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§1. Introduction.

For a connected space M , let F (M, d) be the space of ordered configurations of d
distinct points in M , which is defined by

F (M, d) = {(x1, · · · , xd) ∈Md : xi 6= xj if i 6= j}.

Let Σd be the symmetric group of d letters {1, 2, · · · , d}. Σd acts on F (M, d) freely in the
usual manner. The orbit space

Cd(M) = F (M, d)/Σd

is called the space of configurations of d distinct points in M . In this paper we shall
assume that M is an open manifold, i.e. each component is non-compact and without
boundary. Adding a point near one of the ends of M gives (up to homotopy) a stabilization
map

jd : Cd(M)→ Cd+1(M).

The following is well-known:

Theorem 0 ([Se]).
If M is an open manifold, then the stabilization map jd : Cd(M) → Cd+1(M) is a

homology equivalence up to dimension [d/2]. ¤
(We shall call a map f : X → Y a homology equivalence up to dimension m if the

induced homomorphism
f∗ : Hi(X,Z)→ Hi(Y,Z)

is bijective when i < m and surjective when i = m.)

Remarks. Various special cases of this result were known earlier. For example:
(1) Let M = Rq (q > 2). Then limq→∞ Cd(Rq) = K(Σd, 1). The homology stabilization
of the maps K(Σd, 1)→ K(Σd+1, 1) follows from work of Nakaoka ([Na]). This also follows
from Theorem 0.
(2) Let M = R2. Then Cd(M) = K(Brd, 1). The statement of Theorem 0 in this case
was proved by Arnold ([A]).
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Let C̃d(M) = F (M, d)/Ad, where Ad ⊂ Σd is the alternating group of d letters
{1, · · · , d}. We shall call C̃d(M) the space of oriented configurations of d distinct points
in M . There is a non-trivial double covering C̃d(M) → Cd(M). Adding a point near an
end of M gives a stabilization map

j̃d : C̃d(M)→ C̃d+1(M).

In this note we shall determine the homological stability dimension for the spaces
C̃d(M), when M is obtained from a compact Riemann surface by removing a finite number
of points.

More precisely, we shall prove:

Theorem 1. Let M be a compact Riemann surface, and let

M ′ = M \ {n points}

where n ≥ 1. Then the stabilization map

j̃d : C̃d(M ′)→ C̃d+1(M ′)

is a homology equivalence up to dimension [(d − 1)/3]. Moreover, this bound is the best
possible.

We shall give a proof in the next section, based on the calculations of [BCT] and [BCM].
First we make some remarks and pose a question:

Remarks. (1) It seems somewhat surprising that the answer is (about) d/3, not d/2 as in
the un-oriented case.
(2) An analogous argument proves a similar result for McDuff’s configuration space C±n (M)
of “positive and negative particles ”([McD]). An application of this will be given in [GKY].

Question. Is Theorem 1 true for any open manifold?

§2. Proof of Theorem 1.

Without loss of generality we shall from now on assume that

M ′ = C− {l points}

and write Cn for Cn(M ′) and C̃n for C̃n(M ′). We shall only consider the case l ≥ 1. The
case l = 0 can be dealt with in a similar way.

We shall show that

(*) Hq(C̃d,F) −→ Hq(C̃d+1,F)
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is bijective for q < n(d) and surjective for q = n(d) if F = Z/p (p is any prime) or F = Q,
where

n(d) =
{

[d/2] if F 6= Z/3
[(d− 1)/3] if F = Z/3

Theorem 1 follows from this and the universal coefficient theorem. (The case F = Z/2 is
trivial. Indeed, since C̃d → Cd is a double covering and the stabilization map Cd → Cd+1

is a homology equivalence up to dimension [d/2], the result follows from the Gysin exact
sequence.)

We shall make use of the following well known fact (cf. [B]):

Lemma 2. Let G be a group and H ⊂ G a subgroup of G of index 2. Let F be any field
of characteristic not equal to 2. Then there is a natural additive isomorphism

Hq(H,F) ∼= Hq(G,F)⊕Hq(G,F(−1))

for any q ≥ 1, where F(−1) denotes the field F with the G-module structure given by

g · f =
{ −f g /∈ H

f g ∈ H

for f ∈ F and g ∈ G. ¤
Let us take G = π1(Cd) and H = π1(C̃d). Since C̃d → Cd is a double covering, H can

be identified with a subgroup of G of index 2. We have C̃d ' K(H, 1), Cd ' K(G, 1)
and we can identify the covering map with the map K(H, 1) → K(G, 1) induced by the
inclusion H ⊂ G. We can thus apply Lemma 2 to obtain:

Lemma 3. If F = Z/p (p any odd prime) or F = Q, then there is a natural additive
isomorphism

Hq(C̃d,F) ∼= Hq(Cd,F)⊕Hq(Cd,F(−1))

for any q ≥ 1 ¤
Now, since Cd → Cd+1 is a homology equivalence up to dimension [d/2], Theorem 1

follows directly from the following result:

Lemma 4. Let q and d be positive integers such that 1 ≤ q ≤ [d/2] and (q, d) 6= (1, 2).
(1) If F = Z/p (p prime, p ≥ 7) or F = Q, then

Hq(Cd,F(−1)) = 0

(2) If F = Z/5 and (q, d) 6= (3, 6), then

Hq(Cd,Z/5(−1)) = 0

(3) If F = Z/3 and d ≥ 3q + 2, then

Hq(Cd,Z/3(−1)) = 0
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Proof. Let 1 ≤ q ≤ [d/2].
By (8.4) of [BCM], if n is sufficiently large, then

Hq(Cd,F(−1)) ∼= Hq+(2n+1)d(Ω2S2n+3 × (ΩS2n+3)l,F)

Note that

Hj((ΩS2n+3)l,F) ∼=
{

Fm(β) if j = (2n + 2)β, β ≥ 0
0 otherwise

and there is a stable splitting ([CMM], [S])

Ω2S2n+3 's ∨α≥1Σ2nDα

where we take

m(β) =
(

β + l − 1
l − 1

)
and Dα = F (C, α)+ ∧Σα (∧αS1).

Since Dα has the homotopy type of a CW complex of dimension 2α− 1, Hj(Dα,Z/p) = 0
for any j ≥ 2α.

Applying the Künneth formula one can show that

(**) Hq(Cd,F(−1)) ∼= ⊕d
α=1H̃q+2α−d(Dα,F)m(d−α)

From now on we shall only consider the case F = Z/p (p an odd prime). The case
F = Q can be dealt with analogously.

The following is well known:

Lemma 5. Let p ≥ 3 be any odd prime.
(1) There is a multiplicative isomorphism

(a) H∗(Ω2S3,Z/p) = Z/p[x1, x2, · · · ]⊗ E[y0, y1, y2, · · · ]

where deg(xi) = 2pi − 2 and deg(yi) = 2pi − 1.
(2) There is an additive isomorphism

(b) H̃∗(Dα,Z/p) = ⊕J=(ε0,m1,ε1,··· )∈JZ/p{
∏
j≥1

x
mj

j ·
∏
j≥0

y
εj
j }

where we take:

J = {J = (ε0, m1, ε1, · · · ) : εj ∈ {0, 1}, mj ≥ 0, w(J) = α}

and
w(J) = ε0 +

∑
j≥1

pj(mj + εj). ¤
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¿From Lemma 5

(c) dim Z/pH̃q+2α−d(Dα,Z/p) = card(F)

where

F = {J = (ε0, m1, ε1, · · · ) 6= (0, 0, · · · ) : εj ∈ {0, 1}, mj ≥ 0, D(J) = q + 2α− d, w(J) = α}

and
D(J) = ε0 +

∑
j≥1

{2(pj − 1)mj + (2pj − 1)εj}.

Here card(S) denotes the cardinality of a finite set S.
Note that for J = (ε0, m1, ε1, · · · ), if w(J) = α, then

D(J) = q + 2α− d⇔ H(J) = ε0 +
∑
j≥1

(2mj + εj) = d− q

Hence

(d) F = {J = (ε0, m1, ε1, · · · ) 6= (0, 0, · · · ) : εj ∈ {0, 1}, mj ≥ 0, w(J) = α, H(J) = d−q}.

By (c) and (d) it suffices to show:

Claim. Let 1 ≤ q ≤ [d/2], 1 ≤ α ≤ d and (q, d) 6= (1, 2).
(1) If p ≥ 7 is an odd prime or p = 5 and (q, d) 6= (3, 6), then F = ∅
(2) If p = 3 and d ≥ 3q + 2, F = ∅.

Proof of Claim. (1) Assume that p ≥ 5 is a prime and J = (ε0, m1, ε1, · · · ) ∈ F .
Since 1 ≤ q ≤ [d/2] ≤ d/2,

ε0 +
∑
j≥1

(2mj + εj) = H(J) = d− q ≥ d/2 ≥ α/2 = {ε0 +
∑
j≥1

pj(mj + εj)}/2.

Hence

(e) ε0 +
∑
j≥1

{(4− pj)mj + (2− pj)εj} ≥ 0

Since J 6= (0, 0, · · · ), one can deduce from (e) that

J = (ε0, m1, ε1, m2, ε2, · · · ) =
{

(1, 0, 0, 0, 0, · · · ) if p ≥ 7
(1, 0, 0, 0, 0, · · · ) or (1, 1, 0, 0, 0, · · · ) if p = 5

Hence

(q, d) =
{

(1, 2) p ≥ 7
(1, 2), (3, 6) p = 5

5



This is a contradiction.
(2) Assume d ≥ 3q + 2 and p = 3. Then

α− d = w(J)− (q + H(J))

= {ε0 +
∑
j≥1

3j(mj + εj)} − {ε0 +
∑
j≥1

(2mj + εj)} − q

=
∑
j≥1

{(3j − 2)mj + (3j − 1)εj} − q

≥ 1
2

∑
j≥1

(2mj + εj)− q

=
1
2
(d− q − ε0)− q (by H(J) = d− q)

=
1
2
(d− 3q − ε0)

≥ 1
2
{(3q + 2)− 3q − 1} =

1
2

> 0

Hence α = w(J) > d, which is a contradiction. ¤
This completes the proof of Theorem 2. ¤
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