Odkrywanie *cis*-regulatorowych RNA w prokariotach

Aleksander Jankowski

Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki

6 grudnia 2007 roku

Plan prezentacji

- 3 Zastosowane algorytmy
 - Filogenetyczny footprinting
 - CMfinder
 - RaveNnA
- 4 Materiał i metody
- 5 Wyniki

A

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

Źródła

Wstęp biologiczny Zastosowane algorytmy Materiał i metody Wyniki

Plan prezentacji

- Wstęp biologiczny
- 3 Zastosowane algorytmy
 - Filogenetyczny footprinting
 - CMfinder
 - RaveNnA
- 4 Materiał i metody
- 5 Wyniki

Źródła

- Yao Z, Barrick J, Weinberg Z, Neph S, Breaker R, et al. (2007) A Computational Pipeline for High-Throughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes. PLoS Comput Biol 3(7): e126
- Blanchette M, Tompa M (2002) *Discovery of Regulatory Elements by a Computational Method for Phylogenetic Footprinting.* Genome Res. 12: 739-748.
- Zasha W, Walter LR (2006) Sequence-based heuristics for faster annotation of non-coding RNA families. Bioinformatics 22(1): 35-39

Plan prezentacji

1 Źródła

Wstęp biologiczny

- 3 Zastosowane algorytmy
 - Filogenetyczny footprinting
 - CMfinder
 - RaveNnA
- 4 Materiał i metody
- 5 Wyniki

Ryboprzełączniki

- *Ryboprzełącznik* (przełącznik RNA) to to fragment łańcucha mRNA, długości ok. 200 par zasad, który reguluje ekspresję kodowanego przez ten łańcuch białka.
- Zazwyczaj składa się on z dwóch części:
 - aptameru wiążącego metabolit
 - platformy ekspresyjnej, która po związaniu metabolitu z aptamerem zmienia swoją strukturę przestrzenną, wpływając w ten sposób na ekspresję genu.
- Związanie metabolitu powoduje zmianę ekspresji genu (zahamowanie lub pobudzenie).
- Istnienie ryboprzełączników w organizmach żywych zostało doświadczalnie potwierdzone dopiero w 2002 roku.
- Najwięcej ryboprzełączników odnaleziono jak dotąd u bakterii.

向 ト イヨト イヨト ヨヨ わくや

Ryboprzełączniki

Źródło: http://www.nsls.bnl.gov/newsroom/science/2006/08-Serganov.htm

Aleksander Jankowski Odkrywanie *cis*-regulatorowych RNA w prokariotach

Ryboprzełączniki

- Zmiana struktury przestrzennej platformy ekspresyjnej może mieć różne konsekwencje:
 - zamaskowanie lub odsłonięcie miejsca wiązania rybosomu (jak poniżej)
 - utworzenie struktury "szpilki do włosów", której obecność wymusza zakończenie translacji
 - samoprzecięcie łańcucha RNA.

Źródło: http://www.osel.cz/index.php?zprava=205

Filogenetyczny footprinting CMfinder RaveNnA

Plan prezentacji

- 3 Zastosowane algorytmy
 - Filogenetyczny footprinting
 - CMfinder
 - RaveNnA

4 Materiał i metody

5 Wyniki

< □ > < 同 >

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

Filogenetyczny footprinting CMfinder RaveNnA

Zastosowane algorytmy

Źródło: Yao et al., A Computational Pipeline for High-Throughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes.

Filogenetyczny footprinting CMfinder RaveNnA

Filogenetyczny footprinting

- Filogenetyczny footprinting jest techniką używaną do znajdowania miejsc wiązania czynników transkrypcyjnych w blisko spokrewnionych gatunkach.
- Pomysł opiera się na dwóch spostrzeżeniach:
 - Działanie czynników transkrypcyjnych u różnych, ale blisko spokrewnionych gatunków, jest bardzo podobne.
 W szczególności dotyczy to ich sposobu wiązania.
 - Miejsca wiązania czynników transkrypcyjnych, jako istotne fragmenty niekodującego DNA, są mocno konserwatywne i ulegają wolniejszym zmianom ewolucyjnym niż inne części kodu genetycznego.
- Przedmiotem analizy są sekwencje homologiczne, czyli pochodzące od wspólnego przodka.

Filogenetyczny footprinting CMfinder RaveNnA

Filogenetyczny footprinting – wejście i wyjście

- Wejście:
 - *n* homologicznych sekwencji: S_1, \ldots, S_n
 - drzewo filogenetyczne ${\mathcal T}$ opisujące pochodzenie sekwencji
 - odługość poszukiwanych motywów \boldsymbol{k}
 - maksymalna dopuszczalna wielkość kary d.
- Wyjście:
 - zbiór rozwiązań, w którym każde rozwiązanie jest określone przez wskazanie motywu długości k w każdej z sekwencji S₁,..., S_n.
- Oznaczenia:
 - C(u) zbiór synów wierzchołka u w drzewie T
 - h(s,t) liczba pozycji, na których różnią się k-mery s i t
 - $\Sigma = \{A, C, G, T\}.$

Filogenetyczny footprinting CMfinder RaveNnA

Filogenetyczny footprinting – algorytm

- Przechodzimy przez drzewo filogenetyczne *T* od liści do korzenia.
- Dla każdego wierzchołka u z drzewa T wyznaczamy tablicę W_u zawierającą 4^k elementów.
- Dla każdego k-meru s, wartość W_u[s] będzie najmniejszą karą osiąganą dla poddrzewa zaczepionego w u, przy założeniu, że motyw dla wspólnego przodka u ma postać s.
- Tablicę *W_u* wypełniamy rekurencyjnie:

 $W_u[s] = \begin{cases} 0, \text{ gdy } u \text{ jest liściem i } s \text{ jest podsłowem } S_u \\ +\infty, \text{ gdy } u \text{ jest liściem i } s \text{ nie jest podsłowem } S_u \\ \sum_{v \in C(u)} \min_{t \in \Sigma^k} \left\{ W_v[t] + h(s, t) \right\}, \text{ gdy } u \text{ nie jest liściem.} \end{cases}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ●○○

Filogenetyczny footprinting CMfinder RaveNnA

Filogenetyczny footprinting – algorytm

- Niech r będzie korzeniem drzewa T.
- Każda wartość tablicy W_r nie większa niż d prowadzi do jednego lub wielu rozwiązań.
- Pojedyncze rozwiązanie jest określone przez wskazanie motywu długości k w każdej z sekwencji S₁,..., S_n.
- Algorytm wydaje się być bardzo złożonym obliczeniowo, ale w typowych zastosowaniach jest wystarczająco szybki.

イロト (母) (ヨト (ヨト ヨヨ の)()

Filogenetyczny footprinting CMfinder RaveNnA

Filogenetyczny footprinting – słabości

- Nie wszystkie miejsca wiązania czynników transkrypcyjnych są znajdowane.
 - Niektóre z nich są specyficzne tylko dla niewielkiej grupy gatunków.
 - Bardzo krótkie motywy mogą występować przypadkowo.
 - Niektóre czynniki transkrypcyjne są mniej wrażliwe na mutacje w miejscach wiązania.
- Aby uniknąć fałszywych wyników pozytywnych, należy się upewnić, że znalezione motywy mają istotnie mniejszą częstość występowania mutacji niż otaczające je fragmenty sekwencji.

Filogenetyczny footprinting CMfinder RaveNnA

CMfinder

- CMfinder jest iteracyjnym algorytmem opierającym się na modelu kowariancji.
- Algorytm jednocześnie poprawia model, opisujący występowanie motywów w ustalonym zbiorze sekwencji, oraz koryguje oszacowanie położenia motywów w tych sekwencjach.
- Dwie fazy, wykonywane przemiennie:
 - (krok E) poprawienie oszacowania występowania motywów w sekwencjach i położenia kandydatów na motywy
 - (krok M) uaktualnienie motywu, przez rozważenie możliwych złączeń dwóch nici RNA i zastosowanie modelu termodynamicznego.

Filogenetyczny footprinting CMfinder RaveNnA

RaveNnA

- RaveNnA jest heurystycznym algorytmem wyszukiwania fragmentów niekodującego RNA, homologicznych do podanego, w dużych genomach.
- Jest on znacznie szybszy od algorytmów wykorzystujących modele kowariancji.
- Idea polega na dobraniu odpowiedniego do sekwencji wejściowej ukrytego modelu Markowa.
- Jego użycie do znajdowania motywów będzie miało charakter uzupełniający.

Plan prezentacji

1 Źródła

2 Wstęp biologiczny

- 3 Zastosowane algorytmy
 - Filogenetyczny footprinting
 - CMfinder
 - RaveNnA

4 Materiał i metody

5 Wyniki

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ● ● ●

Źródło danych

- Do analizy wybrano Firmicutes typ pospolitych bakterii.
- Użyto bazy danych *NCBI RefSeq*, w której znajdują się 44 kompletne genomy bakterii typu *Firmicutes*.
- Sekwencje opisanych białek występujących w tych gatunkach pobrano z bazy danych NCBI Conserved Domain Database. Spośród nich 92% miało przypisaną co najmniej jedną grupę CCD.
- Grupa CCD zawiera homologiczne białka, w których znajduje się dobrze zachowana wspólna domena, czyli fragment cząsteczki zdolny do samodzielnego zachowania kształtu.
- Ograniczono się do 145 grup CCD zawierających od 5 do 70 elementów.

Przygotowanie danych

- Dla każdego genu z bazy, pobrano jego sekwencję 5' upstream o długości nie większej, niż 600 nukleotydów.
 - Niektóre geny występują w operonach, co powoduje, że czynniki regulacyjne nie znajdują się bezpośrednio przed genem, ale przed całym operonem.
 - Jeśli następny region kodujący w kierunku upstream znajdował się mniej niż 100 nukleotydów dalej i był zorientowany w tą samą stronę, to łączono go z wybranym genem.
- Zbiór sekwencji upstream związany z białkami z jednej grupy CCD nazywać będziemy zestawem danych.
- W celu zwiększenia czułości, usuwano przy użyciu BLASTa grupy bardzo podobnych sekwencji, oraz usunięto sekwencje kodujące tRNA i rRNA.

Analiza filogenetyczna

- Użyto filogentycznego footprintingu, aby wybrać zestawy danych, w których najprawdopodobniej znajdują się miejsca występowania motywów.
- Potrzebne do tego drzewo filogenetyczne przybliżono przez analizę sekwencji białek, których sekwencje upstream rozważamy.
- Funkcjonalne RNA, takie jak ryboprzełączniki, ma niską zachowawczość, ale zazwyczaj zawiera kawałki, które ulegają bardzo małej zmienności.
- Zauważmy, że do tej pory wykorzystywano tylko informacje o zachowawczości sekwencji RNA.

Użycie CMfindera

- Przy użyciu CMfindera wyszukujemy motywy w każdym z zestawów danych.
- CMfinder jest zorientowany na strukturę, jaką tworzy nić RNA.
- Do oceniania motywów użyto funkcji oceniającej postaci

$$r = sp \cdot \sqrt{lc \cdot bp/sid} \cdot (1 + \log(mc)),$$

gdzie

- sp liczba gatunków, w których motyw występuje
- mc średnia liczba wystąpień motywu na gatunek
- bp (ważona) liczba par zasad w strukturze konsensusowej
- *lc* lokalna zachowawczość sekwencji
- sid średnie (parami) podobieństwo sekwencji.

Szukanie dodatkowych wystąpień motywów

- Jedną z zalet omawianej metody jest połączenie odkrywania motywów z ich wyszukiwaniem.
- Wyszukiwanie motywów jest skupione na grupach CCD, gdyż sekwencje upstream zbliżonych białek najprawdopodobniej będą miały wspólne *cis*-regulatorowe RNA.
- Okazuje się jednak, że wiele *cis*-regulatorowych elementów, takich jak ryboprzełączniki, można znaleźć w pobliżu różnych operonów, regulujących powiązane procesy.
- Dlatego też potrzebne jest dodatkowe wyszukiwanie wystąpień motywów w całym genomie. Następuje po nim kolejny przebieg CMfindera, aby uaktualnić oceny motywów.

Plan prezentacji

Źródła

2 Wstęp biologiczny

- 3 Zastosowane algorytmy
 - Filogenetyczny footprinting
 - CMfinder
 - RaveNnA

4 Materiał i metody

5 Wyniki

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ● ● ●

Identyfikacja znanych motywów

- Przewidywane motywy zostały porównane z motywami występującymi w *RNA Family Database* (Rfam).
- W bazie Rfam znajduje się 21 rodzin niekodującego RNA występującego w *Bacillus subtilis*, spośród nich cztery zostały wygaszone na etapie przygotowywania danych.
- Spośród 17 pozostałych rodzin, 13 występowało wśród 50 najlepiej ocenionych kandydatów na motywy.

Nowe, nieznane dotąd motywy

- Ze szczególną uwagą przebadano 200 najlepiej ocenionych motywów.
- Dla 116 nie udało się utrzymać hipotezy stwierdzającej, że stanowią one *cis*-regulatorowe RNA.
- Spośród pozostałych 84, 20 odpowiada istniejącym w Rfam rodzinom, a 11 najprawdopodobniej powstało wskutek transpozycji.
- Pozostałe 53 oceniono jako kandydatów na *cis*-regulatorowe RNA.

イロト (母) (ヨト (ヨト ヨヨ の)()

Wyniki

A L19 (rplS) mRNA leader

		P1
		TSS
	-35 -10	
Bsu	TTGCAT.17.TAAGAT	40.AAAACCAUGUUCCGCUGUGCCGGUUUUUGUGGC.CAAGAGCAUCUG.05.AGGAGU.08.AUG
Bha	TTGTTC.17.TCTTCT	17.AUUACGAUGUUCCGCUG.CAGGGGUAGAAGCUGUCAUGAGCAUCUG.06.AGGAGG.11.AUG
Oih	TTGAAC.17. TATATT	31.UAAACGAUGUUCCGC <mark>UG.UC</mark> CCAUACUUGUUCAUGAGCAUUAG.06.AGGAGU.07.AUG
Bce	TTGCTA.18. TATGCT	36.UUAACCAUGUUCCGCUG.UAA.UUUAUUAAGACUUUA.UAAGACCAUCUG.05.AGGAGA.09.AUC
Gka	TTGCCT.17. TATCAT	38.AAAACGAUGUUCCGCUG.CAAUGA.AGAGAUCAUUGGCAUGAACAUCUG.04.AGGAGU.08.AUG
Bcl	TTGTGC.17. TATGAT	45.AUUACCAUAUUCCGCUG.CUGCAGUGUUGG.CAUGAAUGUCUG.06.AGGAGG.10.AUC
Bac	ATGACA.17.GATAGT	35. AUAACGAUGUUCCGCUG. CA. AUAAAGAAAGUCUG UG. CAAGAGCAUCUG. 05. AGGAGU. 08. AUG
Lmo	TTTACA.17.TAACCT	28.AUAACGAUAUUCCGCUU.CAUUAUUAAUAUG.AAUGAAUGUUUG.05.AGGAGA.07.AUG
Sau	TTGAAA.17. TAACAT	23.AUCACUAUCAUCCGCUG.CUAUAUAUUUGUCGAGGCAACAACAUAGG.04.AGAGGA.09.AUC
Cpe	TTAAAG.18. TAAACT	08.GUACCCCCCCCCCUCUCUCACAGAGUGUGUUAAGAACGUCAA.17.AGGAGG.08.AUC
Chy	TTGCAT. 17. TATAAT	09.UACCAAACGUUCCGCUG.GACAGGGGCUC.CAUGAACGUGCC.03.AGGAGG.09.AUC
Swo	TTGAGA. 17. TAAAAT	16. AAAAACGUCGUCGCUG. CAUU AAACUAA AAUG. UAUCAACACCUU. 05. AGGAGG. 07. AUC
Ame	TTGCGG.17.TATAAT	10.UUACGCCCCGUCCUCUA.UACAGGAGUA.UAAGAACGUCUA.07.AGGAGG.07.AUC
Dre	TTGCCC.17. TATAAT	16.UUACGCACCGUCCGCUG.CCUCUGGGAAAGG.UAACAACGUCUA.04.AGGAAG.12.CUC
Spn	TTTACT.17. TAAACT	28. AUACACUUUAUCCGCUG. AGGAAGAUUCCU. CAACAUUGACAA.04. AGGAGA.05. AUC
Smu	TTTACA. 17. TACAAT	26. AAACGCOUMAUECGCUG. AG ACAGAGCA CU. UAUCAUUAGUAA. 04. AGGAGA. 07
Lpl	TTGCGT. 18. TATTCT	21. UUAACCAUGUUCCGCUG. ACCAGGUUGU.CACCAAUGUCGG.04. AGGAAG.09. AUG
Efa	TTTACA. 17. TAAACT	28. AUUACAAUAUUCCGCUG. UGG. CA GAAG UGACCA. UAAGAAUAUUUG. 06. AGGAGA. 08. AUG
Lio	TTTACA. 17. TAAACT	25. UUAUGCGUAUUCCGCUG, GCACAAGGUGUUGAUGAAUGCCGU.03. AGGAGA.07. AUG
Sth	TAGACA. 17. TAAGAT	29. UAACGCUAAUCCGCUG. AGA. CACAGAGGU UGCUCU. UAAGAUUAGUAA. 03. AGGAGU. 08. AUC
Lac	TTAAAA.17.TTACTT	39. UUAUGCGUAUUCCGCUG. ACGCUGGUACGUUGAUGAAUGCCGA.03. AGGAGA.10. AUG
Spy	TTTACA, 17, TAGAAT	29. UUACGCCUAAUCCCCUA. AG ACAAGUA CU. UAACAUUACUAA. 03. AGGAGA. 06. AUC
Lsa	TTTTAA. 17. TAAAAT	26. ACAAC GAUAUUC CGCUG. GCGCAAGACGUUAAU GAAUAUCUG. 06. AGGAGA. 07. AUG
Lsl	TTTACT. 17. TATTTT	24 AUAAC GAUAUUCCGCUG, C
Fnu	TTGACA. 17. TAAAAT	12. AAUUCCAUAUUCCGCUU, UAAUAAAUUA. AAUCAAUAUCUU, 04. AGGAAG, 02. AUC
	the second s	

Źródło: Yao et al., A Computational Pipeline for High-Throughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes.

Aleksander Jankowski Odkrywanie *cis*-regulatorowych RNA w prokariotach

Wyniki

Źródło: Yao et al., A Computational Pipeline for High-Throughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes.

Aleksander Jankowski Odkrywanie *cis*-regulatorowych RNA w prokariotach

Wyniki

A L13-S9 (rplM-rpsI) mRNA leader

		P1												
	-35 -10	TSS			P2					RBS	Start			
Bsu	TTGACA. 17. TAAGAT.	7.GGUAUG.UAUUU	CAACCCCACGA	.UA.AG	CCCCCGGAA	CUUA.U	UGUG.03.	UGAA	.NUAGA.036.	AGGAGG	09.AUG			
Gka	TTGACA. 17. TATTAT.	7.GGCAUG.UAUUU	CC. ACGA	.UU.AG	GCCCCGGAC.C	AUAA.U	CGU03.	GAA	.AUAAA.031.	AGGAGG	08.UUG			
oih	TTGACT. 17. TATTAT.	7.GGCAUUUUAUUU	AAACC. AUGA	.UU.AC	CCCCCGGAA.U	CUAA.U	UAU03.	AGAA	UAUAAA.034.	UGGAGG	10.AUG			
Lmo	TTGACT. 17. TATTAT.	7.GGUAUUGUUU	GCCCCACAA	.UA.AG	GCCCCGGAA.G	GUUG.U	UGUG.03.		.ACAAU.067.	AGGAGG	07.AUG			
Sau	TTGACA.17. TAAGAT.	7.GGUAUUGUUU	.UAUAUCCACCCCACGA	.UA.AG	CCCCCGGAA.A	CUUA.U	UGUG.06.	GAUAUA <mark>U</mark> AA	.GCAGA.114.	AGGAGG	09.AUG			
Sep	TTGACA.17. TATGAT.	7.GGUAUUGUUU	.UAUAUC . ACCCCACGA	.UA.AG	CCCCCGGAA.A	CUUA.U	UGUG.06.	GAUAUA <mark>U</mark> AA	.GCAAA.136.	AGGAGG	09.AUG			
Sha	TTGACA.17. TAACAT.	7.GGUAUUGUUU	.UAUAUCCACCCCAUGA	.UA.AG	CCCCCGGAA.A	CUUA.U	UGUG.06.	GAUAUA <mark>U</mark> AA	.GCAAA.127.	AGGAGG	09.AUG			
Ssa	TTGACA.17. TACGAT.	7.GGUAUUGUUU	.UAUAUC . ACCC . ACGA	.UA.AG	CCCCCGGAA.U	CUUA.U	UGU07.	gauaua <mark>g</mark> aa	.GCACG.082.	AGGAGG	08.AUG			
Efa	TTGACT. 17. TAAAAT.	7.GGUAUUGUUU	CCCCCACAA	.UG.AG	CCCCCGGAA.A	CUCA	AGUG.05.	CAA	.ACAUC.011.	UGGAGG	.08. <mark>GUG</mark>			
Lde	TTGACA.17. TATGAT.	6.GUAUGUUU	CUCC.ACGG	.UA.GO	CCCCGGAA.A	CUUA.U	UGU03.	CAA	.ACUAC.008.	CGGAGG	.08. <mark>UUG</mark>			
Ljo	TTGACT. 17. TAAATT.	7.GUAUGUUU	CUCC.ACGA	.UA.GO	CCCCCGGAA.A	CUUA.U	TUGU04.	CAA	.ACAGA.007.	CGGAGG	.08. <mark>GUG</mark>			
Lpl	TTGACT. 17. TAGACT.	7.GGUAUUGUUU	CCCCCACGA	.UA.AC	CCCCGGAAAU	CUUA.U	TUGAG.03.	CAA	.ACAAA.009.	UGGAGG	.08. <mark>GUG</mark>			
Ppe	TTGACT. 17. TATAAT.	7.GGUAUUGUUU	ACCUC CAC. AAAA	.UA.AC	CCCCCGGAA.A	CUUA.U	UAA04.	GAGUUAA	.ACAAA.008.	UGGAGG	.08. <mark>GUG</mark>			
Lme	TTGACA.17. TAAGAT.	7.GGUAUUGUUU	ACCUC.ACGA	.UA.AC	CCCCCGGAA.A	CUUA.U	TUGU28.	GUAA	.ACAAC.007.	AGGAGC	.06.AUG			
Lla	TTGACA.18.TATGAT.	7.GGUAUUGUUU	ACCCCAUUUU	. UGUGG	CCCCCGGAA.A	CCCA . A	AAAU.25.	GUAA	.ACAAA.010.	AGGAAA	.09.AUG			
Sag	TTGACG.18. TATGAT.	7.GGUAUUGUUU	ACCCCAUUUG	UAA.GO	CCCCCGGAA	CCUUUC	AAAU.28.	GUAA	ACAAA.013.	AGGAGA	.04.AUG			
Smu	TTGACT. 18. TATTAT.	7.GGUAUUGUUU	GCCCCAUUUG	AAA.GO	CCCCCGGAA.C	ccuu.c	AAAU.26.	GUAA	.ACAUA.011.	AGGAGA	.04.AUG			
Spy	TTGACT.18. TATCAT.	7.GGUAUUGUUU	ACCCCAUUUG	AAA.GG	CCCCCGGAA	CCUUCC	AAAU.31.	GUAA	ACAAA.016.	AGGAGA.	.04.AUG			
Sth	TTGCCT. 17. TATTAT.	7.GGUAUUGUUU	ACCCCAUUUG	AAA. GO	CCCCCGGAA	CCUUCC	AAAU. 33.	GUAA	.ACAAA.015.	AGGAGA	04 . AUG			

Źródło: Yao et al., A Computational Pipeline for High-Throughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes.

Wyniki

Źródło: Yao et al., A Computational Pipeline for High-Throughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes.

Aleksander Jankowski Odkrywanie *cis*-regulatorowych RNA w prokariotach

Ukryte modele Markowa i algorytm Bauma-Welcha

Aleksander Jankowski

Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki

13 grudnia 2007 roku

▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ■ 目 ● の Q ()

Ukryte modele Markowa

 Łańcuch Markowa jest określony przez zbiór stanów wraz z prawdopodobieństwami przejść

$$a_{st}=P(x_i=t|x_{i-1}=s),$$

gdzie x_i – stan w chwili czasu i.

- W ukrytym modelu Markowa mamy do czynienia z:
 - π_i stanem w chwili czasu *i*
 - x_i obserwacją w chwili czasu *i*.
- Oprócz prawdopodobieństw przejść, wprowadzamy prawdopodobieństwa emisji

$$e_k(b) = P(x_i = b | \pi_i = k).$$

 Przyjmijmy, że stanem początkowym i końcowym modelu jest stan 0.

Przykład sporadycznie nieuczciwego kasyna

- Gramy z krupierem wiele razy w prostą grę:
 - każde z nas rzuca kostką
 - stawkę wygrywa ten, kto wyrzuci więcej oczek.
- Krupier sporadycznie podmienia kostkę "uczciwą" na kostkę "oszukaną".

Aleksander Jankowski Ukryte modele Markowa i algorytm Bauma-Welcha

Ukryte modele Markowa

- W przypadku łańcuchów Markowa, zawsze wiemy, któremu stanowi odpowiada każda obserwacja.
- Obserwując ukryty model Markowa, sekwencja stanów, którą podążaliśmy, pozostaje dla nas nieznana.
- Nawet jeśli dokładnie znamy wszystkie parametry ukrytego modelu Markowa oraz ciąg obserwacji od stanu początkowego, to nie jesteśmy w stanie dokładnie odtworzyć ciągu stanów.
- Powód jest prozaiczny zazwyczaj możliwych ciągów stanów jest wiele.
- Możliwe jest jednak znalezienie najbardziej prawdopodobnego ciągu stanów dla ustalonej sekwencji obserwacji.

Algorytm Viterbi'ego

Znamy ciąg obserwacji x = (x₁,..., x_n). Szukamy ciągu stanów π^{*} = (π^{*}₁,..., π^{*}_n) takiego, że

$$\pi^* = rg\max_{\pi} P(x,\pi).$$

- Niech v_k(i) prawdopodobieństwo zajścia najbardziej prawdopodobnego ciągu stanów kończącego się w stanie k obserwacją i.
- Wiadomo, że $v_0(0) = 1$ i $v_k(0) = 0$ dla $k \neq 0$.
- Prawdopodobieństwa w_k(i) dla i > 0 można wyznaczyć rekurencyjnie:

$$v_l(i) = e_l(x_i) \cdot \max_k \{v_k(i-1)a_{kl}\}.$$

▲□▶▲□▶▲□▶▲□▶ □□ のの⊙

Algorytm Viterbi'ego

Na koniec wyliczamy

$$P(x,\pi^*) = \max_k \{v_k(n)a_{k0}\}.$$

- Zapamiętując podczas przebiegu algorytmu informację o tym, które częściowe ciągi stanów były najbardziej prawdopodobne, możemy odtworzyć π*.
- Ze względu na ograniczenia arytmetyki zmiennoprzecinkowej, w praktyce obliczenia prowadzi się po zlogarytmowaniu, to znaczy wyznacza się log $v_l(i)$ i log $P(x, \pi^*)$.
- Algorytm Viterbi'ego jest bardzo wydajny, ale niestety nie zawsze znamy niezbędne do jego zastosowania parametry ukrytego modelu Markowa: e_l(x_i) i a_{kl}.

Algorytm Bauma-Welcha – wielkości pomocnicze

 Oznaczmy przez f_k(i) prawdopodobieństwo ciągu obserwacji x₁,..., x_i, takiego że ostatnim stanem jest k:

$$f_k(i) = P(x_1 \dots x_i, \pi_i = k).$$

- Można je wyznaczyć rekurencyjnie, wiedząc że $f_0(0) = 1$ i $f_k(0) = 0$ dla $k \neq 0$.
- Dla i > 0 zachodzi

$$f_l(i) = e_l(x_i) \sum_k f_k(i-1)a_{kl}.$$

Algorytm Bauma-Welcha – wielkości pomocnicze

 Rozważając sytuację odwrotną, oznaczmy przez b_k(i) prawdopodobieństwo wystąpienia ciągu obserwacji x_{i+1},..., x_n pod warunkiem, że przed wyemitowaniem tego ciągu obserwacji byliśmy w stanie k:

$$b_k(i) = P(x_{i+1} \dots x_n | \pi_i = k).$$

- Można je wyznaczyć rekurencyjnie, wiedząc że $b_k(n) = a_{k0}$.
- Dla *i* < *n* zachodzi

$$b_k(i) = \sum_l a_{kl} e_l(x_{i+1}) b_l(i+1).$$

Algorytm Bauma-Welcha – wejście i wyjście

- Przez θ oznaczać będziemy punkty w przestrzeni parametrów ukrytego modelu Markowa, to znaczy zestawy parametrów (a_{kl}), (e_k(b)).
- Wejście:
 - N ciągów obserwacji, nazywanych sekwencjami treningowymi: x¹,...,x^N.
- Wyjście:
 - Punkt θ w przestrzeni parametrów, maksymalizujący $\log P(x^1, \dots, x^N | \theta) = \sum_{j=1}^N \log P(x^j | \theta).$
- Innymi słowy, szukamy takiego ukrytego modelu Markowa (o ustalonej liczbie stanów), dla którego prawdopodobieństwo zaobserwowania sekwencji treningowych jest największe.

Algorytm Bauma-Welcha – algorytm

- Ustal dowolnie parametry (a_{kl}), (e_k(b)) dla modelu początkowego.
- Korzystając z posiadanego modelu, dla każdych stanów k, l wyznacz A_{kl} – wartość oczekiwaną liczby przejść ze stanu k do stanu l podczas emisji sekwencji treningowych x¹,...,x^N.
- Korzystając z posiadanego modelu, dla każdego stanu k i symbolu b wyznacz E_k(b) – wartość oczekiwaną liczby emisji symbolu b w stanie k podczas emisji sekwencji treningowych x¹,...,x^N.
- Re-estymuj parametry (a_{kl}), (e_k(b)) modelu przy użyciu wartości oczekiwanych (A_{kl}), (E_k(b)).
- Jeśli log P(x¹,...,x^N|θ) zauważalnie wzrosło, to wróć do punktu 2.

Algorytm Bauma-Welcha – wyznaczanie A_{kl} i $E_k(b)$

• Ustalmy sekwencję treningową x. Wówczas

$$P(\pi_i = k, \pi_{i+1} = l | x, \theta) = \frac{f_k(i)a_{kl}e_l(x_{i+1})b_l(i+1)}{P(x)}.$$

 Sumując te wielkości po wszystkich sekwencjach i po wszystkich pozycjach w tych sekwencjach, stwierdzamy że

$$A_{kl} = \sum_{j} \sum_{i} \frac{f_k^j(i) a_{kl} e_l(x_{i+1}^j) b_l^j(i+1)}{P(x^j)}.$$

• Analogicznie stwierdzamy, że

$$E_k(b) = \sum_j \sum_{\{i: \ x_i^j = b\}} \frac{f_k^j(i)b_k^j(i)}{P(x^j)}.$$

▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● 目 ■ ● ● ● ●

Algorytm Bauma-Welcha – re-estymacja parametrów

• Wystarczy prosta normalizacja:

$$a_{kl} = rac{A_{kl}}{\sum_m A_{km}}, \qquad e_k(b) = rac{E_k(b)}{\sum_c E_k(c)}.$$

Aleksander Jankowski Ukryte modele Markowa i algorytm Bauma-Welcha

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ● ● ●

Algorytm EM (expectation maximization)

- Rozważmy model statystyczny określony przez parametry θ .
- Obserwowane wielkości oznaczmy przez x.
- Prawdopodobieństwo wystąpienia x jest określone przez pewne ukryte dane y.
- Dla ukrytych łańcuchów Markowa, θ jest zestawem parametrów (a_{kl}), (e_k(b)), zaś y reprezentuje ciąg stanów.
- Naszym celem jest znalezienie modelu, który maksymalizuje logarytm szans

$$\log P(x|\theta) = \log \sum_{y} P(x, y|\theta).$$

Algorytm EM (expectation maximization)

- Załóżmy, że mamy poprawny model θ^t. Chcielibyśmy estymować nowy, lepszy model θ^{t+1}.
- Jako że $P(x, y|\theta) = P(y|x, \theta)P(x|\theta)$, to

$$\log P(x|\theta) = \log P(x, y|\theta) - \log P(y|x, \theta).$$

Mnożąc obie strony przez P(y|x, θ^t) i sumując po y otrzymujemy

$$\log P(x|\theta) = \sum_{y} P(y|x,\theta^{t}) \log P(x,y|\theta) - \sum_{y} P(y|x,\theta^{t}) \log P(y|x,\theta).$$

• Określmy $Q(\theta|\theta^t) = \sum_y P(y|x, \theta^t) \log P(x, y|\theta).$

▲□▶▲□▶▲□▶▲□▶ □□ のの⊙

Entropia względna (odległość Kullbacka-Leiblera)

- Powiedzmy, że *p* i *q* są dwoma dyskretnymi rozkładami prawdopodobieństwa na pewnej przestrzeni.
- Ich entropię względną określamy następująco: $d_{KL}(p,q) = \sum_{i} p(i) \log \frac{p(i)}{q(i)}.$
- Wykorzystywać będziemy fakt, że entropia względna jest nieujemna.
- Wystarczy to wykazać dla logarytmu naturalnego, wykorzystując nierówność ln x ≤ x − 1.
- Istotnie, $\ln \frac{q(i)}{p(i)} \leqslant \frac{q(i)}{p(i)} 1$, zatem $\ln \frac{p(i)}{q(i)} \geqslant 1 \frac{q(i)}{p(i)}$, a więc

$$\sum_{i} p(i) \ln \frac{p(i)}{q(i)} \ge \sum_{i} p(i) \frac{p(i) - q(i)}{p(i)} = \sum_{i} p(i) - \sum_{i} q(i) = 0.$$

▲□▶▲□▶▲□▶▲□▶ □□ のの⊙

Algorytm EM (expectation maximization)

Zauważmy, że

$$\begin{split} \log P(x|\theta) &- \log P(x|\theta^t) = \\ &= Q(\theta|\theta^t) - Q(\theta^t|\theta^t) + \sum_{y} P(y|x,\theta^t) \log \frac{P(y|x,\theta^t)}{P(y|x,\theta)} \geqslant \\ &\geqslant Q(\theta|\theta^t) - Q(\theta^t|\theta^t). \end{split}$$

 Wybierając θ^{t+1} = arg max_θ Q(θ|θ^t), zapewniamy, że logarytm szans nowego modelu będzie nie mniejszy niż poprzedniego.

Dowód poprawności algorytmu Bauma-Welcha

- Wystarczy wykazać, że sposób wyboru θ^{t+1} dla ustalonego θ^t spełnia warunek $\theta^{t+1} = \arg \max_{\theta} Q(\theta | \theta^t)$.
- Dla ustalonego ciągu obserwacji oraz ustalonego ciągu stanów π , oznaczmy przez $A_{kl}(\pi)$ liczbę przejść z k do l, zaś przez $E_k(b,\pi)$ liczbę emisji symbolu b w stanie k. Wówczas

$$P(x,\pi|\theta) = \prod_{k=1}^{M} \prod_{b} e_k(b)^{E_k(b,\pi)} \cdot \prod_{k=1}^{M} \prod_{l=1}^{M} a_{kl}^{A_{kl}(\pi)}$$

 Zauważmy, że wartości A_{kl} i E_k(b) zdefiniowane dla algorytmu Bauma-Welcha wyrażają się następująco:

$$E_k(b) = \sum_{\pi} P(\pi|x, \theta^t) E_k(b, \pi), \qquad A_{kl} = \sum_{\pi} P(\pi|x, \theta^t) A_{kl}(\pi).$$

Dowód poprawności algorytmu Bauma-Welcha

• Z definicji Q, $Q(\theta|\theta^t) = \sum_{\pi} P(\pi|x, \theta^t) \log P(x, \pi|\theta)$. Ponadto

$$\log P(x, \pi | \theta) = \sum_{k=1}^{M} \sum_{b} E_k(b, \pi) \log e_k(b) + \sum_{k=1}^{M} \sum_{l=1}^{M} A_{kl}(\pi) \log a_{kl}.$$

Po przekształceniu uzyskujemy postać

$$Q(heta| heta^t) = \sum_{k=1}^M \sum_b E_k(b) \log e_k(b) + \sum_{k=1}^M \sum_{l=1}^M A_{kl} \log a_{kl}.$$

• Pozostało do wykazania, że Q przyjmuje maksimum dla

$$a_{kl} = \frac{A_{kl}}{\sum_m A_{km}}, \qquad e_k(b) = \frac{E_k(b)}{\sum_c E_k(c)}.$$

Aleksander Jankowski Ukryte modele Markowa i algorytm Bauma-Welcha

↓ ∃ ► ▶ ∃ = • • • • • •

Dowód poprawności algorytmu Bauma-Welcha

Pokażemy, że ∑_{k=1}^M ∑_{l=1}^M A_{kl} log a_{kl} dla a_{kl}⁰ = A_{kl}/∑_m A_{km} przybiera wartość nie mniejszą niż dla dowolnych innych a_{kl}.
Interesuje nas różnica

$$\sum_{k=1}^{M} \sum_{l=1}^{M} A_{kl} \log \frac{a_{kl}^{0}}{a_{kl}} = \sum_{k=1}^{M} \sum_{l=1}^{M} \left(\sum_{m} A_{km} \right) a_{kl}^{0} \log \frac{a_{kl}^{0}}{a_{kl}} = \\ = \sum_{k=1}^{M} \left(\sum_{m} A_{km} \right) \sum_{l=1}^{M} a_{kl}^{0} \log \frac{a_{kl}^{0}}{a_{kl}} \ge 0.$$

• Analogiczne rozumowanie przeprowadzamy dla składnika $\sum_{k=1}^{M} \sum_{b} E_k(b) \log e_k(b).$

▲□▶▲□▶▲□▶▲□▶ □□ のの⊙