Algebraic Geometry, Fall 2013

Homework, set 3, for December 16th

All varieties are defined over an algebraically closed field k.

- 1. Let $X \subset \mathbb{P}^2(k)$ be a k-subvariety defined by $y^2z = x^3$, where [x, y, z] are homogeneous coordinates on $\mathbb{P}^2(k)$. Show that X is rational but it is not isomorphic to $\mathbb{P}^1(k)$.
- 2. Let $X \subset \mathbb{P}^2(k)$ be a k-subvariety defined by $y^2z = x^2(x+z)$, where [x,y,z] are homogeneous coordinates on $\mathbb{P}^2(k)$. Show that X is rational but it is not isomorphic to $\mathbb{P}^1(k)$.
- 3. Show that the quadric surface xy zw = 0 in \mathbb{P}^3 is rational but it is not isomorphic to \mathbb{P}^2 .
- 4. Show that intersection of two varieties does not need to be a variety.
 - Find irreducible components of the intersection of two quadric surfaces in $\mathbb{P}^3(k)$ given by $x^2 yw = 0$ and xy zw = 0.
- 5. Let C be a conic given by $x^2 yz = 0$ in $\mathbb{P}^2(k)$ and let L be a line given by y = 0. Show that $C \cap L$ is set-theoretically a point P but $I(P) \neq I(C) + I(L)$. What is a scheme-theoretic explanation of this example?
- 6. Fix $n \geq 2$. Let H_i be a hyperplane in \mathbb{P}^n given by $x_i = 0$. Let $U = \mathbb{P}^n (H_i \cap H_i)$ for some $i \neq j$. Show that $\mathcal{O}_{\mathbb{P}^n}(U) = k$.
- 7. Let C be the curve $y^2 = x^3$ in \mathbb{A}^2 . Let $f: X \to \mathbb{A}^2$ be the blow up at the point O = (0,0). Let $E := f^{-1}(O)$ and let \tilde{C} be the closure of $f^{-1}(C-O)$ in X. Show that $\tilde{C} \cap E$ is one point and $\tilde{C} \simeq \mathbb{A}^1$. Show that $g = f|_{\tilde{C}}: \tilde{C} \to C$ is a homeomorphism but it is not an isomorphism.
- 8. Is the map q from the previous exercise finite?