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§1. INTRODUCTION.

For a connected space M, let F/(M,d) be the space of ordered configurations of d
distinct points in M, which is defined by

F(M,d) ={(z1,-- ,za) € M? : m; # x; if i # j}.

Let 34 be the symmetric group of d letters {1,2,--- ,d}. ¥4 acts on F(M,d) freely in the
usual manner. The orbit space

Ca(M) = F(M,d)/%q

is called the space of configurations of d distinct points in M. In this paper we shall
assume that M is an open manifold, i.e. each component is non-compact and without
boundary. Adding a point near one of the ends of M gives (up to homotopy) a stabilization
map

jd : Cd(M) — Cd_|_1(M).
The following is well-known:

Theorem 0 ([Se]).
If M is an open manifold, then the stabilization map jq : Cq(M) — Cgqy1(M) is a
homology equivalence up to dimension [d/2]. O

(We shall call a map f : X — Y a homology equivalence up to dimension m if the
induced homomorphism

is bijective when ¢ < m and surjective when i = m.)

Remarks. Various special cases of this result were known earlier. For example:

(1) Let M = R? (¢ > 2). Then lim,_,o, C4(R?) = K(X4,1). The homology stabilization
of the maps K (X4,1) — K (X441, 1) follows from work of Nakaoka ([Na|). This also follows
from Theorem O.

(2) Let M = R?. Then Cy(M) = K(Brg,1). The statement of Theorem 0 in this case
was proved by Arnold ([A]).



Let Cy(M) = F(M,d)/Ay, where Aq C ¥4 is the alternating group of d letters
{1,---,d}. We shall call Cy(M) the space of oriented con figurations of d distinct points
in M. There is a non-trivial double covering Cy(M) — Cy(M). Adding a point near an
end of M gives a stabilization map

a1 Ca(M) — Caypr(M).

In this note we shall determine the homological stability dimension for the spaces
é’d(M ), when M is obtained from a compact Riemann surface by removing a finite number
of points.

More precisely, we shall prove:

Theorem 1. Let M be a compact Riemann surface, and let
M' = M\ {n points}
where n > 1. Then the stabilization map
Ja: Ca(M') — Casr (M)
is a homology equivalence up to dimension [(d — 1)/3]. Moreover, this bound is the best

possible.

We shall give a proof in the next section, based on the calculations of [BCT] and [BCM].
First we make some remarks and pose a question:

Remarks. (1) It seems somewhat surprising that the answer is (about) d/3, not d/2 as in
the un-oriented case.

(2) An analogous argument proves a similar result for McDuff’s configuration space C:¥ (M)
of “positive and negative particles ”([McD]). An application of this will be given in [GKY].

Question. Is Theorem 1 true for any open manifold?

§2. PROOF OF THEOREM 1.

Without loss of generality we shall from now on assume that
M’ = C — {I points}
and write C,, for C,,(M") and C,, for C’n(M ’). We shall only consider the case [ > 1. The
case | = 0 can be dealt with in a similar way.
We shall show that
(*) Hy(Ca,F) — Hy(Cys1,F)
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is bijective for ¢ < n(d) and surjective for ¢ = n(d) if F = Z/p (p is any prime) or F = Q,
where
[d/2] it F #£7Z/3
n(d) = :
[(d—1)/3] ifF=7/3

Theorem 1 follows from this and the universal coefficient theorem. (The case F = Z/2 is
trivial. Indeed, since C’d — (4 is a double covering and the stabilization map Cy — Cyy1
is a homology equivalence up to dimension [d/2], the result follows from the Gysin exact
sequence.)

We shall make use of the following well known fact (cf. [B]):

Lemma 2. Let G be a group and H C G a subgroup of G of index 2. Let F be any field
of characteristic not equal to 2. Then there is a natural additive isomorphism

H,(H,F)= H,(G,F)® H,(G,F(-1))

for any q > 1, where F(—1) denotes the field F with the G-module structure given by

p={ ot
T geH

for feF and ge G. O

Let us take G = m,(Cy) and H = 7;(Cy). Since Cy — Cy is a double covering, H can
be identified with a subgroup of G of index 2. We have Cy ~ K(H,1), Cq ~ K(G,1)
and we can identify the covering map with the map K(H,1) — K(G,1) induced by the
inclusion H C GG. We can thus apply Lemma 2 to obtain:

Lemma 3. If F = Z/p (p any odd prime) or ¥ = Q, then there is a natural additive
isomorphism

H(I(édv F) = HQ(Cd7 F) > HQ(Cd7 F(_l))
foranyq>1 0O

Now, since Cq — Cy41 is a homology equivalence up to dimension [d/2], Theorem 1
follows directly from the following result:

Lemma 4. Let q and d be positive integers such that 1 < q < [d/2] and (q,d) # (1,2).
(1) If F =Z/p (p prime, p>7) or F = Q, then

H, (Cg,F(—1)) =0
(2) If F = Z/5 and (q,d) # (3,6), then

Hy(Cy,Z/5(—1)) = 0
(3) IfF = Z/3 and d > 3q + 2, then

Hy(Cy,Z/3(~1)) = 0
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Proof. Let 1 < q < [d/2].
By (8.4) of [BCM], if n is sufficiently large, then

Hy(Cq, F(—1)) 2 Hyy (2n11)a(9257"3 x (QS*H3)1 F)

Note that

F™®)  if j=2n+2 >0
Hj((QS2n+3)l,F) g{ 1 g ( n + )/87 ﬁ_

0 otherwise

and there is a stable splitting ([CMM], [S])
Q2s2n+3 ~ \/ozZlEZnDa

where we take

m(B) = (5 l+_l I 1) and D, = F(C,a): As, (A“Sh).

Since D, has the homotopy type of a CW complex of dimension 2ac— 1, H;(Dy,Z/p) =0
for any 5 > 2a.
Applying the Kiinneth formula one can show that

(**) Hy(Ca, F(-1)) 2 @4 Hyraa—d(Da, F)™

a=1

From now on we shall only consider the case F = Z/p (p an odd prime). The case
F = Q can be dealt with analogously.
The following is well known:

Lemma 5. Let p > 3 be any odd prime.
(1) There is a multiplicative isomorphism

(a) H.(Q%S%Z/p) = Z/plx1,22,- -] @ Elyo, y1, Y2, -]

where deg(z;) = 2p* — 2 and deg(y;) = 2p* — 1.
(2) There is an additive isomorphism

(b) Ij[*(DOnZ/p) = @J:(eo,ml,el,m)ejz/p{l_[x;'nj : Hy;j}

Jjz1 Jj=20
where we take:
J ={J = (e0,m1,€1,---) 1 ¢, € {0,1},m; > 0,w(J) = o}
and
w(J) =€+ Y p(mj+¢). O
Jj=1
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JFrom Lemma 5
(©) dim 7/, Hyt20—a(Das Z/p) = card(F)
where
F={J = (eg,mi,€1,--) #(0,0,---) 1 ¢, €{0,1},m; > 0,D(J) =q+2a—d,w(J) =a}

and

D(J)=eo+ > {2007 — 1)m; + (20" — 1)e;}.

Jjz1
Here card(.S) denotes the cardinality of a finite set S.
Note that for J = (eg,m1, €1, ), if w(J) = «, then
D(J)=q+2a—-d< H(J) :€0+Z(2m]‘+€j) =d—q
Jjz1
Hence

(d) f:{‘]:<607m17617"') 7&(0’07"'):63' € {071}7mj EO,w(J):a,H(J):d—q}.

By (c) and (d) it suffices to show:

Claim. Let 1 <¢<[d/2],1<a<d and (q,d) # (1,2).
(1) If p > 7 is an odd prime or p =15 and (q,d) # (3,6), then F =)
(2) Ifp=3 andd > 3q+2, F =10.

Proof of Claim. (1) Assume that p > 5 is a prime and J = (eg, my, €1, ) € F.
Since 1 < ¢ < [d/2] < d/2,

jz1 j>1

Hence

(e) o+ Y {4 —p)m;+(2-p')e;} 20

Jj=1

Since J # (0,0, ---), one can deduce from (e) that

(1,0,0,0,0,---) iftp>7

J: , , , , yort ) = ]
(€0, m1, €1, M2, €2 ) {(1’0’0’0’0’...)01"(1,1,0,0,0,...) ifp=>5

Hence

. (172) p=>7
(@.4) = { (172)7(376) p=>5
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This is a contradiction.
(2) Assume d > 3g + 2 and p = 3. Then

a—d=w(J)—(¢g+ H(J))
={eo+ > _ 3(mj+e)t—{eo+ > 2m;+e)}—q

j>1 ji>1
=Y B =2)m; + (37 = 1)e;} —¢q
i>1
1
> 52(27’”3‘ +6€)—q
i>1

:%(d—q—eo)—q (by H(J) =d —q)

1
= §(d—3q—60)

Vv

1 1

Hence a = w(J) > d, which is a contradiction. [

This completes the proof of Theorem 2. [
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