Algebraic Geometry, Fall 2013

Homework, set 2, for November 18th

All varieties are defined over an algebraically closed field k.

1. Let $\left(X, \mathcal{O}_{X}\right)$ be an affine variety. Take $f \in \mathcal{O}_{X}(X)$ and consider the open set $U_{f}=X \backslash V(f)$. Prove that that U_{f} with induced topology and the induced sheaf is an affine variety.
2. Prove the following properties of prevarieties:
(a) Every prevariety is irreducible.
(b) Every prevariety is a noetherian space.
3. Show that the set $U=\mathbb{A}^{2}(k) \backslash(0,0)$ with Zariski topology and structural sheaf of regular functions is not an affine variety. Is it a prevariety?
4. Let $\left(X, \mathcal{O}_{X}\right)$ be an affine k-variety. For a point $x \in X$ we consider the stalk $\mathcal{O}_{X, x}$ with maximal ideal \mathfrak{m}_{x} and the residue field $k(x)$. Prove that:
(a) $k(x) \simeq k$
(b) $\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$ is a $k(x)$-module.
(c) If $X \subset \mathbb{A}^{n}(k)$ then the dimension of $\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$ over k is $\leq n$.
(d) Let X be the affine variety associated to the affine algebraic set $V\left(x_{1}^{2}-x_{2}^{3}\right) \subset \mathbb{A}^{2}(k)$. Calculate $\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$ at $x=(0,0)$.
5. Frobenius morphism. Suppose characteristic of k is $p>0$. Take $\mathbb{A}^{n}(k)$ with coordinates $\left(x_{1}, \ldots, x_{n}\right)$. Consider a morphism $\phi: \mathbb{A}^{n}(k) \rightarrow \mathbb{A}^{n}(k)$ given by the formula $\phi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}^{p}, \ldots, x_{n}^{p}\right)$. Show that ϕ is bijective, continuous and open but it is not an isomorphism.
6. Let $\left(X, \mathcal{O}_{X}\right)$ be a locally ringed space.
(a) Let $U \subset X$ be an open and closed subset. Show that there exists a unique section $e_{U} \in \mathcal{O}_{X}(X)$ such that $\left.e_{U}\right|_{V}=1$ for all open subsets $V \subset U$ and $\left.e_{U}\right|_{V}=0$ for all open subsets $V \subset X-U$.
(b) Show that $U \rightarrow e_{U}$ yields a bijection between the set S of open and closed subsets of X and the set of idempotent elements of $\mathcal{O}_{X}(X)$.
(c) Show that $e_{U} e_{V}=e_{U \cap V}$ for $U, V \in S$.
(d) Prove that the following conditions are equivalent:

- X is connected.
- There exists no idempotent element $e \in \mathcal{O}_{X}(X)$ with $e \neq 0,1$.
- There exists no decomposition of $\mathcal{O}_{X}(X)$ as a product of two non-zero rings.

7. Let R be a local ring. Prove that $\operatorname{Spec} R$ is connected.
8. Give an example of a morphism of ringed spaces between affine schemes which is not a morphism of locally ringed spaces.
