A self-dependency constraint in the simply
typed lambda calculus

Aleksy Schubert*

Institute of Informatics
Warsaw University
ul. Banacha 2
02-097 Warsaw
Poland

Abstract. We consider terms of simply typed lambda calculus in which
copy of a subterm may not be inserted to the argument of itself during
the reduction. The terms form wide class which includes linear terms.
We show that corresponding variant of the dual interpolation problem
i.e. problem in which all expressions can be restricted to terms of this
kind. Thus the model for this kind of expressions can admit fully abstract
semantics.

Classification: semantics, logic in computer science.

1 Introduction

The higher-order matching problem (HOM) consists in solving certain equations
in the simply typed A-calculus. The equations have the form M = N where the
unknowns occur only in the term M. HOM is a restricted version of the higher-
order unification problem (HOU) which has several applications in the field of
automated theorem proving. Unfortunately, the higher-order unification problem
has been proved undecidable [Gol81]. Despite this sad result HOU has attracted
a significant attention and is used as a tool in automated theorem proving (e.g. in
Isabelle [Pau89]) and higher-order logic programming (e.g. in A-Prolog [MN88]).
As a special case of HOU the higher-order matching problem can be applied in
various situations in these areas (see e.g. [Har96]).

The higher-order matching problem has also connections with semantics of
the simply typed A-calculus [Sta82]. It is strongly connected with the problem of
A-definability. The problem of A-definability is to decide whether a given function
from some function space over a finite base can be defined by a A-term. The
problem of A-definability is undecidable which corresponds to the fact that there
is no way to precisely describe a fully-abstract model for the simply typed A-
calculus [Loa01]. The higher-order matching problem defines a stronger notion of
definability for which it is not known if it is decidable. Semantical investigations
in simply typed lambda calculus have some practical impact as they are strongly
connected to the area of program transformations (see e.g. [dMSO01]).

* This work was partly supported by KBN grant 7 T11C 028 20; part of the work was
conducted while the author was a winner of the fellowship of The Foundation for
Polish Science (FNP).

The higher-order matching problem has a long history. The problem was
posed by G. Huet in his PhD thesis [Hue76]. It was considered in some older pa-
pers ([Wol89,Bax76]), but it gained more attention in the last years. V. Padovani
presented a new approach to higher-order matching. He proved that higher-order
matching is decidable without restriction on the order but with a restriction on
the term N — it must be a single constant of a base type [Pad95a]. In addition,
R. Loader presented [Loa] the undecidability of unrestricted higher-order match-
ing, but for S-equality (the standard formulation requires Sn-equality). This was
supplemented by results that take into account restrictions on domains of solu-
tions [dG00,DW02,SSS02].

This paper expands significantly the technique used in [Pad95a] and proposes
a new interesting class of terms. Informally, a term M is self-independent when
in each self-independent context and for each subterm N of the term if the
evaluation of the subterm N is executed somewhere in the reduction then all its
arguments may not contain a copy of N. For example the term

Az (= a) = a = a.x(Az.f(21,21))a

is self-independent since the only self-independent terms that can be substituted
for = are the identity, and the constant term and these can only result in forget-
ting of most of the term of in copying a to z;. Accordingly the term

Az (o= a) > a— a) = (a— a) = ax(Az.21(21(a) f

is not self-independent, as in one if possible contexts (when the identity is sub-
stituted for x) the term f occurs in the argument of the first z;. This class
extends the class of linear terms. Moreover, presented proof gives a nice syntac-
tical characterisation of this class. We present a proof of decidability for the dual
interpolation problem with an additional restriction on solutions and instances
— they must be self-independent terms. This result extends to higher-order
matching for this kind of expressions.

2 Preliminaries

Assume we are given a set B of base types. Let Tg be the set of all simple types
over B defined as the smallest set containing 5 and closed on —. We shall often
omit the subscript B if B is clear from the context or unimportant.

In this paper we limit ourselves to the case where B is a singleton {¢}.

The set of simply typed terms is defined based on the set of pre-terms. The
set *, of simply typed pre-terms contains an infinite, countable set of variables
V', a countable set of constants C', and a map T : V U C — Tg that indicates
types of symbols. We assume that there exists an infinite number of variables of
a type a. This set is also closed on the application and A-abstraction operations.
We will usually write s : 7 to denote the fact that a pre-term s has a type 7. As
usual, we deal with a-equivalence. The symbol [s], denotes the a-equivalence
class of s. The set A_, is defined as a quotient of *, by a-equivalence. The
elements of A_, are denoted usually by M, My,..., N, Ny ... etc. as well as the

elements of *, are denoted by s, s1,...,%,t1,... etc. The notion of a closed term
is defined as usual, similarly the set FV(M) of free variables in M. The symbol
Const s denotes the set of constants occurring in M.

We denote by T'(7, C) the set of all closed terms of type 7 built-up of constants
from the set C'. The notion of sorted set is of some usefulness here. The family
of sets T¢ = {T(1,C)} e, is an example of a sorted set. We adopt standard €
notation to sorted sets.

The term Const s denotes the set of constants that occur in M. This notation
is extended to sets (and other structures) of terms.

The order of a type 7, denoted by ord(7) is defined inductively as

— ord(t) =0 for ¢ € B;
— ord(1; — 72) = max(ord(m) + 1, ord(72)).

The notion of order extends to terms and pre-terms. We define ord(M) =
ord(7) or ord(t) = ord(7), where 7 is the type of M or ¢ respectively.

The notion of B-reduction (—>’[§) is defined as a congruent extension of the re-
lation (Az.M)N —3 Mz := N| where M[z := N] denotes substitution of N for
x with usual renaming of bounded identifiers. We sometimes write substitutions
in the prefix mode as in S(N).

The notion of An-reduction (—7,) is defined as a congruent extension of the
above-mentioned —g relation supplied with an additional rule Ax.Mz —, M
where M has no occurrence of x. In this paper, we deal with terms in S-normal,
n-long form. The S-normal, n-long form for a term M is denoted by NFL(M).

We call an instance of the higher-order matching problem each pair of simply
typed A-terms (M, N). We usually denote them as M = N.

A solution of such an instance is a substitution S such that S(M) =g, N.

We often restrict ourselves to the case when N has no free variables. This
restriction is not essential.

Definition 1 (the higher-order matching problem)

The higher-order matching problem is a decision problem — given an instance
M = N of the higher-order matching problem whether there exists a solution of
M =N.

An interpolation equation is a pair of terms, usually written zNy --- N = N,
such that x is the only free variable in the left-hand side of the equation.

Let (E, E') of interpolation equations such that there exists a variable x which
occurs free in the left-hand side of each equation in E U E’. We call (E,E’) an
instance of the dual interpolation problem. We also call (E, E') a dual set.

A solution of such an instance is a term P such that for each equation
[Ny ---N, = N| € E we have PN;---N; =g, N, and for each equation
[Ny --- N = N] € E' we have PNy --- Nj, #g, N.

Definition 2 (the dual interpolation problem)
The dual interpolation problem is a decision problem — given an instance (E, E')
of the dual interpolation problem whether there exists a solution of (E,E’).

The dual interpolation problem and the higher-order matching problem are

connected in the following way:

Theorem 1. The problem of higher-order matching reduces to the dual inter-
polation problem.

Proof. See [Pad95b,Pad96] or [Sch01].

2.1 Self-independent terms

We define self-independent terms by means of a marked reduction:

(Az.M)N — gy M[z := N]
(M)#N —B# MN.

where the substitution [z := N7 is defined so that (P)#[z := N] = (P[z := N])#.
A self-dependency is a term of the form (M)# Ny --- Nj, where either M or
one of N; contains the mark #. For each term M we define the set M¥ (M) as

M# (M) = {C[z# Ny ---Ni,] | M = ClxNy --- N}

(C[-] denotes a term with a single hole usually called context, substitution for [-]
is not capture avoiding.)

All terms of a base type are self-independent. We say that a term M is
self-independent if for each sequence Ny, ..., N, of self-independent terms the
outmost-leftmost reduction of each term M’N;j--- N, : ¢ where ¢ is a base
type and M’ € M#(M) does not include a term with a subterm being a self-
dependency.

3 Tools and definitions

3.1 Addresses in terms

Let t be a pre-term. We say that a sequence v of natural numbers is an address
in tiff

— 7 = ¢ (the empty sequence) or
— y=1-v where t = Axy...z,,.ugu1 - - - U, together with 0 <4 < n and ' is
an address in u;.

The set of all addresses in ¢ is written as Addr(¢). The prefix order on addresses
is written as v < 7. The strict version is denoted as v < ~'.
We say that a subterm u is pointed out by an address «y in t iff

— u =t where t = A\zy ... 2.1, the term ¢ does not begin with A and v = ¢,
—or u = t' where t = Ax1...%pmUUy Uy, and v = i - v together with
0<i<mnand v (u)=t.

We write y(t) to denote wu.
A graft of a term w in t at an address v is a term ¢’ defined as

—uiff y=¢,

— AL Epauguy e uluy iff Yy =44 and € = Az .. zp.uouy - - uy, and
u} is a graft of w in u; at v/

We denote ¢’ as t[y < u]. We sometimes use the notation t[c < u] where ¢ is
a constant. This means that the term u is grafted on every occurrence of the
constant c.

Let C be a set of fresh constants. We say that a pre-term u is a C-pruning
of a pre-term ¢ iff

— u=1t,
— or u = u/[y ¢ ¢] where ¢ € C and ' is a C-pruning of ¢.

Let ¢ and t” be C-prunings of a term t. We say that ¢ < ¢” iff Addr(¢') C
Addr(¢”). This pre-order may be viewed as an extension of the prefix order on
sequences. Thus, we denote this relation by the same symbol. The strict version
of the order is denoted by <. The above-mentioned notions easily extend to
A-terms, sets of A-terms and sets of pre-terms.

3.2 Matrix notation

Every finite sequence of terms of the same type is called a column. We denote
columns by symbols like V, W etc. The symbol V¢ denotes the i-th element of
the column V. The height of a column V is the length of the sequence V. It is
denoted by |V|. As all the elements of a column V have the same type, we may
use the notion of a type of the column V. When V has a type 7 then we denote
this fact as V' : 7. We say that V is a constant column when all its elements are
the same.

Every finite sequence of terms is called a row. We denote rows by symbols
like R, @ etc. The symbol R; denotes the i-th element of the row R. The width
of a row R is the length of the sequence R and is denoted as |R|. The operation
of concatenation of columns W, W’ or rows R, R’ is denoted as WW' or RR'.

Every finite sequence of columns is called a matriz. We denote matrices by
symbols like M, N. _

The symbol ¥; denotes the i-th column of M. The symbol M, denotes the j-th
clement of the i-th column of M. Similarly, M’ denotes a row defined as (M'); = M;.

Let M be a matrix and W a column of a base type. We define a set of equations
with the matriz M and results W as

gy - M =W, MM =T
We denote the set of equations as [xM = W]. We extend the notation NFL(M) to
vectors, rows and matrices: NFL(V My --- M,,), NFL(MR) and NFL(MM). The
notation Const,; extends to matrices and vectors and means the set of constants
occurring in the supplied matrix or vector.

3.3 Approximations
We say that a pair W, W’ of columns is constant iff W is constant as a column
and W’ £ W for all s.

An approzimation of a pair of columns Wy, W in a dual set £ = ([zM; =
Wh], [xMa = Wa]) of equations for the solution M is any pair of columns Wi, Wa
of the heights ||, |W2| such that

— there eXibtb an {a,b,0,...,{}-pruning M’ of M such that for each equation
[le - = WF] € € we have NFL(M’ i1 W)= Wk

— for c e {a b} if ¢ occurs in Wl then WZ =g,

— for each constant ¢ € N if some WJZ = ¢ then there exists 7 > ¢ and k,[such

that 'y(Wle) = ¢ (we say c is guarded).

We denote by Ny the set Consty5- N (N'U {a,b}). Note that 171\/1’; is a

{a,b,0,...,1}-pruning of W¥ while W§ may not be a {a,b,0,...,[}-pruning of
Wi,

For the sake of notational convenience we assume that for each approxima-
tion, the set NWW, NN is an initial connected subset of N, e.g. {0, 1,2} or {0, 1}.

Let Wl, W/ and Wg, VV2 be approximations of a palr of columns W, W’. We
write Wi, W1 =< Wa, VV2 when for each k£ we have Wlk = W2 and Wz’k = Wék It
is easily verified that < is a pre-order. The strict version of the order is denoted
as <. o .

We say that for an approximation W, W’ of W, W' the term W’ meets W'*
iff for each k there exist s,, s, S0, . . - 8; such that

W'k = W’k[cu— Sa,b < 85,0 < S0,...,1 <, 5.

A pair of columns W, W' is trivial iff for each i, we have Wi = W' = ¢,
where c is either a or b.

Let {[zM = W], [sM = W’]) be a dual set and M its solution. We say that
W, W' is a minimal approximation of W, W' iff there is no non-trivial W1 VV1
W, W'

We say that a term M’ is a minimal pruning for minimal approzimation
W, W' if W, W' is a minimal approximation of W, W’ and there is no M"” < M’
such that NFL(M”M) =W and NFL(M"W) = W".

Let W,W’ be a pair of columns with a type 71 — -+ — 7, — . We
say that a pair of columns V,V’ is a splitting pair of columns for W, W' iff
there exist terms My, ..., M,, such that the pair of columns NFL(V M - -- M,),
NFL(V'M; --- M,,) is an approximation of W, W”’.

3.4 Accessibility

Let E = [zM = W] be a set of interpolation equations. We say that an address
is accessible in a term M wrt. E iff

— 7 is an address in M, _
— there is an equation [zM, ---M,, = W] € E such that
NE(M[y ¢ cM; ---},) (1)
has an occurrence of ¢, where c is a fresh constant of a base type.

We say that an address is totally accessible iff for each equation in E the
condition (1) holds.

We say that an address is totally head accessible iff for each equation in F
we have NF(M[y < cM; ---M,,) = ¢, where c is a fresh constant. Without loss of
generality we may assume that c is a constant of the base type.

Let (E, E’) be a dual set and M its solution. We say that an occurrence =y
is totally head accessible wrt. the dual set iff it is totally head accessible wrt. F
and E'.

3.5 Observational equivalence
We introduce a notion of observational equivalence. This notion is very closely
related to the dual interpolation problem. Roughly speaking, solutions of an
instance of the dual interpolation problem form an equivalence class in this
relation.

Let R = {R;}rer be an indexed family of sets containing A-terms, and
satisfying conditions

1. all terms in R are in B-normal, n-long form,
2. for each term M € R, there exists an a-representant sp; of M such that for
each subterm ¢ of the pre-term sp; we have [t], € R.

Such a set is called an observable.

The notion of an observable gives rise to a variation of the dual interpolation
problem and the higher-order matching problem.

An instance of the dual interpolation problem for an observable R is a pair
of sets £ = (E, E’) of interpolation equations such that there exists a variable
2 which occurs free in the left-hand side of each equation in F U E’ and all
right-hand sides of E'U E’ belong to R.

The dual interpolation problem for an observable R is to decide whether an
instance of the dual interpolation problem for the observable R has a solution.

Definition 3 (the higher-order matching problem for an observable)
An instance of the higher-order matching problem for an observable R is a pair
of simply typed A\-terms (M, N) where N € R.

The higher-order matching problem for an observable R is to decide whether
a given instance of the higher-order matching problem for the observable R has
a solution.

The notion of an observable is also a base for a pre-order and an equivalence
relation which, in turn, allow us to define a semantic structure for the simply
typed A-calculus.

Definition 4 (observational pre-order)
For each observable R we define an observational pre-order with respect to R
as the relation Cr on A-terms such that

M Cr M’ iff M and M’ have both the type o — T, and for each sequence
of terms Ny,..., N, with appropriate types and n > 1 we
have that if NFL(M Ny --- Ny,) € R then MN;--- N, =g,
M'Ny---N, or
M and M’ are both of a base type and if NFL(M) € R then
M =g, M’

Definition 5 (observational equivalence)
For each observable R we define an observational equivalence with respect to
this observable as the relation on closed terms ~p such that

M%R M’ ZﬁM Cr M’ and M’ Cr M

More details concerning this equivalence are in [SchO01]. In particular, we have
the following theorem

Theorem 2. For each solvable instance £ of dual interpolation for an observable
R there exists an equivalence class of =~ such that all its elements are solutions
of €.

For each class A of the relation ~x there exists an instance £ of the dual
interpolation problem for the observable R such that terms from A solve .

There is an algorithm which for a type T = 11 — -+ - T,, — L and complete sets
of representants of =~ classes for types 11, ..., T, generates a set C of instances
such that for each ~g class A in the type T there is an instance E4 such that
terms of A are the only solutions of £4.

Proof. Easy conclusion from [Sch01].

3.6 Transferring terms

The proof in this paper is based on the following schema: We define transferring
terms. We show that each solvable dual interpolation instance has a solution of
this form. As the form is quite simple, we are able to enumerate the terms and
this gives a proof that the dual interpolation problem is decidable.

This section contains the crucial definition of transferring terms. The defini-
tion is a little bit tedious, but we shall explain some of its elements later on in
this section.

Definition 6 (transferring terms)
Let n,m € N and let C be a set of constants. A closed term M : 11 — --- —
Tp — ¢ 1s an (n,m, C)-transferring term ff

1. M = Xy1...yp.M' and M’ is a term over C' without any occurrence of y;
wherei=1,...,p, or
2. M =Xyr...yp.fMy - My, where
— feChasatypeoy — -+ — o — 1, and
— M; = Xz1...2..M] where M] does not begin with \, and
— A1 .. Yp- M are (n;,m, C;)-transferring terms, and
— n; <n, and
- C;=CU{z,...,2.}, or
3. M= dy1...yp.yiMy - - Mi[a < Noy,b < Npy,0 < Noyzo, ..., < Nyxi],

where
— Y=Y Yps
— each M; is a closed term over C' U{a,b,0,...,1};
— each constant O,...,1 occurs only once in y; My - - - My;

— N, and Ny, are (ng, mg, C)-transferring and (ny, my, C)-transferring re-
spectively;

— Nj is (nj,mj, C)-transferring for each j;
— Ngq,Np < n;

— Mg +mp < m and mg, mp # m;

—nj <n andm; <n.

Sometimes when (n,m,C) are unimportant or clearly seen from the context, we
shorten the name to transferring.

Suppose that case (3) is abridged so that there are no constants from N. The
resulting term M may be presented as

M =X y.Cy, lyxMy - - - (Azz;2" M;) - -+ M,

Consider)\zzjz’.Mi. In this term, none of occurrences of z; in M; is in a subterm
beginning with y; from y.

When this constraint is applied, the number of occurrences of variables from
y in an (n, m, C)-transferring term M is bounded by m.

This simple picture is contaminated by the presence of constants from N. We
allow these constants to occur in subterms of M beginning with variables y; from
y. This adds some flexibility and, consequently, expressive power to our terms.
This flexibility is restricted, though. We have to pay for blocks that declare these
variables with coins kept in n.

We sometimes treat informally this particular form of A-terms as a syntac-
tic form. In this syntactic notation, all substitutions from case (3) are actually
present in a term. Formal development of this approach would involve a formal-
ism similar to explicit substitutions formalisms.

4 Transferring terms and dual interpolation

Here is a theorem that relates the dual interpolation problem to transferring
representatives. This is the central theorem of the paper.

Theorem 3. Let £ be an instance of the dual interpolation problem. If M is a

solution of £ then there exist n,m € N together with a set of constants C' and

an (n, m, C)-transferring term M’ such that M’ is a solution of &, too.
Moreover, n,m,C" depend recursively on &.

In order to prove this theorem we need two lemmas that enable some cleaning
of sometimes excessively complicated terms.

4.1 Skipping unimportant variables

The induction step in the proof of Theorem 3 consists in splitting a dual set
and finding transferring solutions for the results of the split. These solutions are
based on a term M that solves the whole set at the very beginning. This term is
too complicated to be a compact solution of the split sets. During the process of
construction of transferring solutions for them, we have to compact M in several
different ways. This section is devoted to the major step of the compactification.

Below, we use C-prunings for C' = {a,b} UN. Thus we shorten the name
C-pruning to pruning here. We impose a constraint on the shape of prunings
performed on solutions. Constants from N may occur only once.

First of all, we have to determine what we want to skip.

Definition 7 (an unimportant occurrence)

Let M = My.y; My - - - My, be a term that solves a dual set € = ([aM = W], [zM =
W), and let M' be a pruning of M that gives a minimal approzimation of
W, W'. An occurrence - 0 of a variable z in M’ is unimportant iff

— 7 is totally head accessible, and
— there is v # 0 such that v -~ is an occurrence of a variable bound on vy and
~ -+ is totally head accessible.

Note that unimportant occurrence has always the shape v-0. We say that an
unimportant occurrence 7y - 0 is mazimal if there is no unimportant occurrence
~v-v" -0 where v+ ¢.

Lemma 1. Let M = Ay.zM; - - My, be a term that solves a set of dual equations
E = ([aM = W], [zM = W']), where W, W’ is a non-constant pair of columns. If

M’ = My.zMy --- My, is a minimal pruning of M that gives minimal approxima-

tion of W, W' wrt. £, then

— either there exists j such that Mj,Wj is a pair of splitting columns for W, W',
— or there is an address v in M that points to a constant f € Constys that is
totally head accessible.

Proof. The general idea is that we get rid of unimportant occurrences which can
be evaluated. This is the place where the definition of self-independent terms
plays crucial role.

Proof of Theorem 3:

The aforementioned lemma allows to prove the main theorem of the paper. This
is done by splitting dual interpolation instances. The way the split is done is
controlled by the shape of minimal approximation for the hypothetical solution.
Details are in appendix. |

5 Decidability

We have to provide yet another characterisation of solutions for the higher-order
matching problem in the case of self-independent terms. This characterisation
relies strongly on some constructions for observables.

Definition 8 (pruned observable)
Let R be an observable. The observable R¢ is called a pruning of R if it contains
all the C-prunings of terms from R.

Note that R C R¢ for each C.

Definition 9 (observable for terms)
Let T be a set of terms. R is a minimal observable containing T.

Note that if T C R then RT C R.

Definition 10 (pseudo transferring terms)

Let R be a finite observable, n,m € N, and C be a set of constants. A term
M:m — -+ = 7, = s a pseudo (n, m, C)-transferring term for the observable
R iff

1. M = dy1...yp.M' and M’ is a term over constants from C without any
occurrence of y;,

2. M =Xyy...yp.fMy - My, where f € C has a type 01 = -+ — o, = ¢ and
AY1 - .- Yp-M; are pseudo (n;, m, C;)-transferring terms for the observable R
with n; < n and C; = CU{z1,...,2} where M; = Xzy...z..M] and M]
does not begin with .

3. M= dyr...ypyiMi - Myla < Noy,b < Npy, 20 = Noy, ..., 21 := Ny,

where
— Y=Y Yps
— 20,.-.,2 have order less than the order of y;;

— Aziy ... 2, -M; are pseudo (n;, m;, C' U {a,b})-transferring terms for the
observable Ry, py, where n; is the maximal number of equations in a dual
set Echaracterising a single equivalence class as in Theorem 2, and m;
is the maximal total size of right-hand sides in such an €

— N, and Ny are pseudo (ng, mq, C)-transferring and pseudo (ny,, mp, C)-
transferring respectively for the observable R;

— T is a set of terms such that RT ¢ R;

— for each j the term Nj is pseudo (nj, m;, C)-transferring for the observ-
able RT.

— Ng,Np < N;

— mg +my < m and mg, mp # M;

— n; is the number of equations in a dual set characterising an equivalence
class of observational equivalence for RY and m; is the total size of
right-hand sides in the aforementioned dual set.

Sometimes when (n,m,C) are unimportant or clearly seen from the context, we
shorten the name to pseudo transferring.
We have the following theorem:

Theorem 4. If a dual interpolation set € for an observable R has an (n,m,C)-
transferring solution M then it has a pseudo (n,m,C)-transferring solution, too.

We are now ready to conclude with the following theorem.

Theorem 5. The dual interpolation problem for self-independent terms is de-
cidable.

Proof. The decision procedure consists in enumerating all possible pseudo trans-
ferring terms for the type of the head variable in an instance of the dual inter-
polation problem. This may be done recursively according to the definition of
pseudo transferring terms.

As an easy corollary we obtain.

Theorem 6. Higher-order matching for self-independent terms is decidable.

References

[Bax76]

[dGO00]

[dMS01]

[DW02]

[Gol81]

[Har96]

[Hue76]
[Loa]
[Loa01]

[MN8S)

[Pad95a]

Lewis D. Baxter. The Complexity of Unification. PhD thesis, University of
Waterloo, 1976.

Philippe de Groote. Linear Higher-Order Matching Is NP-Complete. In Leo
Bachmair, editor, Proceedings of 11th International Conference on Rewriting
Techniques and Applications, number 1833 in LNCS, pages 127-140. Springer-
Verlag, 2000.

Oege de Moor and Ganesh Sittampalam. Higher-order matching for program
transformation. Theoretical Computer Science, 269(1-2):135-162, 2001.
Daniel J. Dougherty and Tomasz Wierzbicki. A decidable variant of higher
order matching. In Sophie Tison, editor, Proc. Thirteenth Intl. Conf. on
Rewriting Techniques and Applications (RTA), pages 340-351, 2002.

Warren D. Goldfarb. The undecidability of the second-order unification prob-
lem. Theoretical Computer Science, 3:225-230, 1981.

John Harrison. HOL light: a tutorial introduction. In Mandayam Srivas and
Albert Camilleri, editors, Proceedings of the First International Conference
on Formal Methods in Computer-Aided Design, pages 265—269, 1996.

G. Huet. Résolution d’Equations dans les Langages d’Ordre 1,2, ... ,w. PhD
thesis, Université de Paris VII, 1976.

Ralph Loader. Higher-order 8 matching is undecidable. Can be found at
http://homepages.ihug.co.nz/ suckfish/match/.

Ralph Loader. Finitary PCF is not decidable. Theoretical Computer Science,
1-2(266):341-364, 2001.

D. Miller and G. Nadathur. An overview of A-Prolog. In R. Bowen and
K. Kowalski, editors, Proceedings of the Fifth International Logic Program-
ming Conference/ Fifth Symposium on Logic Programming. MIT Press, 1988.
Vincent Padovani. Decidability of all minimal models. In Stefano Berardi and
Mario Coppo, editors, Types for Proofs and Programs, International Work-
shop TYPES’95, number 1158 in LNCS, pages 201-215. Springer Verlag, 1995.

[Pad95b] Vincent Padovani. On equivalence classes of interpolation equations. In

[Pad96]
[Pau89]

[Sch01]

[SSS02]

[Sta82]

[Wol89)

M. Dezani-Ciancaglini and G. Plotkin, editors, Typed Lambda Calculi and
Applications, number 902 in LNCS, pages 335-349, 1995.

Vincent Padovani. Filtrage d’Ordre superieur. PhD thesis, Université Paris
VII, January 1996.

Lawrence C. Paulson. The foundation of a generic theorem prover. Journal
of Automated Reasoning, 5(3):363-397, 1989.

Aleksy Schubert. A note on observational equivalence in the sim-
ply typed lambda calculus. Technical Report TR 02-01 (266), In-
stitute of Informatics, Warsaw University, 2001. Can be found at
http://wuw.mimuw.edu.pl/~alx/ftp-public/domains.ps.gz.

Manfred Schmidt-Schauf3 and Klaus U. Schulz. Decidability of bounded
higher-order unification. In CSL 2002, LNCS 2471, pages 522-536. Springer-
Verlag, 2002.

Richard Statman. Completness, invariance and A-definability. Journal of
Symbolic Logic, 1(47), 1982.

David A. Wolfram. The Clausal Theory of Types. PhD thesis, University of
Cambridge, 1989.

12

A Proofs

The proofs presented here are only to support the validity of the presented
material. They will not be submitted as a part of the paper.
The following lemma allows us to state that absence of unimportant variables
guarantees that we are able to construct a splitting column.
Lemma 2. Let M = Ay.zM; - - - My, be a term such that M solves a dual set £ =
([xM = W], [z = W']), where W, W' is a non-constant pair of columns. If M’ =
)\y.z]\/fl .]\//[; is a minimal pruning of M that gives a minimal approximation of
W, W' wrt. £ and M /’\ does not contain unimportant occurrences of any variable
from y, then terms M; do not contain occurrences of variables from y.
Proof. Existence of such a variable means that 0 is unimportant. Details follow.
Suppose, contrary to our claim, that v = p-~’ is an address in M’ of a term
that starts with a variable y; € y. W.l.o.g. we may assume that 7 is a <-minimal
address of this kind. As this address is not unimportant,

1. either « is not totally head accessible,
2. or the term pointed out by + is totally head accessible and there is no ~ - v’
totally head accessible.

Case (1). We replace the term at « with a,b or one of constants from N so
that the constraints on pruning and approximation are fulfilled. We obtain this
way either an approximation which is less than the original one or a pruning
which is less than M’. This contradicts our assumption that M’ is a minimal
pruning of M that gives a minimal approximation.

Case (2). In this case 0 is an unimportant occurrence. Details are left for the
reader.

Proof of Lemma 1:

The proof is by induction on the number of variables in M’ that do not play
an essential role in constructing the minimal approximation of W, W’. These
variables do not serve as places where a decision is made or places where some
symbols are arranged for right-hand sides of equations. They may only produce
some terms that are used later on. We can simulate this behaviour by replacing
a corresponding variable with an appropriately modified solution of &£. This
solution contains complete information about the term that will be used later
on. A more detailed presentation goes hereafter.

The proof is by induction on the number p of unimportant occurrences of
variables from y in M’.

Case p = 0. Lemma 2 implies that the head symbol z is either a constant
f € Constys or a variable y; € y. The last case implies immediately that W is a
splitting column with arguments]\//.717 . ,f/[;.

Case p > 0. Let k- -0 be a maximal address of an unimportant variable
z € yx in M’ (x are declared on k -). We have

vy M) = zM] - - M[§ + Nsyxas] (2)

where

— M =Xz1...2,,]\AfZ are closed terms over constants Const;, and]\Z does not
begin with A;

— €(Ns) begins with a symbol from yx or with a constant, and ¢ is totally
head accessible;

— x5 are declared in zM] --- M/ on the path between v and §.

We have several cases according to the form of Nj.

1. The head symbol of Nj is a constant. The form of (2) implies that M can
be presented as

M= C’M[zm~ - M![6 + Nsyxzxs)]

where Mj,..., M/, Ns are corresponding prunings of m, ..., M, Ns and
Cis]e] is a suitable context. The term Ns begins with a constant. This term
cannot be a constant term (with no occurrences of variables from yxxs),
since W, W' is not a constant pair. This means that N begins with a func-
tion symbol. Similarly, the function symbol starts Ns. This means that the
address d - 0 is a path to a totally head accessible constant function symbol.

2. The head symbol of N5 is x € yx. We define a context C.[e] as follows:
Cy[v(M)] = M. The term Myey is defined as

Myew = Cy[Nsyx Ry - - Rp).
Let z; € s (with ; : 74 — -+ = 7. = 1), we define
R =Az1...2p.Cy[zM] -+ M [c < xiz1 - 2]]y.

It is easily verified that My is a solution of £. It is so because M is self-
independent. Let
M o = Cy[Nsyz(Az1.c1) - - (Az1.¢p)]

new

withei, ..., ¢, € {a,b}UN and the constants ci, . . ., ¢, inserted so that conditions
for pruning and approximation are met. Note that M/ _ is a pruning of M ey.
It is not possible that only one constant in {c1,...,c,} is totally head ac-
cessible, since otherwise 7 is not the maximal occurrence of an unimportant
symbol.
The term M/ ., is a non-trivial pruning. Triviality of M]_ implies either
triviality of M’ or that k-~ is not a maximal address of an unimportant variable.
As M! . is a non-trivial pruning, we have a minimal non-trivial pruning M/’

new new

of Myew wrt. W, W’. The term M’ has strictly less occurrences of unimportant

variables than M’. Thus, we can apply the induction hypothesis and obtain
that either some M is a splitting column or that there exists an address 4/ in
M. which is an occurrence of a totally head accessible constant symbol f. If
~' =k-~-%-0 then we obtain an address v/ of fin M' as~" =k-~v-7.-7-0
where y.(zM7 --- M) =c. If 4/ # k-~ -7 -0 then this v’ is also an occurrence
of fin M'. O

Proof of Theorem 3:
Let £ = (E, E') = ([#M = W], [= W']). We define the value n as the number
of symbols in W, W’ the value m as the number of equations in &, the value h
as the height of M, and the set C' as the set of constants in &.

The proof is by induction wrt. lexicographic order on triples (n, m, h).

If W,W' is a constant pair of columns, then M’ = \y.W! is a transferring
solution.

If m = 1, then M’ = A\y.W! is a transferring solution provided that E # ().
If E=0 then M' = Ay.NFL(MWi . W:n) is a transferring solution.

If h =1, then M = Ay.c for some constant ¢ of a base type or ¢ € y. In this
case, M' = M.

If n = 1, then this reduces to the case when m = 1.

If (n,m,h) > (1,1,1), then we have two subcases

1. M = Xy.fMj --- My where f € C,
2. M = \y.y; My - - - My, for some y; € y.

Case M = A y.fMy--- M. Let M; =)\z{ ... zﬁ]\Z where]\Z does not begin
with A. In this case, all terms in W begin with f:

W = (fBi--Bj,....,fBy--- B})
and some terms of W', say in sub-column W":
W' = (fB{*---By',... fB/” ... B/").

We define columns Wy, ..., Wy and W{,..., W/ asW; = (B},..., BY), and W/ =
(BI*,...,B;?). We can define sets of equations F; = [zM = W;] and E! =
[#M” = W] (M is a sub-matrix of M’ corresponding to W"). It is easily verified
that (E;, E!) has a solution)\y.]\z. Let the value n; be the number of symbols
in W;W/, the value m; be the number of equations in E; U E} and C; = C' U
{z{,..., 2. }. The number n; is strictly less than the number of symbols n so

by the induction hypothesis we have (n;,m;, C;)-transferring solutions Ay.M/
of sets (E;, E}). Thus, A\y.fM]---M] is a (n,m, C)-transferring solution of &
where M} = X\zi ...z} .M].

Case M = \y.y;M; - - - M}, for some y; € y.

The pair of columns W, W’ has a minimal approximation. Let M’ be a min-
imal pruning for the minimal approximation of W, W’. Lemma 1 implies that
either M;,M; are splitting columns for W, W’ or there exists a totally head ac-
cessible occurrence in M of a constant f € Consty;.

Case when certain M;,W; are splitting columns for W,W’. The definition of
splitting columns says that there exist terms Py, . .., P, such that NFL(M; P, - - - P,) =
W and NFL(M ;P ---P,) = W' where W, W’ is an approximation of W, W’. We
produce on the basis of £ new dual sets of equations &, &, &o, . .., £. These sets
are defined as &, = (E,, E) where

1. E, = {[af} .- W, = W*| |[NFL® Py,..., P,) = a}, a
Bl = {4/} .. W, = W] | NFLGTE P, ., P,) = }
2. By = {[aF} -+ W, = WH | NFLOL Py, .., P) = b}, and
B} = {[al0} - ¥, = W] | NFL(T; Py, P) = b},

3. the definition of E;, E! for i € N is more complex and presented hereafter.
Let [21 = W] = E\(E, U E) and [2V = W] = E'\(E, U E}). We have

NFL (¥ Pre P.) =Wk = Cknk,. .. nk

q

NFL(W, P, --- P,) = W™ = C'**[nk,n}]

where C* and C’F are contexts (note that some C* or C’* may be simply [e]).
Define —~
IT*(n*) = {7 | v points out on a constant n* in Wk},

&
IT""(n*) = {7 | v points out on a constant n* in W’ },
We establish sets of equations
Ep = {[z"N} -+ W5, 0F ... 0k =4(W*)] |y € II*(n) and k € N}.
B}, = {[a"Wy W, 0 - Off = 4(W")] |y € IT*(n) and k € N (3)

— k
and W' meets with W’}

where terms OF, for k' € {1,...,1'} are defined as follows. Let 7; be an occur-
rence of a constant n¥ in M’ that results in n¥ in W* (or W'*). Let

M//:M[’yk (—Z.’I?l-".’lﬁll] (4)

where Z is a fresh constant of a suitable type and {z1,...,zr} = FV(y:(M))\y.
We have

NFL(M'W - §) = C[By,...,(ZOs---0)),..., By,

_ o i 5
NFL(M"W, --- W) = C*¥[Bj ..., (Z0} ---0)),..., Bl,)
We can also mimic reduction steps as above in
—k —k ~ —~
NFL(MN1 N, k)%ﬂn C*[By,...,(M#OY---OF),..., By, (6)

NFL(MW, ---Wy,) =%, C'*[Bj...,(M#OF---Of),...,BL].

At last we define OF, (and Off) as
Ok, =00 [Z .= M#,
ok = 6;5 [Z .= M#)].

The dual sets &4, &, &, ..., Es are solvable by the terms M, M,]\%, o My
respectively. We define M; as

/\y.’El .o Z‘l/.’yk(M).

The sets &,, & have both the number of equations and the number of sym-
bols occurrences less than £. In the sets &, ..., &, the size of right-hand sides
is less than the size of W' (constants from N are guarded). This means
that we can apply the induction hypothesis and obtain transferring solutions
Mg, My, My, ... M, of E,. &, Eo, . .., E. We define a term

M = Ay.y;Pr--- Pl a <+ May,
b+ Mb’y,
0« Mong, (7)

ey

|+ Mlywl]

where x; are variables bound in the Pj in which ¢ occurs as a constant.

The term M is a solution, because when we reduce it with left- most out-
most strategy applied in equations of &, then we reach either M, W Mbﬁk
or C*[(M,, pee) (M, o)] As Mg, My, My, . .. M; are solutions of equatlons
Ea, &, &0s - - -, &, we immediately see that reached terms reduce further to appro-
priate subterms of right-hand sides W, W’. Note that so defined M is (n,m,C)-
transferring solution of £.

Case when there exists an occurrence of a constant f in M which is to-
tally head accessible. This case is technically similar to the case when M =
Ay.fMy -+ My, The only difficulty concerns free variables that occur in (M)
where v is the intervening occurrence of f in M. We can get rid of them using
the trick employed in (4). Details are left for the reader.

O

Proof of Theorem 4:
Induction on lexicographically ordered pairs (o, h, m) where o is the order of the
type of M, h is the height of M and m is the number of terms in R.

If o = 0 then £ = (F, E’) may have only one equation in F and the equation
has the form = = M. In this case, M is pseudo transferring.

If h =1 then M = A\y.c where c is a base type constant. In this case, M is
pseudo transferring, too.

If m =1 then R is a single term, so there can only be one equation charac-
terising M and thus M is pseudo transferring.

Let {0, h,m) > (0,1,1). We have three subcases here according to the trans-
ferring structure of M. The only non-trivial case is when M has the form (3).
As N,, N, have depth less then M, we have by the induction hypothesis pseudo
transferring terms N,, Ny with ng, me, ns, my as in M.

Let M = M;[i1 < 2i,®4qq, ...,k < 2, &), where {i1,...,1;} are constants
from N that occur in M;. By Theorem 2 and Theorem 3, we can generate transfer-
ring equivalents Azy . Ml, ..)\szk of corresponding terms Azq.Mj, ..., Az1.M].
This equivalents are taken for the observable Ry, ;). This ensures that terms

—

M; M - - M\k give the same approximations as M; M - - - M} and terms

MM,y - My 0 Noy,

b+ be,
20 ‘= NO.%
2 = Ny

give the same results as

MMy -+ My[a < Nay,

b+ be,
0« Noy:m
I + Nyyzl.
As terms Az .]\//.71, cee)\zk@ have order less than o, we can obtain by the induc-

tion hypothesis terms Azy.Mj, .. ., Azx M}, which are pseudo (n/, m’, C'UConst;)-
transferring with (n’,m’, C'U Const;) as in the corresponding M; terms.

The last step is to obtain pseudo transferring equivalents of Ny, ..., N;. This
can be done as these terms are used in

MM - My[@ — Ny,

b+ N,y,
20 = N0y7
21 = Nyy|

only in contexts resulting in terms from R” where T is the set of right-hand sides

of equations defined as in (3) in the proof of Theorem 3. As RT C R, we obtain

by the induction hypothesis R” equivalents No, ..., N; of terms N, ..., N;.
Now, we can conclude with the construction of a pseudo (n, m, C)-transferring

term - L
A1 YpyiMy - My [a = Ny,

b+ N,y,
20 = Noyu
Z] = ﬁl'!/]'

O

Proof of Theorem 5:

The decision procedure consists in enumerating all possible pseudo transferring
terms for the type of the head variable in an instance of the dual interpolation
problem. This may be done recursively according to the definition of pseudo
transferring terms. The recursion is parametrised with

— the type order o of head variable,

— the number of terms r in an observable,

— the number of symbols n in right-hand sides of the given instance of the dual
interpolation problem,

— the number of equations m in the instance.

These numbers constitute a lexicographic measure for the recursion.

In the case (1) of Definition 10, the algorithm stops.

In the case (2) of Definition 10, n decreases while other parameters stay
intact.

In the case (3) of Definition 10, we have the following subcases.

— For N, and N, the number m decreases while n does not increase and other
parameters stay intact.

— For Ny, ..., N; the number of terms in observable decreases since RT C R.
The order stays intact.

— For My, ..., M; the order decreases.

The correctness is based on the knowledge that solutions for the dual interpo-
lation problems are representants for all equivalence classes in the observational
equivalence ~x where R is an observable (see Theorem 2). U

