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Streszczenie

Nucleosomes form the fundamental repeating units of chromatin, which is used to pack large
eukaryotic genomes into the nucleus while still ensuring appropriate access to it. Chromatin
consists mostly of DNA and proteins, and its structure is inevitably related to the regulation
of gene transcription.

In 2009, first genome-wide maps of nucleosome occupancy in vitro and in vivo were
obtained for yeast [Kaplan et al., Nature, vol. 458]. Relying on the experimental data,
the authors devised a computational model of nucleosome sequence preferences. The model
is based on thermodynamical equilibrium, and involves two free parameters, representing
nucleosome concentration and inverse temperature.

My thesis is directed towards improvement of this model. I will analyse the impact of the
model parameters to overall performance of prediction and compare different ways to estimate
model parameters. I will also explain the influence of the individual components on model
accuracy.
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Chapter 1

Introduction

In my thesis, a computational model on nucleosome binding is being considered. Its ap-
plication to the available experimental data gives the opportunity to asses its performance
and the impact of the model parameters and components to overall accuracy. The detailed
organisation of the thesis is described below.

The meaning and role of nucleosomes in eukaryotic cells is commonly known among biologists.
However, for a mathematician or a computer scientist, there is a need to explain basic facts
in this matter. Chapter 2 briefly presents the biological knowledge required to get the full
understanding of my work.

The third and fourth chapter form the theoretical core of the thesis. In chapter 3, the nu-
cleosome binding model formulated by Kaplan et al. [1] is introduced. It consists of two
components: the position-specific dinucleotide component and the position-independent com-
ponent. My contribution was to propose several variants of these two components. Although
all of the variants have been inspired by [1], they depict diverse features, which were subject
to further discussion.

Chapter 4 follows Field et al. [2] in describing a thermodynamical model of nucleosome
binding. It makes use of scores calculated by the nucleosome binding model from the previous
chapter. The thermodynamical model is based on thermodynamical equilibrium. It involves
two free parameters, representing nucleosome concentration and inverse temperature.

To assess the accuracy of various model variants on the available data, it is useful to work
with the optimal values of the two parameters mentioned above. Chapter 5 introduces two
widely known optimisation algorithms, which were applied to this problem: the Newton-type
algorithm and the Nelder and Mead algorithm.

Chapter 6 concerns the experimental results of my work. The data was collated from the pub-
licly available Saccharomyces Genome Database [3] and from the novel experiments performed
by Kaplan et al. [1]. The experiments provided genome-wide maps of in vitro nucleosome
occupancy for yeast.

My contribution was to test performance of different model variants proposed in chapter 3.
For each variant, I have preformed an experiment on a small scale, considering a single yeast
chromosome. The experiment involved training the model on the data available from [1].
The optimal values of the two free parameters, maximising the correlation between the model
prediction and the available nucleosome occupancy map, were found using the algorithms
described in chapter 5. For the promising model variants, I have repeated the experiments
on a large scale, taking the whole yeast genome.
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In chapter 7, some final conclusions are given on the impact of the model variant and pa-
rameters to overall performance of prediction. Different ways to estimate model parame-
ters and the influence of the individual components on model accuracy are also discussed.
The concluding remarks propose possible improvements on the nucleosome binding model.

I am very grateful to Dr. Shyam Prabhakar from the Genome Institute of Singapore for his
helpful suggestions. He proposed the relative (R) variant of the position-specific dinucleotide
component, which happened to be very robust.

Last but not least, I am very thankful to my thesis advisor, Prof. Jerzy Tiuryn, not only for
proposing more and more brave new concepts for my thesis, but for his assistance, invaluable
discussions on results and helpful suggestions as well.
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Chapter 2

Nucleosomes and their binding

2.1. Nucleosome structure and function

Nucleosomes form the fundamental repeating units of chromatin, which is used to pack large
eukaryotic genomes into the nucleus while still ensuring appropriate access to it. Chromatin
is the heterogeneous substance, consisting mostly of DNA and proteins, that makes up chro-
mosomes in eukaryotic cells. Its structure is inevitably related to the regulation of gene
transcription, allowing an easier access to regulatory regions.

The internal structure of chromosomes involves folding the DNA double helix several times
to make it more compact, and nucleosomes are the first level of their structure. Alberts et
al. [4, p. 208] explains the nucleosome organisation as following:

The structural organization of nucleosomes was determined after first isolat-
ing them from unfolded chromatin by digestion with particular enzymes (called
nucleases) that break down DNA by cutting between the nucleosomes. After
digestion for a short period, the exposed DNA between the nucleosome core par-
ticles, the linker DNA, is degraded. Each individual nucleosome core particle
consists of a complex of eight histone proteins – two molecules each of histones
H2A, H2B, H3, and H4 – and double-stranded DNA that is 146 nucleotide pairs
long. The histone octamer forms a protein core around which the double-stranded
DNA is wound.

Some other sources, e.g. Lodish et al. [5], refer to 147 nucleotide pairs as the nucleosome
length; it is the matter of convention. The DNA is wrapped around the histone core of
the nucleosome in about 12

3 left-handed superhelical turns. The histone octamer enforces
a very regular, repetitive and symmetric structure of nucleosomes, presented on Fig. 2.1.

The nucleosome structure is identical in all the known eukaryotic species living on Earth.
Alberts et al. [4] points out that “. . . the histones are among the most highly conserved
eucaryotic proteins. For example, the amino acid sequence of histone H4 from a pea and a cow
differ at only at 2 of the 102 positions.”

Repeating nucleosomes are interlaced with “linker” DNA fragments of length 5-80 base pairs
(bp), usually about 50 bp. The structure formed by nucleosomes and linkers together is
known descriptively as “beads on a string”.
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Figure 2.1: Nucleosome: DNA sequence (light orange) wrapped around histone core (dark
blue). Illustration in public domain, by David S. Goodsell of The Scripps Research Institute.

2.2. Data sources on nucleosome binding

In 2009, first genome-wide maps of nucleosome occupancy in vitro and in vivo were obtained
for yeast by Kaplan et al. [1].

A novel concept has been applied to obtain in vitro nucleosome occupancy, governed solely
by nucleosome sequence preferences. To this end, purified chicken histone octamers were
assembled on purified yeast genomic DNA in fluently changing biochemical environment.

In both the in vitro and in vivo cases, the nucleosomes were separated off the linkers using
a DNA-cutting enzyme – micrococcal nuclease. The nucleosome-bound sequences have been
unwound and sequenced.

In my experiments, I have used the in vitro nucleosome occupancy map, consisting of
9,313,383 reads of nucleosome-bound sequences of length 147, uniquely mapped to the yeast
genome. The dataset involved 5,319,670 different sequence fragments.

It is noteworthy that the in vitro and in vivo maps are highly similar, but they contain
definite differences in genomic regions related to gene transcription, such as transcription
start sites.
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Chapter 3

Nucleosome binding model

We represent the sequence binding preferences of nucleosomes by devising a probabilistic
model. It will assign a numeric score to every genomic sequence of length 147 bp, which we
assume to be the nucleosome length.

It is observed that the sequence binding preferences differ along the nucleosome, due to the pe-
riodic nature of DNA double helix. The first component will capture the periodic signal of
nucleotide pairs (called dinucleotides) along the nucleosome.

The second component will capture the overall, position-independent nucleosome binding
preferences. We will consider DNA sequences of length 5 (called 5-mers), and consider
whether they are favoured or disfavoured by nucleosomes.

3.1. Position-specific dinucleotide component

We introduce this component in order to capture the periodic signal of dinucleotides along
the nucleosome. Let us assume for a while that we have fixed statistical weights Ni(pq) for
each 1 ≤ i ≤ 146, p, q ∈ Σ = {A,C,G, T}. We will consider Ni(pq) as the probability of
encountering dinucleotide pq at i-th position of the nucleosome. Thus Ni(·) is a probability
distribution.

We can generalise the definition of Ni to include single nucleotides (also called mononu-
cleotides). For each 1 ≤ i ≤ 146 and p ∈ Σ, we put Ni(p) =

∑
q∈ΣNi(pq). Let us assume

that S is a genomic sequence of length 147. Then we define the position-specific dinucleotide
component N as follows:

N (S) = N1(S1) ·
146∏
i=1

Ni(SiSi+1)
Ni(Si)

= N1(S1S2) ·
146∏
i=2

Ni(SiSi+1)
Ni(Si)

(3.1)

The fractions in the preceding equation are natural representations of the conditional proba-
bility of observing Si+1 at the (i+ 1)-th position of the nucleosome, given the occurrence of
Si at the i-th position.

The weights Ni(pq) have been estimated building on in vitro reads of nucleosome-bound
sequences. Due to the two-fold symmetry in the nucleosome structure, each sequence has
been included twice, once in its original form, and once in its reverse compliment form.

Table 3.1 explains how to make use of these data to estimate six variants of Ni(pq), with
abbreviated names N, NS, D, DS, R, RS. Moreover, a null variant, named Z, is defined such
that Ni(pq) = 1/16 for each i and p, q.
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For each 1 ≤ i ≤ 146 and p, q ∈ Σ = {A,C,G, T}, let #i(pq) be the empirical number
of occurrences of dinucleotide pq at position i.

No smoothing Smoothing (S)
For each 2 ≤ i ≤ 145 and p, q ∈ Σ, let

#′i(pq) =
#i−1(pq) + #i(pq) + #i+1(pq)

3
,

#′1(pq) = (#1(pq) + #2(pq))/2,
#′146(pq) = (#145(pq) + #146(pq))/2.
Now we substitute each #i(pq) with #′i(pq).

Natural variant (N) Double-normalised variant (D) Relative variant (R)
For 1 ≤ i ≤ 146 and p, q ∈ Σ, For 1 ≤ i ≤ 146 and p, q ∈ Σ, For 1 ≤ i ≤ 146 and p, q ∈ Σ,
we put ni(pq) = #i(pq). we put

ni(pq) =
#i(pq)∑146

j=1 #j(pq)
.

we put

ni(pq) =
#i(pq)

Overall(pq)
,

where Overall(·) is the
genome-wide probability
distribution of dinucleotides.

Normalise ni(pq) to a probability distribution:

Ni(pq) =
ni(pq)∑

r,s∈Σ ni(rs)
.

Table 3.1: Main workflow to estimate statistical weights Ni(pq).
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Following the above workflow, we are able to estimate six variants of Ni(pq), denoted by
abbreviations N, D, R (not smoothed) and NS, DS, RS (smoothed). Smoothing is done due
to the observation that ±1 bp shift of nucleosome positions may occur due to the experimental
process.

In further analysis, only the central 127 bp of the nucleosomes will be used, and thus we put
Ni(pq) = 1/16 for i ∈ {1, 2, . . . , 10, 138, 139, . . . , 146} and each p, q ∈ Σ. In this way, we avoid
the sequence biases occuring at the micrococcal nuclease cut sites.

Note that the explained procedure always generates a reverse complement symmetrical dis-
tribution, that is, assuming that sequences pq and rs are reverse complement, we have
Ni(pq) = Ni(rs) for each i. Therefore the position-specific dinucleotide component involves
(4

2 + 4) · (127− 1) = (6 + 4) · 126 = 1260 parameters.

3.2. Position-independent component

We introduce this component to represent sequence fragments that are generally favoured or
disfavoured by nucleosomes, regardless of their position within the nucleosome. In our model,
we will assume that we have fixed statistical weights L(p1 . . . p5) for each 5-mer p1, . . . , p5 ∈ Σ.

We will consider L(p1 . . . p5) as the probability of encountering a given 5-mer p1 . . . p5 in the
nucleosome-bound sequence. Thus L(·) is a probability distribution.

Following the idea from the previous section, we can generalise the definition of L to include
4-mers. For p1, . . . , p4 ∈ Σ, we put L(p1 . . . p4) =

∑
q∈Σ L(p1 . . . p4q). Let us assume that S

is a genomic sequence of length 147. Then we define the position-independent component L
as follows:

L(S) = L(S1) · L(S1S2)
L(S1)

· L(S1S2S3)
L(S1S2)

· L(S1 . . . S4)
L(S1S2S3)

· L(S1 . . . S5)
L(S1 . . . S4)

·
143∏
i=2

L(Si . . . Si+4)
L(Si . . . Si+3)

= L(S1 . . . S5) ·
143∏
i=2

L(Si . . . Si+4)
L(Si . . . Si+3)

(3.2)

The fraction in the preceding equation is a natural representation of the conditional proba-
bility of observing Si+4 at the (i+ 4)-th position of the nucleosome, given the occurrence of
Si . . . Si+3 at the i-th position.

The weights L(p1 . . . p5) have been estimated building on in vitro reads of nucleosome-bound
sequences. For each p1 . . . p5 ∈ Σ, let #i(p1 . . . p5) be the empirical number of occurrences
of 5-mer p1 . . . p5 in nucleosome reads. The following four variants of L(p1 . . . p5) have been
tried:

1. Natural (N):

L(p1 . . . p5) =
#(p1 . . . p5)∑

q1,...,q5∈Σ #(q1 . . . q5)
.

2. Literally as specified in Kaplan et al. [1] (P):

L(p1 . . . p5) =
1

#(p1...p5)∑
q1,...,q5∈Σ

1
#(q1...q5)

.
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3. Relative (R):

L(p1 . . . p5) =
Overall(p1...p5)

#(p1...p5)∑
q1,...,q5∈Σ

Overall(q1...q5)
#(q1...q5)

,

where Overall(·) is the genome-wide probability distribution of 5-mers.

4. Null (Z), defined such that L(p1 . . . p5) = (1
4)5.

Following the argument from the previous section, only central 127 bp of the nucleosomes
will be used to calculate empirical number of 5-mer occurrences #i(p1 . . . p5).
The position-independent component involves 45 = 1024 parameters.

3.3. Overall binding score

Overall binding score has been calculated as

Score(S) = ln
N (S)
L(S)

, (3.3)

for each genomic sequence S of length 147.
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Chapter 4

Thermodynamical model

In the previous chapter, we have explained how to assign nucleosome binding score to every
genomic sequence of length 147. We then use these scores to compute the genome-wide nucle-
osome occupancy map, taking into account steric hindrance constraints between neighbouring
nucleosomes.

Let us consider genomic sequence S of any length. We may think of S the whole chromosome.
In fact, in our experiments we will exclude highly repetitive genomic regions, thus consider
S as a maximal continuous chromosome fragment not including highly repetitive regions. To
avoid possible bias caused by boundary effects, the length M of sequence S should be at least
one order of magnitude larger than the fixed nucleosome length (147).

For the reasons of clarity, we simply assume that M ≥ 147. If M < 147, then for sure there
is no nucleosome bound to S.

Let C be the space of all legal configurations of nucleosomes on a sequence S, where a legal
configuration is a set of 147 bp nucleosomes on S, represented by their start positions, such
that no two nucleosomes overlap. For each configuration c ∈ C, consisting of k nucleosomes
of start positions c[1], . . . , c[k], we assign the statistical weight

Wc[S] =
k∏

i=1

τ · exp(β · Score(S[c[i] . . . c[i] + 146])), (4.1)

where τ and β are fixed parameters, and S[k . . . l] denotes subsequence of S from position k
to position l, inclusively.

Parameter τ may be considered as nucleosome concentration, and β as inverse tempera-
ture. Assuming the Boltzmann distribution on C, we can estimate the probability of each
configuration c ∈ C in the following way:

P (c|S) =
Wc[S]∑

c′∈CWc′ [S]
. (4.2)

We may try to find out the configuration c ∈ C that maximises P (c|S). However, it seems
to be quite hard to avoid the exponential cost of looking through all the configurations from
C. Moreover, sticking to the most probable configuration may be misleading, because we may
miss a subset of similar configurations having high cumulative probability.

Therefore we will take a different approach. Our goal will be to calculate, for each position
on S, the average nucleosome occupancy of it, defined as the probability of covering this
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position by any nucleosome. At first, we use a dynamic programming method to compute
the probability of placing a nucleosome that starts at each position on S.
The most important observation is that the probability of placing a nucleosome starting at
a particular position i is equal to the sum of the statistical weights W of all configurations
in which a nucleosome starts at position i, divided by the sum

∑
c∈CWc[S] of the statistical

weights of all legal configurations of nucleosomes on S. Both of these sums can be computed
efficiently in three effective steps:

1. Forward step: we compute a set of variables F1, . . . , FM , where Fi represents the sum
of the statistical weights of all legal configurations of the subsequence S1, . . . , Si, as
follows:

F0 := 1 (for completeness), (4.3)

Fi := Fi−1 for 1 ≤ i ≤ 146, (4.4)

Fi := Fi−1 + Fi−147 · τ · exp(β · Score(S[i− 146 . . . i]))
for 147 ≤ i ≤M. (4.5)

Due to the equation 4.1, for empty configuration of nucleosomes c0, we have Wc0 [S] = 1
and thus Fi = 1 for 1 ≤ i ≤ 146. The formula 4.5 incorporates the fact that every
configuration c of nucleosomes on the subsequence S1, . . . , Si satisfies exactly one of
the two following conditions:

(a) c contains no nucleosome at S[i], and thus can be considered as a configuration of
nucleosomes on subsequence S1, . . . , Si−1

(b) c contains nucleosome at S[i − 146 . . . i] (and on subsequence S1, . . . , Si−147 any
legal configuration of nucleosomes may occur).

2. Reverse step: we compute a set of variables R1, . . . , RM , where Ri represents the sum
of the statistical weights of all legal configurations of the subsequence Si, . . . , SM , as
follows:

RM+1 := 1 (for completeness), (4.6)

Ri := Ri+1 for M − 145 ≤ i ≤M, (4.7)

Ri := Ri+1 +Ri+147 · τ · exp(β · Score(S[i . . . i+ 146]))
for 1 ≤ i ≤M − 146. (4.8)

3. Aggregation step: First observe that by definition of Fi and Ri,

FM = R1 =
∑
c∈C

Wc[S]. (4.9)

We can now easily compute the probability Pi[S] of placing a nucleosome starting at
a particular position 1 ≤ i ≤M − 146 of S:

Pi[S] =
Fi−1 · τ · exp(β · Score(S[i . . . i+ 146])) ·Ri+147

R1
. (4.10)

The average nucleosome occupancy, defined as the probability of covering a particular
position i by any nucleosome, may now be calculated as the sum of probabilities of
starting a nucleosome at any of the positions from i− 146 to i, that is

146∑
k=0

Pi−k[S]. (4.11)
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Chapter 5

Optimisation algorithms

To estimate the parameters τ and β of the thermodynamical model, some sort of optimisation
algorithm must be applied. In this chapter, the two used algorithms will be described:
the Newton-type algorithm and the Nelder and Mead algorithm. Both of them are widely
used in numerical computations.

Traditionally, the optimisation algorithms are formulated as minimisation problems, so in this
chapter we will follow this point of view. It is obvious that by changing the sign of the ob-
jective function, they can be easily adopted to solve maximisation problems.

Both of the used algorithms are described in detail by Kincaid et al. [6].

5.1. Newton-type algorithm

The widely known Newton method of finding roots of a given differentiable function f : R→ R
starts with an initial guess x(0) and iteratively calculates

x(n+1) = x(n) − f(x(n))
f ′(x(n))

. (5.1)

If x(n+1) 6= x(n), then

f ′(x(n+1)) =
f(x(n))− 0
x(n) − x(n+1)

(5.2)

and it follows from the geometrical interpretation of the derivative that x(n+1) is the x-axis-
intercept of the tangent line to f in x(n). If the process converges, that is x(n) → x∗, then
the point x∗ satisfies f(x∗) = 0.

Assuming that f ∈ C1, we can apply the Newton method to find the local maxima and minima
of f . In such a local extremum, the first derivative of f is zero, and we may iteratively find
points satisfying f ′(x∗) = 0:

x(n+1) = x(n) − f ′(x(n))
f ′′(x(n))

. (5.3)

Let us consider a multi-dimensional problem of finding the local maxima and minima of
f : Rk → R and assume that f ∈ C2. We are looking for x∗1, . . . , x

∗
k satisfying the system of

equations
∂f(x∗1, . . . , x

∗
k)

∂xi
= 0 for each i = 1, . . . , k. (5.4)
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To this end, start with an initial guess x(0)
1 , . . . , x

(0)
k and in the similar way as in Eq. 5.3,

iteratively calculate

x
(n+1)
i = x

(n)
i −

∂f
∂xi

(x(n)
1 , . . . , x

(n)
k )

∂2f
∂x2

i
(x(n)

1 , . . . , x
(n)
k )

for each i = 1, . . . , k. (5.5)

If the process converges, that is x(n)
i → x∗i for each coordinate i = 1, . . . , k, then the point

x∗ = (x∗1, . . . , x
∗
k) satisfies (

∂f

∂x1
, . . . ,

∂f

∂xk

)
(x∗) = ∇f(x∗) = 0. (5.6)

It means that x∗ may be a good candidate for a local maximum or a local minimum. Precisely
speaking, if x∗ is a local extremum of f , then ∇f(x∗) = 0, but the opposite is not true.
In appliances, all the first and second derivatives are numerically approximated, so the method
is computationally demanding. However, the underlying theory may give some reliability for
the well-behaved functions.

5.2. Neder and Mead algorithm

The Nelder and Mead algorithm, originally described in [7], is designed to solve the optimisa-
tion problem of minimising a given function f : Rn → Rn. This method belongs to the direct
search methods, because it uses only the function values at some points in Rn, and does not
try to calculate an approximate gradient in any of these points.
The algorithm uses the concept of simplex, which is defined as a convex hull of n+ 1 vertices
in n-dimensional space Rn. The simplest simplexes are: a line segment in R, a triangle in R2,
a tetrahedron in R3.
The basic description of the algorithm is given below. In the following subsections more
detail is given on the most important aspects of it.
The algorithm begins with a set of n + 1 points x0, . . . , xn ∈ Rn that are considered as
the vertices of a working simplex S. The corresponding function values f(xi) are calculated
for each initial or changed vertex and stored for further use. The initial working simplex S
has to be non-degenerate, meaning that their points must not lie in the same hyperplane.
The main part of the algorithm is to perform a sequence of transformations of the working
simplex S, aimed at decreasing the function values at its vertices. At each step, the transfor-
mation is determined by computing several test points, together with their function values.
The function values at the test points are compared with those at the simplex vertices. To
this end, a new set of simplex vertices is selected.
The process is successfully terminated when the working simplex S becomes sufficiently small
in some sense, or when the function values at the simplex vertices are close enough.

5.2.1. Initial simplex

The frequent choice is to start with a given input point x0 and to set up the remaining initial
n vertices as

xi = x0 + hiei (5.7)

for each i = 1, . . . , n, where ei is a unit vector in i-th dimension in Rn, and hi are step sizes
in the respective dimensions. Often hi = 1 is assumed by default.
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5.2.2. Simplex transformation

The following steps are repeated until one of the termination tests is satisfied. The steps 3-6
have been depicted on Fig. 5.1-5.5, with images acquired from Singer et al. [8].

1. Ordering: Determine the indices h, s, l of the worst, second worst and the best vertex
in the working simplex S, respectively.

2. Calculate centroid: Calculate the centroid c of the best side of simplex S – that is,
the side opposite worst vertex xh:

c =
1
n

∑
i 6=h

xi. (5.8)

In the next three steps, we will try to substitute the worst vertex xh with a better point
laying on the line defined by xh and c. If all the three steps should fail, we will compute
n new vertices of the simplex, shrinking it towards the best vertex xl.

3. Reflection: Compute the reflection point xr = c + α · (c − xh). Usually α = 1 is
assumed.

If the reflected point is better than the second worst, but not better than the best
(f(xl) ≤ f(xr) < f(xs)), substitute the vertex xh with xr and go to step 1.

4. Expansion: If the reflected point is better than the best (f(xr) < f(xl)), compute
the expansion point xe = c+ γ · (xr − c). Usually γ = 2 is assumed.

If f(xe) < f(xr), substitute the vertex xh with the expanded point xe, otherwise sub-
stitute it with the reflected point xr. In both cases, go to step 1.

The greedy approach to minimisation ensures that the better of the two points xr,
xe is included in the new simplex. Moreover, the simplex is expanded if and only if
f(xe) < f(xr) < f(xl), what helps to keep its size small.

5. Contraction: Now it is certain that f(xr) ≥ f(xs). Compute the contraction point xc

by using the better of two points xh and xr:

• Contraction outside: if f(xr) < f(xh), compute xc = c + β · (xr − c). If
f(xc) < f(xr), substitute the vertex xh with the contracted point xc and go
to step 1.

• Contraction inside: if f(xr) ≥ f(xh), compute xc = c+ β · (xh − c). If f(xc) <
f(xh), substitute the vertex xh with the contracted point xc and go to step 1.

Usually β = 1
2 is assumed.

6. Reduction: When none of the above steps succeeded in substitution of the worst
vertex xh, we will substitute all but the best vertex. For each i = 0, 1, . . . , n, satisfying
i 6= l, substitute xi with xi + δ · (xi − xl). Usually δ = 1

2 is assumed.
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Figure 5.1: Reflection. Figure 5.2: Expansion.

Figure 5.3: Contraction
outside.

Figure 5.4: Contraction
inside.

Figure 5.5: Reduction.

5.2.3. Termination tests

Three different termination tests are used concurrently. If at least one of them is satisfied,
the algorithm will finish.

• Domain: if the working simplex S is sufficiently small in some sense, the algorithm
terminates with success.

• Function value: if the function values f(xi) are close enough in some sense, the algo-
rithm terminates with success.

• No convergence: if the number of iterations or function evaluations exceeds a given
limit, the algorithm terminates with failure.

5.3. Comparison of optimisation algorithms

The main advantage of the Newton-type algorithm is the underlying theory, ensuring the ex-
istence of solutions for a wide class of functions. Nevertheless, while optimising the fitting
of the model to the experimental data, we cannot expect the likelihood function to be well-
behaved or even continuous.

In such a case the Nelder and Mead algorithm is more appropriate. It is designed to work
reasonably well for non-differentiable functions. Because it uses only the function values,
and does not try to estimate the derivatives, it is more robust.

It is important to recall that both of the described algorithms act locally. Therefore, they
are finding local extrema, which need not to be global ones.
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Chapter 6

Results

6.1. Performed experiments

We devised the nucleosome binding model using the in vitro nucleosome occupancy data for
yeast, provided by Kaplan et al. [1] and described in section 2.2. The yeast genome data has
been acquired from Saccharomyces Genome Database [3].

In the whole analysis, we have excluded highly repetitive genomic regions and their 150-bp
vicinity, leaving out 10.7% of the whole yeast genome. The information on the repetitive
regions was provided by Kaplan et al. [1],

Fig. 6.1 shows the amount of each nucleotide along the nucleosome reads. The anomalies
at the ends of nucleosome-bound sequences are thought to be caused by the micrococcal
nuclease specificity, and due to them, only the central 127 bp of the nucleosome reads will be
used. Please note that the GC-content of yeast is about 38%.

The first stage was to estimate all the variants of position-specific dinucleotide component
and position-independent component described in chapter 3.

Fig. 6.2-6.4 present the three unsmooothed position-specific nucleotide components (excluding
the null component Z). For each of them, the joint weights for dinucleotides consisting only
of adenine and thymine and for dinucleotides consisting only of cytosine and guanine were
plotted. According to Lodish et al. [5], there are about 10.5 base pairs per DNA double helix
turn, and this periodicity is clearly visible.

Table 6.1 shows the Pearson correlation between different variants of position-specific nu-
cleotide component, considered as vectors of 1260 parameters. We may notice that smoothing
does not introduce any significant change; the latter discussed results will confirm it.

D DS N NS R RS
D 100.0% 99.6% 16.2% 15.9% 34.7% 34.0%

DS 99.6% 100.0% 16.1% 16.0% 34.5% 34.1%
N 16.2% 16.1% 100.0% 100.0% -86.2% -86.5%

NS 15.9% 16.0% 100.0% 100.0% -86.4% -86.7%
R 34.7% 34.5% -86.2% -86.4% 100.0% 99.9%

RS 34.0% 34.1% -86.5% -86.7% 99.9% 100.0%

Table 6.1: Pearson correlation between different variants of position-specific nucleotide com-
ponent, considered as vectors of 1260 parameters.

19



0 50 100 150

0.
20

0.
25

0.
30

Nucleosome position

N
uc

le
ot

id
e 

fr
eq

ue
nc

y

A
C
G
T

Figure 6.1: Nucleotide frequencies along
the nucleosome.
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Figure 6.2: Position-specific dinucleotide
frequency in component D (double-norma-
lised).
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Figure 6.3: Position-specific dinucleotide
frequency in component N (natural).
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Figure 6.4: Position-specific dinucleotide
frequency in component R (relative).
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N P R
N 100.0% -80.2% 70.5%
P -80.2% 100.0% -50.7%
R 70.5% -50.7% 100.0%

Table 6.2: Pearson correlation between different variants of position-independent component,
considered as vectors of 1024 parameters.

Table 6.2 presents the analogous correlation for position-independent component. We may
notice the outstandance of variant P. In fact, it will clearly become useless.

6.2. Experiment results for single chromosome

For all the combinations of component variants described in chapter 3, the experiments
on a small scale were performed, using only yeast chromosome 1, i.e. 1.9% of the yeast
genome. For fixed values of thermodynamical parameters τ and β, the predicted average
nucleosome occupancy has been calculated.

Afterwards, the following log-transformation has been applied: for the vector of nucleosome
occupancies, we took the binary logarithm of its values and set the vector mean to zero by
adding a constant to all of them. It has been done to allow comparison to results achieved
by Kaplan et al. [1]. The maximised function was the Pearson correlation coefficient between
predicted log-transformed average nucleosome occupancy and the log-transformed in vitro
data.

We have performed optimisation to estimate the optimal values of free parameters τ and β.
Two optimisation procedures described in chapter 5 were used, namely a Newton-type algo-
rithm and Nelder and Mead algorithm. The results are shown in table 6.3.

The results confirm that the variant N of the position-specific dinucleotide component and the
variant P of position-independent component are rather worthless. Moreover, we should
notice that the smoothing does not improve the results in the remaining cases, so in the whole-
genome analysis we abandoned considering smoothing.

It is also important to point out that the two used optimisation algorithms gave very similar
results in cases where the model performance is acceptable. It means that the maximised
Pearson correlation is well-behaved in terms of free parameters τ and β.

6.3. Experiment results for the whole genome

The experiments, which gave acceptable results on a small scale, were repeated on a large
scale, using the whole yeast genome. Due to the high similarity of results for the two optimi-
sation algorithms used for single chromosome analysis, for the whole genome only the more
robust Nelder and Mead algorithm has been used. Moreover, no smoothing has been used
for position-specific component. The results are presented in table 6.4.

Moreover, Fig. 6.5-6.12 explain how the predictive capabilities of the model varies with chang-
ing its parameters. For each combination of variants considered, the two 3D plots and contour
plot contain the same data. The optimal values of τ and β were marked on the contour plot.

The overall performance of the model agrees well with the results gained by Kaplan et al. [1].
He claims to have per-base-pair nucleosome occupancy correlation in the full model of 88.0%,
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Position-specific dinucleotide component (N )
D N R Z
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(L

)

N

τ = 0.0107 (0.0107) τ = 0.2823 (0.2823) τ = 0.0277 (0.0277) τ = 0.0102
β = 0.3237 (0.3233) β = 1.64 · 10−9 (1.64 · 10−9) β = 0.2913 (0.2913) β = 0.3269
corr. 62.5% (62.5%) corr. 1.0% (1.0%) corr. 73.7% (73.7%) corr. 62.0%
τ = 0.0107 (0.0106) τ = 0.5811 (0.5844) τ = 0.0277 (0.0277) τ = 0.0102
β = 0.3236 (0.3233) β = 4.16 · 10−7 (4.02 · 10−8) β = 0.2914 (0.2913) β = 0.3269
corr. 62.5% (62.5%) corr. 0.9% (0.9%) corr. 73.7% (73.7%) corr. 62.0%

P

τ = 0.2038 (0.0842) τ = 1.9705 (1.9694) τ = 17.089 (19.133) τ = 1.18 · 1016

β = 6.7007 (6.7569) β = 4.8304 (4.8311) β = 1.0958 (1.0772) β = 4.3289
corr. -5.4% (-5.4%) corr. -8.9% (-8.9%) corr. -4.0% (-4.0%) corr. -3.2%
τ = 1.2968 (1.3402) τ = 1.9692 (1.9748) τ = 16.993 (19.170) τ = 2.0842
β = 6.5883 (6.5888) β = 4.8303 (4.8312) β = 1.0964 (1.0772) β = 6.5919
corr. -5.5% (-5.4%) corr. -8.9% (-8.9%) corr. -4.0% (-4.0%) corr. -6.2%

R

τ = 0.0123 (0.0123) τ = 2.35 · 1010 (1.94 · 1010) τ = 0.0289 (0.0289) τ = 0.0118
β = 0.8301 (0.8300) β = 3.6483 (3.6442) β = 0.4862 (0.4862) β = 0.8075
corr. 91.5% (91.5%) corr. 0.5% (0.6%) corr. 91.6% (91.6%) corr. 90.7%
τ = 0.0123 (0.0123) τ = 7274 (7140) τ = 0.0289 (0.0289) τ = 0.0118
β = 0.8302 (0.8301) β = 1.8628 (1.8566) β = 0.4863 (0.4863) β = 0.8074
corr. 91.5% (91.5%) corr. -0.8% (-0.8%) corr. 91.6% (91.6%) corr. 90.7%

Z

τ = 1.99 · 10−9 (3.46 · 10−9) τ = 4136 (1.37 · 1021) τ = 0.0348 (0.0347)
β = 2.03 · 10−7 (3.63 · 10−7) β = 3.91 · 10−3 (7.2311) β = 0.9487 (0.9480) –

corr. 36.3% (36.3%) corr. -3.3% (-5.8%) corr. 87.5% (87.5%)
τ = 1.35 · 10−9 (1.05 · 10−8) τ = 7573 (7329) τ = 0.0348 (0.0347)

β = 0.3621 (0.7042) β = 1.5837 (1.5791) β = 0.9487 (0.9479) –
corr. 29.0% (21.2%) corr. -10.6% (-10.6%) corr. 87.5% (87.5%)

Table 6.3: Optimal τ and β values for yeast chromosome 1 (230,208 bp = 1.9% of the genome).
The maximised function was the log-transformed Pearson correlation coefficient between
predicted average nucleosome occupancy and the in vitro data. The optimal correlation
value is also shown.
The results for smoothed position-specific component (N ) are shown in brackets, the other
ones are for not smoothed component. The results of Nelder and Mead optimisation algo-
rithm are shown on white background, the results of a Newton-type algorithm are presented
on gray background.
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Position-specific dinucleotide component (N )
D R Z
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)

N
τ = 0.0160 τ = 0.0354 τ = 0.0148
β = 0.3415 β = 0.2956 β = 0.3353

corr. 59.9% corr. 71.7% corr. 59.2%

R
τ = 0.0105 τ = 0.0231 τ = 0.0100
β = 0.7918 β = 0.4524 β = 0.7593

corr. 90.3% corr. 90.8% corr. 89.4%

Z
τ = 8.16 · 10−13 τ = 0.0306
β = 3.50 · 10−6 β = 0.9160 –

corr. 37.4% corr. 87.5%

Table 6.4: Optimal τ and β values for the whole non-repetitive part of the yeast genome
(10,774,972 bp = 89,3% of the genome).

compared with 87.6% taking only the position-independent component and 82.0% taking
only the position-specific component. The model he refers to as a “full model” consists of
position-independent component R and position-specific dinucleotide component D.

However, it is interesting to compare his good results gained for “PN -only model” using
only the position-specific dinucleotide component with mine. It seems that he might in fact
be considering “full model” consisting of position-independent component R and position-
specific dinucleotide component R.

The “relative” variants of the two components work well alone because they don’t incorporate
absolute probabilities of occuring a particular dinucleotide or 5-mer in nucleosome-bound
sequences, but the relative chances of encountering it, taking into account the GC-content.
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Figure 6.5: Nucleosome binding model consisting of position-independent component R
and position-specific dinucleotide component R.

The above model has the best performance among all considered. In particular, the Pearson
correlation between its prediction for optimal parameters and in vitro data is about four
percent points better than 88.0%, which is the best result presented in [1].

For a grid of values of τ and β, the Pearson correlation coefficient between predicted average
nucleosome occupancy and the in vitro data has been calculated. The correlation has been
plotted on the two 3D plots and one contour plot above. Optimal values of τ and β, found
using Nelder and Mead algorithm, has been marked by the red point on the contour plot.
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Figure 6.6: Nucleosome binding model consisting of position-independent component R
and position-specific dinucleotide component D.

The above model corresponds to the full model described in [1]. Kaplan et al. claims to have
Pearson correlation between full model prediction and in vitro data of 88.0% for τ = 0.03
and β = 1, which is about one and a half percent point worse than mine for the same
parameter values.

However, I suggest that Kaplan et al. may in fact have considered “full model” consisting
of position-independent component R and position-specific dinucleotide component R, like
presented on Fig. 6.5.

The way of presenting the data is the same as on Fig. 6.5.
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Figure 6.7: Nucleosome binding model consisting of position-independent component R
and position-specific dinucleotide component Z.

The above model corresponds to the PL-only model in [1], and has the best performance
among the models based solely on position-independent component. Kaplan et al. claims
to have Pearson correlation between full model prediction and in vitro data of 87.6% for
τ = 0.03 and β = 1, which is about one percent point worse than mine for the same parameter
values.

The way of presenting the data is the same as on Fig. 6.5.
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Figure 6.8: Nucleosome binding model consisting of position-independent component Z
and position-specific dinucleotide component R.

The above model has the best performance among the models based solely on position-specific
dinucleotide component. In particular, the Pearson correlation between its prediction for
optimal parameters and in vitro data is about four percent points better than 82.0%, which
is the result for the “PN -only” (based only on position-specific dinucleotide component) model
presented in [1].

The way of presenting the data is the same as on Fig. 6.5.
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Figure 6.9: Nucleosome binding model consisting of position-independent component N
and position-specific dinucleotide component R.

The way of presenting the data is the same as on Fig. 6.5.
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Figure 6.10: Nucleosome binding model consisting of position-independent component N
and position-specific dinucleotide component D.

The way of presenting the data is the same as on Fig. 6.5.
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Figure 6.11: Nucleosome binding model consisting of position-independent component N
and position-specific dinucleotide component Z.

The way of presenting the data is the same as on Fig. 6.5.
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Figure 6.12: Nucleosome binding model consisting of position-independent component Z
and position-specific dinucleotide component D.

The above model corresponds to the PN -only model in [1]. Kaplan et al. claims to have
Pearson correlation between full model prediction and in vitro data of 82.0% for τ = 0.03
and β = 1, which is about four times better than mine for the same parameter values.

However, I suggest that Kaplan et al. may in fact have considered “PN -only model” consisting
of position-independent component Z (null) and position-specific dinucleotide component R,
like presented on Fig. 6.8.

The way of presenting the data is the same as on Fig. 6.5.
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Chapter 7

Conclusion

The aim of my thesis was to repeat the experiments performed by Kaplan et al. [1], to in-
vestigate the performance of different model variants and to analyse the impact of the model
parameters to overall performance of prediction.

The results of my experiments agree well with the ones obtained by Kaplan et al. [1]. More-
over, they are slightly but noticeably better, especially for the model based solely on position-
specific dinucleotide component. My results confirm the Kaplan’s et al. [1] observation that
in practical applications, it is adequate to use only the position-independent component.
Additionally, the smoothing of position-specific dinucleotide component seems to be unnec-
essary.

The issue not discussed by Kaplan et al. [1] was the choice of values for thermodynamical
parameters τ and β; some values were assigned for them without justification. My study
used two algorithms to estimate the optimal values of them. The impact of them has been
also analysed; it is presented on Fig. 6.5-6.12. Fortunately, good results can be obtained for
parameters from large intervals, i.e. the thermodynamical algorithm is to some extent not
very sensitive in terms of its free parameters.

The nucleosome binding model presented in the thesis is obviously not perfect. The possible
improvements, I am aware of, involve including in the model the physical interactions affecting
nucleosome binding. There is a need to include the transcription factors, which bind directly
to the DNA strand and thus are directly competing with nucleosomes.

Moreover, there are physical constrains on the mutual location of nucleosomes. For instance,
there is a substantial periodic signal in the observed lengths of linkers between nucleosomes,
due to the molecular interactions between them.

In other words, there is a need to further investigation and improvement of the model. It is
also expected that the new experimental data that will eventually become available may give
a new glance on the model accuracy.
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