Algebraic Geometry, Fall 2013

Homework, set 4, for January 20th, 2014

All varieties are projective (unless otherwise stated) and defined over an algebraically closed field k.

- 1. Show that a hypersurface of degree 2 with a singular point is a cone.
- 2. Prove that if a plane curve of degree 3 has 3 singular points then it breaks up as a union of 3 lines.
- 3. Let s_i be the *i*-th elementary symmetric polynomial in $x_0, ..., x_4$, i.e.,

$$s_i = \sum_{j_1 < \dots < j_i} x_{j_1} \dots x_{j_i}.$$

Describe the singular points of the intersection of $s_2 = 0$ and $s_4 = 0$ in \mathbb{P}^4 .

- 4. Do Exercise 5.3 from Chapter I of Hartshorne's "Algebraic Geometry".
- 5. Do Exercise 5.4 from Chapter I of Hartshorne's "Algebraic Geometry".