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Introduction

Our goal is to identify individual transcription factor (TF)binding sites from genome sequence information andcell-type–specific experimental data, such as DNase-seq.
We present Romulus (Jankowski et al., Bioinformatics 2016),a novel computational method for this purpose.
Romulus combines the strengths of previous approaches,and improves robustness by reducing the number of freeparameters in the model by an order of magnitude.
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Previous approach: CENTIPEDE

Pique-Regi et al., Genome Res. 2011
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Previous approach: Wellington

Piper et al., Nucleic Acids Res. 2013

Aleksander Jankowski Multi-state identification of TF binding sites from DNase-seq



Previous approach: Wellington

Piper et al., Nucleic Acids Res. 2013

Aleksander Jankowski Multi-state identification of TF binding sites from DNase-seq



Romulus approach

For a given TF, we first identify candidate binding sites thathave reasonable sequence affinity, using a position weightmatrix.
We employ an Expectation-Maximization-based approachto simultaneously learn the DNase I cut profilesand classify the binding sites as bound or unbound.
Our method is unique by allowing for multiple boundstates for a single TF, differing in their cut profileand overall affinity for DNase I cuts.
We achieve robustness by grouping the DNase I cutsinto bins, according to their location and strand.

Aleksander Jankowski Multi-state identification of TF binding sites from DNase-seq



Example DNase I cut profiles: CENTIPEDE vs. Romulus
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Prior probabilities of TF binding: two-state case
The prior component captures the genomic sequenceand other prior (i.e. independent of cell type or conditions)characteristics of the candidate binding site for a given TF.
Let x(j)i be the value of the j-th prior characteristic (1 ≤ j ≤ J)for genomic instance i.
In the simplest case, where motif instance i can be either“bound” or “unbound”, we apply a logistic model:

P(Zi = 1)
P(Zi = 0) = exp (β0 + β1 · x(1)i + β2 · x(2)i + β3 · x(3)i + . . .

)
Here, Zi = 1 indicates that the i-th motif instance is bound,whereas Zi = 0 indicates that it remains unbound.
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Why we should consider multiple binding modes?
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Prior probabilities of TF binding: general case

To model the prior probabilities in general case of multiplebinding modes (k = 1, . . . ), we apply a logistic model againstthe unbound “pivot” case (k = 0):
P(Zi = k)
P(Zi = 0) = exp (β(k)0 + β

(k)1 γ
(k)1 · x(1)i

+ β
(k)2 γ

(k)2 · x(2)i + β
(k)3 γ

(k)3 · x(3)i + . . .
)

where the indicators γ(k)j ∈ {0, 1} specify whether the prior
characteristic x(j)i should be taken into account in the k-thbinding mode.
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Prior probabilities of TF binding: cooperative binding
Consider a TF that manifests one or more cooperative bindingmodes (k = 2, . . . , K + 1), with well-defined structures of theunderlying motif complexes.
The prior characteristic for these partner motif instances arecalculated no matter how favorable they may be for binding,
and are included in the sequence x(j)i .
The monomer binding mode (k = 1) should be characterizedonly by the characteristics referring to the primary motif
instance. Hence, γ(1)j = 0 for all the characteristics j referringto any of the partner motifs.
The dimer binding modes (k = 2, . . . , K + 1) should have
indicators γ(k)j ensuring that only the characteristics specific tothe primary motif instance and to the partner motif instanceswithin the motif complex k are taken into account.
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Chromatin state component of Romulus model
The probability of observing a given distribution of DNase I cutson a given strand is calculated as a product of negativebinomial and multinomial components:
P((DNasei,j)j | Zi = k) =

NegativeBinomial(DNaseSum
(k)i | p(k), r(k))·

·Multinomial((DNaseBin
(k)i,b )b | DNaseSum(k)i , (λ

(k)b )b)· (1)
where DNaseSum(k)i is the number of DNase I cuts within
200 bp from the motif complex, and DNaseBin(k)i,b is the numberof DNase I cuts in b-th bin, where b = 1, . . . ,B.
We impose an additional constraint: the multinomial
coefficients λ(0)b are proportional to the bin sizes, i.e. there isno positional preference for DNase I cuts in the unbound case.
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Expectation-Maximization approach
to simultaneously learn model parameters and classify the binding sites

Expectation (“E”): for each site, estimate its likelihood to bebound (possibly considering multiple binding modes).
Maximization (“M”): for each binding mode, estimate itsparameters (defining the prior component, DNase I cutprofile, and the total number of DNase I cuts).
We iterate the ExpectationMaximization procedure, in eachiteration getting a revised vector of parameters, until theposterior probabilities do not change by more than 0.001.
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Benchmarking approach
We systematically benchmarked Romulus along withCENTIPEDE and Wellington.
We applied all the methods in an unsupervised mannerto DNase-seq data from three ENCODE sources:

“single hit” protocol: Duke DNase“double hit” protocol: University of Washington (UW) DNaseand UW Digital Genomic Footprinting (DGF).
From each of the DNase-seq data sources, we considerthree human cell lines: A549 (lung adenocarcinomaepithelial), HepG2 (hepatocellular carcinoma) and K562(leukemia).
To validate the predictions, we used 39 ChIP-seq datasetsfrom ENCODE to define genuine TF binding sites. Note thatno ChIP-seq data were used for training.

Aleksander Jankowski Multi-state identification of TF binding sites from DNase-seq



Benchmarking statistics
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Romulus systematically outperforms existing methods
as measured by Area under Receiver Operating Characteristic curves
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Romulus systematically outperforms existing methods
as measured by Area under Receiver Operating Characteristic curves

Area under ROC curve
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Romulus systematically outperforms existing methods
as measured by Area under Precision-Recall curves
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Romulus systematically outperforms existing methods
as measured by Area under Precision-Recall curves

Area under Precision−Recall curve
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Gain of predictive power of Romulus over Wellington
is significantly higher for TFs with low-information-content motifs
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Gain of predictive power of Romulus over Wellington
is significantly higher for TFs with low-information-content motifs
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Predicted FOXA1 dimer interactions in LNCaP cells
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Knowledge of TF dimerization modes does notimprove the prediction of individual TF binding sites
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Knowledge of TF dimerization modes does notimprove the prediction of individual TF binding sites
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Romulus models differ between the binding modes
yet their inclusion does not improve the prediction of individual TF binding sites

Genomic location with respect to the candidate binding site (base pairs)
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Romulus models differ between the binding modes
yet their inclusion does not improve the prediction of individual TF binding sites
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Intermezzo: what makes a good model?

A mathematical model describes a system usingmathematical concepts.
If the model successfully captures part of the real world,then the model is realistic.
“All models are wrong, but some are useful.”(George E.P. Box)
A good model is predictive, i.e. deals reasonably well withextrapolating into the unknown.
Even better, an explanatorymodel tells how to intervenewith the system to alter the outcome in a desired manner.
What could we learn from the cases when our model fails?
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Discrepancies between predictions and actual binding

Some TFs are able to bind closed chromatin, in violationof the assumptions of Romulus and other algorithms.
In such a situation of binding to nucleosomal DNA, the wayRomulus model accounts for the local chromatin opennessprofile is not necessarily appropriate.
To quantify this discrepancy, we limited the scope to thebound motif instances according to the ChIP-seq data,and considered the probabilities of the chromatin statecomponent in the Romulus model.
We then plotted the cumulative distribution functionsof these probabilities.
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Cumulative distribution of Romulus chromatin state

Cumulative distribution function of Romulus probabilities
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Cumulative distribution of Romulus chromatin state

Cumulative distribution function of Romulus probabilities
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Binding in Closed Chromatin
as a quantitative predictor of pioneer factor activity

To quantify the amount of TF binding that takes placein loci without a pronounced local chromatin opennesssignal, we introduce Binding in Closed Chromatin (BCC), asthe Area-Under-Curve of the cumulative distributionfunction described before.
Note that we take only the chromatin state component,and exclude the prior (genomic sequence) component.
We focused on the TFs that had a BCC value, in at least onecase, more than one MAD (median absolute deviation)above the median.
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Binding in Closed Chromatin values

Binding in Closed Chromatin (BCC) value
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Summary
Our method, Romulus, combines the benefits ofCENTIPEDE and Wellington, and significantly outperformsthem, regardless of the DNase-seq protocol used.
The advantage of Romulus was observed especially whenapplied to binding site prediction for low-information-content motifs.
The inclusion of these additional states for the known TFdimers did not yield an increase in predictive power.
We introduce Binding in Closed Chromatin (BCC) asa quantitative measure of TF pioneer factor activity.Uniquely, this measure quantifies a defining featureof pioneer factors, namely their ability to bind closedchromatin.
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