Cp, = 1 at the root of m;. For a given function F': r — r, verify the
equations mg = mq + 1, mg = mo + 1 and that vs = F (v, v9).

The following is our most complicated example, revealing the main idea of
the proof of Theorem 10. It shows how to create and verify a tree of knowledge
with (at least) doubly exponential branching at the root.

Ezxample 8. We define an automaton of depth n 4+ 1 and dimension 2n + 7. The
intended meaning of the snake components is as follows:

— The first two bits encode (as usual) the relative position of every node with
respect to its predecessor.

— The next two bits encode a 0 or 1 so that subtrees of depth n may represent
words of length 2" (as in Example 6).

— Three bits represent three “markers” Ready, New, and Old.

— The remaining 2n bits are used for comparing two subtrees of depth n, as
in Example 7.

The following “program” informally defines the behavior of the automaton. The
instruction “construct a word x” abbreviates a procedure as in Example 5: a
subtree of depth n, representing a word z, is constructed. Observe that at the
end of this procedure the apple is at the root of the newly defined word.

Create a new child of the root and descend there;
Nondeterministically construct a word x of length 2;
Go to4 OR go to 5;

Verify that 2 = 0; go to 12;

Goto 6 AND go to 12;

Mark top of z as New;

Go up; descend to the root of some other word z/;
Check that the top of 2’ is marked as Ready;
Mark the top of 2’ as Old;

10. Verify that z is the successor of z’;

11. Accept.

12. Mark top of = as Ready;

13. Go to 14 OR go to 15;

14. Go up; go to 1;

15. Verify that z = I;

16. Accept.

PN Uk W

©

Our automaton runs in a loop and creates a certain number of immediate sub-
trees of the root, each representing a word of length 2™. This happens in step 1.
The purpose of the remaining steps is to make sure that all words of length 2"
will eventually be created (possibly with repetitions). Execution of the loop body
is therefore successful only if:
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— either the new word z consists of only zeros, or:

— the lexicographic predecessor of z is already present.

We use alternation to verify that a newly generated word satisfies one of the two
conditions. In step 3 the machine guesses which of the two cases holds. In the first
case, the equality x = 0is immediately verified in step 4, like in Example 6. This
phase begins and ends at the root of x, and when it is successfully completed,
the top of = is marked as Ready.

In the second case the situation is a little more complex. In step 5 the com-
putation splits into two branches. The main branch proceeds (fingers crossed)
directly to step 12, the other verifies if the guess was correct. The whole compu-
tation is therefore accepting only if the auxiliary branch can successfully reach
step 11.

The verification makes an essential use of the register Ready which is now
set to 1 at the top of every “old” word but not at the root of x. Thus, in step 8,
we can make sure that the root of 2’ is not the same as the root of . (That is
why this step must be done right after x is created.) In step 10 the automaton
executes a routine similar to that in Example 7: the markers Old and New allow
the automaton to identify trees = and 2’ without confusion. This works because
a separate branch of the universal procedure is devoted to any pair of trees being
compared, and in every such branch exactly one tree is marked Old and exactly
one is marked as New.

The loop may be exited in step 13, when = = 1. This must be verified in
step 15. Note that (as in case of step 4) there is no need for an auxiliary branch
of computation, because the apple is at top of x.

Upon a successful completion of the above procedure, the root of the tree
has at least 22" children, each being a root of a full binary tree of depth n. This
is because we must go from 00...0 to 11...1 and verify each successor step.

The bad news is that there may be more than 22" children, and some binary
words are encoded several times (by unnecessarily repeating the same sequences
of guesses in Step 1). It seems that we have no way to prevent such repetitions.

4 Hardness for co-2-NEXPTIME

The class co-2-NEXPTIME consists of languages recognized by alternating Turing
machines, as defined e.g. in [11], but exhibiting purely universal behavior (all
states are universal “and’-states)? and working in doubly exponential time.

A configuration of such a machine is considered eventually accepting when
it is either a final configuration (with an accepting state) or all its successor
configurations are eventually accepting. A computation can be seen as a tree of
configurations, and it is accepting iff all branches end with final configurations.
Note that, for a given input word, there is ezactly one computation, although it
may consist of many branches.

2 We avoid introducing a name for such machines: the most adequate one, “universal
TM”, has already a well-established, and quite different, meaning.
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Our hardness proof is by a direct coding of such a machine, let us therefore fix
a machine M and an input word ag...a,,_1. For convenience we assume that M
admits exactly two transitions for every state and every scanned symbol, i.e.,
that the transitions of M are defined by a function

§:(QxX)— (Qx X x{~1,0,+1})2,

where @ is the the set of states and X is the machine alphabet, including the
input symbols and a blank. For each ¢,z, and each “direction” d € {1,2}, we
refer to m4(6(q, z)) as to the d-th choice for q,x. That is, computations of our
machine are binary trees.

We assume that the machine works on a single tape, infinite to the right,
and that it never attempts to move left when scanning the leftmost tape cell.
We also assume that the number of configurations on every computation path
is exactly 22". It is a routine exercise in the padding technique to see that the
halting problem for such machines is co-2-NEXPTIME-complete.

We construct an Eden automaton A of depth n+2 to simulate M. The width
of A is n 4 ¢, where ¢ is a constant large enough to provide registers to encode
tape symbols, states, and a few “markers” like Ready, New, etc.; the meaning of
those will be explained later. Then n + 1 registers are used to identify locations
of leaves as in Examples 6 and 7.

Let max = 2" — 1. A node w in a tree of knowledge has address (¢, p) when:

— 0<t,p<max;
— Node w is a root of a subtree T' of depth n + 1;
— The subtree T encodes the binary word t-p of length 2™ + 2.

The snake at any node w can represent an element of the set X'U (Q x X), called
a value of w. Yet another pair of bits Dy, D5 is used to store a number 1 or 2,
called direction at w.

The intended meaning of an address (t,p) and a value a is to represent the
contents of tape cell p after ¢ steps of computation of M. Of course we mean t
steps along a certain branch of a computation, because the machine is alternat-
ing. The direction d = 1, 2, indicates that the ¢-th step was executed according
to the d-th choice.

The idea is to write a history of a (single branch of) computation as a tree
of knowledge of depth n + 2, where each immediate subtree of the root encodes
an address, has a value, and a direction. This must be done in a coherent way:
for any fixed t, the direction at every address (¢,p) must be the same, and if
any (t,p) occurs twice, the associated values must be equal. And of course, the
collected data should correspond to an actual computation branch. This can be
verified locally: indeed, the contents of tape cell p in time ¢t+1 is fully determined
by the direction used and the contents of at most three tape cells at time ¢.

It is useful to make this precise. We define a relation C° between addresses
so that (t—1,p—1),(t —1,p),(t — 1,p+ 1) = (¢,p), and we take C to be the
reflexive and transitive closure of C°. Clearly, C is a well-founded partial order.

The algorithm of A, written in pseudocode, is given below. Recall that the
machine starts in a root-only tree.
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We explain the abbreviations used in the pseudocode. The main loop begins in
step 1 when the apple is at the root. The machine creates a new child w of
the root and executes a procedure similar to Example 5 to create a subtree of
depth n+ 1 rooted at w. Leaves of the subtree are used to encode the word ¢ - p,
i.e. the address (t,p). The instruction “Check that...”, occurring e.g. in step 3,
abbreviates a procedure verifying the address associated to the current apple w.
This phase begins and ends at w. The phrase “set value” means “set the appro-
priate register at w, and similarly for the direction. If not stated otherwise, the
value and direction are set nondeterministically (but in steps 3-5 the nondeter-
ministic guess must be verified).

The universal step 7 divides the computation into three branches. One pro-
ceeds directly to step 22 (end of the loop body), the two others verify the cor-
rectness of the guess. In step 8 a node with address (¢,0) is identified and the
direction d is checked. (It is expected that all nodes referring to time ¢ should
have the same direction.)

7

The meaning of “Compare...”, as e.g. in step 9, is as follows: the value at
position (¢, p) should be determined by the direction at (¢, p) and the values at the
positions which are immediate predecessors of (¢, p) with respect to relation C.
This can be verified using the technique developed in Example 7. Each of the
steps 9, 13, and 21 requires a separate computation branch.

Create a new subtree with address (¢, p);
Goto 3 OR4 OR 5 OR 6 OR 10 OR 14;
Check that t = p = 0; set value (go,ap); go to 22.
Check that ¢ =0 and 0 < p < n; set value a,; go to 22.
Check that t = 0 and n < p < max; set value blank; go to 22.
Check that t > 0 and 0 < p < max; set value a and direction d;
Go to 8 AND goto 9 AND goto 22;
Verify that (¢,0) has direction d; accept.
9. Compare with (t—1,p—1), (t—1,p), (t—1,p+1) for the d-th choice; accept.
10. Check that ¢t > 0 and p = max; set value a and direction d;
11. Go to 12 AND goto 13 AND goto 22;
12. Verify that (¢,0) has direction d; accept.
13. Compare with (¢t — 1, max —1), (¢ — 1, max) for the d-th choice; accept.
14. Check that t > 0 and p = 0;
15. Go to 16 AND goto 19;
16. Set value a and direction 1;
17. Go to 18 AND goto 22;
18. Compare with (¢ — 1,0), (¢t — 1,1) for the 1-st choice; accept.
19. Set value a and direction 2;
20. Go to 21 AND goto 22;
21. Compare with (¢t —1,0), (¢ — 1,1) for the 2-nd choice; accept.
22. Go to 23 OR goto 24,
23. Set Ready; go up; go to 1.
24. Check that the current value is (gr, a); accept.

PN o W=
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The main loop works as follows: Starting from a fresh child w of the root, a new
tree T of depth n+ 1, rooted at w, is created in step 1, together with a nondeter-
ministically assigned address (¢,p). If ¢ = 0 then the value at w is set according
to the initial configuration (steps 3-5). For ¢,p # 0, a value and direction is set
nondeterministically in step 6 or 10; the latter must be the same as the direction
associated with (¢,0), cf. step 8. Then the correctness of the value is established
by verifying the values at two or three other nodes (steps 9, 13). When ¢ > 0 and
p = 0 the computation is split into two in step 15: one branch uses direction 1,
the other uses direction 2. The iteration terminates in step 24 when a “final”
value is discovered.

To make the above construction a little more precise let us say that a tree of
knowledge T is adequate when:

— It consists of the root and a non-zero number of subtrees of depth n + 1,
each with an address (t,p) and a value;

— Every immediate subtree of the root with ¢ > 0 has also a direction;

— All but one are marked as Ready and their values are not of the form (¢, a);

— For every t, p, p/, if the addresses (¢,p) and (¢,p’) occur in T then they have
the same direction;

— Every pair of nodes of the same address have the same value;

— The set of addresses occurring in the tree is downward closed with respect
to the relation C.

An adequate tree defines a partial function Fpr from addresses to values, and
a partial function G from addresses to directions. Let maxy stands for the
largest ¢ such that an address of the form (¢,p) is in 7.

Obviously, every computation branch B of TM defines a partial function Fig
from addresses to values, and a partial function G g from addresses to directions.
Let maxp > 0 be the number of machine steps along B.

We say that T is adequate for B, when maxr = maxpg, Fr C Fp, and
G7 C Gp. Note that we do not require equality of the functions; the tree does
not have to contain all relevant addresses.

An ID of A is adequate (for B) when the tree of knowledge is adequate
(for B), the apple is at the only child of the root not marked as Ready, and the
machine enters step 22.

Lemma 9. Assume that C is an ID of A adequate for a branch B ending in
a configuration A of TM. Then A is eventually accepting if and only if so is C.

Proof. The proof from left to right is an easy induction with respect to two
parameters: (1) the size of an accepting TM computation starting at A, and
(2) the cardinality of the difference Dom(Fg) — Dom(Fr).

If the value at the current apple is (g, a) then A may accept immediately.
Otherwise, if the second parameter is not zero, then there are addresses not yet
present in C. Let (¢,p) be a minimal such address with respect to C; then we
have t < maxp. By a single iteration of the main loop (making only correct
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choices) the automaton can add a new subtree with address (¢,p) and the ap-
propriate value and direction. This reduces the second parameter by one, while
the inclusions Fr» C Fg and G C Gp still hold for the expanded tree T".
Otherwise all addresses (maxpg,p) are already present in 7. The automaton .4
can now correctly guess the address (maxp+1,0) and divide its computation
into two branches. The IDs commencing the two branches are adequate for the
two successor configurations of A.

From right to left we go by induction with respect to the size of the accept-
ing computation of A. The base case is when A goes right away to step 24 and
accepts. This means that A is an accepting configuration. Otherwise every iter-
ation of the main loop introduces a new address. There is no problem with new
addresses (¢,p) when ¢t = 0 or p # 0; it is clear that an accepting computation
of A must correctly guess the value and direction, so that the next time step 22
is executed in an ID which is adequate for the same branch B.

If p = 0 then the computation splits into two, and if the address (t,0) is
generated for the first time then ¢ = maxy +1. Indeed, the address (¢,0) must
be created before any other (¢,p) is created, due to step 8. This step exactly
corresponds to the branching of the TM. That is, we obtain two IDs adequate
for the two extensions of branch B, and we can apply the induction hypothesis
to the two new ID’s.

Otherwise, the address (¢,0) is already present at the moment of the split.
Suppose the direction associated to (¢,0) (and all other addresses (¢,p)) is 1. Now
a subtree with address (¢,0) is added to both the new IDs. In one of them the
direction is set to 1, in the other it is set to 2. The latter is not adequate, because
the directions at (t,0) are inconsistent. But the former is adequate for B, as all
the nodes with address (¢,0) have the same direction 1. We apply induction to
this ID. ad

Theorem 10. The problem to decide if a given positive first-order formula is
constructively provable is hard for universal doubly-exponential time.

Proof. To show correctness of the simulation one uses Lemma, 9 for the initial ID
with the empty set of addresses.

Conclusion

We have shown that the “positive” fragment of first-order intuitionistic logic
is co-2-NEXPTIME-hard. The question of a matching upper bound remains an
obvious target for the future work.

A related issue is the complexity of other classes of the Mints hierarchy,
where we classify a formula according to the quantifier prefix it would obtain if
classically normalized. This is a subject of a forthcoming paper.

Our approach has yet another aspect not developed in this paper. Consider
an accepting computation tree of an Ea. This tree morally reflects the shape
of a long normal proof of the formula corresponding to the automaton. In this
respect we can see our automata as tree acceptors and this suggests a natural
method to develop proof theory.
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