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Introduction

@ Our goal is to identify individual transcription factor (TF)
binding sites from genome sequence information and
cell-type-specific experimental data, such as DNase-seq.

@ We present Romulus (Jankowski et al., Bioinformatics 2016),
a novel computational method for this purpose.

@ Romulus combines the strengths of previous approaches,

and improves robustness by reducing the number of free
parameters in the model by an order of magnitude.
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Previous approach: CENTIPEDE
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Previous approach: Wellingto
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Previous approach: Wellington
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Romulus approach

@ For a given TF, we first identify candidate binding sites that
have reasonable sequence affinity, using a position weight
matrix.

@ We employ an Expectation-Maximization-based approach
to simultaneously learn the DNase | cut profiles
and classify the binding sites as bound or unbound.

@ Our method is unique by allowing for multiple bound
states for a single TF, differing in their cut profile
and overall affinity for DNase | cuts.

@ We achieve robustness by grouping the DNase | cuts
into bins, according to their location and strand.
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Example DNase | cut profiles: CENTIPEDE vs. Romulus

Average DNase | cut density, according to the model of bound state
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Prior probabilities of TF binding: two-state case

The prior component captures the genomic sequence
and other prior (i.e. independent of cell type or conditions)
characteristics of the candidate binding site for a given TF.

Let x,(j) be the value of the j-th prior characteristic (1 <j <))
for genomic instance i.

In the simplest case, where motif instance i can be either
“bound” or “unbound”, we apply a logistic model:

P(Zi=1)

1 2 3
Pz =0) ~ P (Bot X+ B X e )

Here, Z; = 1 indicates that the i/-th motif instance is bound,
whereas Z; = 0 indicates that it remains unbound.
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Why we should consider multiple binding modes?

RCSB Protein Data Bank
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Why we should consider multiple binding modes?

co-activator(s)
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Why we should consider multiple binding modes?

co-activator(s)
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Prior probabilities of TF binding: general case

To model the prior probabilities in general case of multiple
binding modes (k = 1,...), we apply a logistic model against
the unbound “pivot” case (k = 0):

P(Z; = k
(Zi=K) _ oxp CREONORNG

+ A0 )4 050 )
where the indicators fyj ) € {0, 1} specify whether the prior

)

characteristic x;”” should be taken into account in the k-th

binding mode.
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Prior probabilities of TF binding: cooperative binding

Consider a TF that manifests one or more cooperative binding
modes (k = 2,...,K + 1), with well-defined structures of the
underlying motif complexes.

The prior characteristic for these partner motif instances are

calculated no matter how favorable they may be for binding,

and are included in the sequence x,.(f).

The monomer binding mode (k = 1) should be characterized
only by the characteristics referring to the primary motif
instance. Hence, 7}” =0 for all the characteristics j referring
to any of the partner motifs.

The dimer binding modes (k = 2,...,K + 1) should have
indicators 7}’0 ensuring that only the characteristics specific to
the primary motif instance and to the partner motif instances

within the motif complex k are taken into account.
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Chromatin state component of Romulus model

The probability of observing a given distribution of DNase | cuts
on a given strand is calculated as a product of negative
binomial and multinomial components:

P((DNasej); | Zi = k) =
NegativeBinomial(DNaseSum,(k) | p(k), r(k))-
. Multinomial((DNaseBin,(f;))b | DNaseSum,(k), ()\E)k))b)- (1)

where DNaseSum,(k) is the number of DNase | cuts within
200 bp from the motif complex, and DNaseBinf? is the number

of DNase | cuts in b-th bin, whereb=1,...,B.

We impose an additional constraint: the multinomial

coefficients )\20) are proportional to the bin sizes, i.e. there is
no positional preference for DNase | cuts in the unbound case.
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Expectation-Maximization approach

to simultaneously learn model parameters and classify the binding sites

@ Expectation (“E"): for each site, estimate its likelihood to be
bound (possibly considering multiple binding modes).

@ Maximization (“M"): for each binding mode, estimate its
parameters (defining the prior component, DNase | cut
profile, and the total number of DNase | cuts).

@ We iterate the ExpectationMaximization procedure, in each
iteration getting a revised vector of parameters, until the
posterior probabilities do not change by more than 0.001.
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Benchmarking approach

@ We systematically benchmarked Romulus along with
CENTIPEDE and Wellington.

@ We applied all the methods in an unsupervised manner
to DNase-seq data from three ENCODE sources:

e “single hit” protocol: Duke DNase
@ “double hit” protocol: University of Washington (UW) DNase
and UW Digital Genomic Footprinting (DGF).

@ From each of the DNase-seq data sources, we consider
three human cell lines: A549 (lung adenocarcinoma
epithelial), HepG2 (hepatocellular carcinoma) and K562
(leukemia).

@ To validate the predictions, we used 39 ChlIP-seq datasets
from ENCODE to define genuine TF binding sites. Note that
no ChlIP-seq data were used for training.
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Benchmarking statistics
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Romulus systematically outperforms existing methods

as measured by Area under Receiver Operating Characteristic curves

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1
Duke DNase Duke DNase Duke DNase Duke DNase
ATF3 c-Myc CTCF JunD
1.0 - +
0.8 -
0.6 4 -
0.4 -
0.97 0.99 0.94 0.92
0.2 1 0.94 0.95 0.89 083 [
0.0 4 0.76 0.55 0.89 067 |
UW DNase UW DNase UW DNase UW DNase
ATF3 c-Myc CTCF JunD
o i 1.0
© F
= g o8
)
2 i 06
g 4 Foa
a 0.97 0.99 0.93 0.94
® 7 0.91 0.94 0.84 083 [ 02
> i 0.91 0.99 0.88 089 | g0
= UW DGF UW DGF UW DGF UW DGF
ATF3 c-Myc CTCF JunD
1.0 +
0.8 r -
0.6 -
0.4 -
0.98 0.99 0.95 0.95
0.2 0.96 0.98 0.94 092 [
0.0 4 0.77 0.47 0.89 073 L
T T T T T T T T T T T L T T T T L T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
CENTIPEDE — Wellington —— Romulus ——

Aleksander Jankowski ulti-state ide! of TF binding sites from DNas



Romulus systematically outperforms existing methods

as measured by Area under Receiver Operating Characteristic curves
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Romulus systematically outperforms existing methods

as measured by Area under Precision-Recall curves
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Romulus systematically outperforms existing methods

as measured by Area under Precision-Recall curves
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Gain of predictive power of Romulus over Wellington

is significantly higher for TFs with low-information-content motifs
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Gain of predictive power of Romulus over Wellington

is significantly higher for TFs with low-information-content motifs

Improvement of Romulus compared to Wellington
in terms of area under Precision-Recall curve
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Predicted FOXA1 dimer interactions in LNCaP cells
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Knowledge of TF dimerization modes does not

improve the prediction of individual TF binding sites
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Knowledge of TF dimerization modes does not

improve the prediction of individual TF binding sites
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Romulus models differ between the binding modes

yet their inclusion does not improve the prediction of individual TF binding sites
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Romulus models differ between the binding modes

yet their inclusion does not improve the prediction of individual TF binding sites
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Intermezzo: what makes a good model?

@ A mathematical model describes a system using
mathematical concepts.

@ If the model successfully captures part of the real world,
then the model is realistic.

@ “All models are wrong, but some are useful.”
(George E.P. Box)

@ A good model is predictive, i.e. deals reasonably well with
extrapolating into the unknown.

@ Even better, an explanatory model tells how to intervene
with the system to alter the outcome in a desired manner.

@ What could we learn from the cases when our model fails?
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Discrepancies between predictions and actual binding

@ Some TFs are able to bind closed chromatin, in violation
of the assumptions of Romulus and other algorithms.

@ In such a situation of binding to nucleosomal DNA, the way
Romulus model accounts for the local chromatin openness
profile is not necessarily appropriate.

@ To quantify this discrepancy, we limited the scope to the
bound motif instances according to the ChIP-seq data,
and considered the probabilities of the chromatin state
component in the Romulus model.

@ We then plotted the cumulative distribution functions
of these probabilities.
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umulative distributio Romulus chromatin state
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Binding in Closed Chromatin
as a quantitative predictor of pioneer factor activity

@ To quantify the amount of TF binding that takes place
in loci without a pronounced local chromatin openness
signal, we introduce Binding in Closed Chromatin (BCC), as
the Area-Under-Curve of the cumulative distribution
function described before.

@ Note that we take only the chromatin state component,
and exclude the prior (genomic sequence) component.

@ We focused on the TFs that had a BCC value, in at least one
case, more than one MAD (median absolute deviation)
above the median.

Aleksander Jankowski Multi-state identification of TF binding sites from DNase-seq



0.0 041
1

02 03 04 05 06

Binding in Closed Chromatin values

1 1 1
Duke DNase

1 1 1 1
UW DNase

L1
UW DGF

ATF3 | ooo [SEeN] [S9)
bHLHE40 [} o o
CEBP o o o
c-Myc | oo o o
CTCF 00 o o o o o |o o
ELF1 o o o
ETS1| © o o
FOXA1 o o o
GABP o o o
GATA o o o
HNF4a o o] (o]
JunD o) o o o o o
Max 0b o o o oo o
MYB o o (e}
NFE2
NRF1 | ©
NRSF oo o o o o o o
PU.1 o o o
RXR (s} o o
Sp1 oo
Srebpia
TBP
TR4
USF1 o
YY1 o o o]
ZBTB33 | © o o
T T T T T T T T T T T T T T T T T
0.0 01 02 03 04 05 06 0.0 01 02 03 04 05 06

Binding in Closed Chromatin (BCC) value
A549 o© HepG2 o K562 o

Aleksander Jankowski



@ Our method, Romulus, combines the benefits of
CENTIPEDE and Wellington, and significantly outperforms
them, regardless of the DNase-seq protocol used.

@ The advantage of Romulus was observed especially when
applied to binding site prediction for low-information-
content motifs.

@ The inclusion of these additional states for the known TF
dimers did not yield an increase in predictive power.

@ We introduce Binding in Closed Chromatin (BCC) as
a quantitative measure of TF pioneer factor activity.
Uniquely, this measure quantifies a defining feature
of pioneer factors, namely their ability to bind closed
chromatin.
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