Algebraic Geometry, Fall 2013

Homework, set 3, for December 16th

All varieties are defined over an algebraically closed field k.

1. Let $X \subset \mathbb{P}^{2}(k)$ be a k-subvariety defined by $y^{2} z=x^{3}$, where $[x, y, z]$ are homogeneous coordinates on $\mathbb{P}^{2}(k)$. Show that X is rational but it is not isomorphic to $\mathbb{P}^{1}(k)$.
2. Let $X \subset \mathbb{P}^{2}(k)$ be a k-subvariety defined by $y^{2} z=x^{2}(x+z)$, where $[x, y, z]$ are homogeneous coordinates on $\mathbb{P}^{2}(k)$. Show that X is rational but it is not isomorphic to $\mathbb{P}^{1}(k)$.
3. Show that the quadric surface $x y-z w=0$ in \mathbb{P}^{3} is rational but it is not isomorphic to \mathbb{P}^{2}.
4. - Show that intersection of two varieties does not need to be a variety.

- Find irreducible components of the intersection of two quadric surfaces in $\mathbb{P}^{3}(k)$ given by $x^{2}-y w=0$ and $x y-z w=0$.

5. Let C be a conic given by $x^{2}-y z=0$ in $\mathbb{P}^{2}(k)$ and let L be a line given by $y=0$. Show that $C \cap L$ is set-theoretically a point P but $I(P) \neq I(C)+I(L)$. What is a scheme-theoretic explanation of this example?
6. Fix $n \geq 2$. Let H_{i} be a hyperplane in \mathbb{P}^{n} given by $x_{i}=0$. Let $U=\mathbb{P}^{n}-\left(H_{i} \cap H_{j}\right)$ for some $i \neq j$. Show that $\mathcal{O}_{\mathbb{P}^{n}}(U)=k$.
7. Let C be the curve $y^{2}=x^{3}$ in \mathbb{A}^{2}. Let $f: X \rightarrow \mathbb{A}^{2}$ be the blow up at the point $O=(0,0)$. Let $E:=f^{-1}(O)$ and let \tilde{C} be the closure of $f^{-1}(C-O)$ in X. Show that $\tilde{C} \cap E$ is one point and $\tilde{C} \simeq \mathbb{A}^{1}$. Show that $g=\left.f\right|_{\tilde{C}}: \tilde{C} \rightarrow C$ is a homeomorphism but it is not an isomorphism.
8. Is the map g from the previous exercise finite?
