Algebraic Geometry, Fall 2013

Homework, set 2, for November 18th

All varieties are defined over an algebraically closed field k.

- 1. Let (X, \mathcal{O}_X) be an affine variety. Take $f \in \mathcal{O}_X(X)$ and consider the open set $U_f = X \setminus V(f)$. Prove that that U_f with induced topology and the induced sheaf is an affine variety.
- 2. Prove the following properties of prevarieties:
 - (a) Every prevariety is irreducible.
 - (b) Every prevariety is a noetherian space.
- 3. Show that the set $U = \mathbb{A}^2(k) \setminus (0,0)$ with Zariski topology and structural sheaf of regular functions is not an affine variety. Is it a prevariety?
- 4. Let (X, \mathcal{O}_X) be an affine k-variety. For a point $x \in X$ we consider the stalk $\mathcal{O}_{X,x}$ with maximal ideal \mathfrak{m}_x and the residue field k(x). Prove that:
 - (a) $k(x) \simeq k$
 - (b) $\mathfrak{m}_x/\mathfrak{m}_x^2$ is a k(x)-module.
 - (c) If $X \subset \mathbb{A}^n(k)$ then the dimension of $\mathfrak{m}_x/\mathfrak{m}_x^2$ over k is $\leq n$.
 - (d) Let X be the affine variety associated to the affine algebraic set $V(x_1^2 x_2^3) \subset \mathbb{A}^2(k)$. Calculate $\mathfrak{m}_x/\mathfrak{m}_x^2$ at x = (0,0).
- 5. Frobenius morphism. Suppose characteristic of k is p > 0. Take $\mathbb{A}^n(k)$ with coordinates (x_1, \ldots, x_n) . Consider a morphism $\phi : \mathbb{A}^n(k) \to \mathbb{A}^n(k)$ given by the formula $\phi(x_1, \ldots, x_n) = (x_1^p, \ldots, x_n^p)$. Show that ϕ is bijective, continuous and open but it is not an isomorphism.

- 6. Let (X, \mathcal{O}_X) be a locally ringed space.
 - (a) Let $U \subset X$ be an open and closed subset. Show that there exists a unique section $e_U \in \mathcal{O}_X(X)$ such that $e_U|_V = 1$ for all open subsets $V \subset U$ and $e_U|_V = 0$ for all open subsets $V \subset X U$.
 - (b) Show that $U \to e_U$ yields a bijection between the set S of open and closed subsets of X and the set of idempotent elements of $\mathcal{O}_X(X)$.
 - (c) Show that $e_U e_V = e_{U \cap V}$ for $U, V \in S$.
 - (d) Prove that the following conditions are equivalent:
 - \bullet X is connected.
 - There exists no idempotent element $e \in \mathcal{O}_X(X)$ with $e \neq 0, 1$.
 - There exists no decomposition of $\mathcal{O}_X(X)$ as a product of two non-zero rings.
- 7. Let R be a local ring. Prove that Spec R is connected.
- 8. Give an example of a morphism of ringed spaces between affine schemes which is not a morphism of locally ringed spaces.