Algebraic Geometry, Fall 2013

Homework, set 4, for January 20th, 2014
All varieties are projective (unless otherwise stated) and defined over an algebraically closed field k.

1. Show that a hypersurface of degree 2 with a singular point is a cone.
2. Prove that if a plane curve of degree 3 has 3 singular points then it breaks up as a union of 3 lines.
3. Let s_{i} be the i-th elementary symmetric polynomial in x_{0}, \ldots, x_{4}, i.e.,

$$
s_{i}=\sum_{j_{1}<\ldots<j_{i}} x_{j_{1}} \ldots x_{j_{i}}
$$

Describe the singular points of the intersection of $s_{2}=0$ and $s_{4}=0$ in \mathbb{P}^{4}.
4. Do Exercise 5.3 from Chapter I of Hartshorne's "Algebraic Geometry".
5. Do Exercise 5.4 from Chapter I of Hartshorne's "Algebraic Geometry".

