
ON THE UMD CONSTANT OF THE SPACE `N1
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Abstract. Let N ≥ 2 be a given integer. Suppose that df = (dfn)n≥0 is a

martingale difference sequence with values in `N1 and let (εn)n≥0 be a deter-

ministic sequence of signs. The paper contains the proof of the estimate
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It is shown that this result is asymptotically sharp in the sense that the least
constant CN in the above estimate satisfies limN→∞ CN/ lnN = 1. The

novelty in the proof is the explicit verification of ζ-convexity of the space `N1 .

1. Introduction

Suppose that (Ω,F ,P) is a probability space, equipped with a filtration (Fn)n≥0,
a non-decreasing sequence of sub-σ-fields of F . Assume further that (B, || · ||B) is
a Banach space and let f = (fn)n≥0 be an adapted martingale taking values in B.
Then we may define df = (dfn)n≥0, the difference sequence of f , by the formulas
df0 = f0 and dfn = fn − fn−1, n ≥ 1. A Banach space B is said to be a UMD
space (where UMD stands for Unconditional for Martingale Differences), if for some
1 < p <∞ (equivalently, for all 1 < p <∞), there is a finite constant β = βp with
the following property: for any deterministic sequence ε0, ε1, ε2, . . . with values in
{−1, 1} and any f as above,
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, n = 0, 1, 2, . . . .

For given p and B, let βp,B denote the smallest possible value of the constant βp
allowed above. Then, as shown by Burkholder [6], we have βp,R = p∗ − 1, where
p∗ = max{p, p/(p−1)}. Actually, the same is true if R is replaced by any separable
Hilbert space H (cf. [8]). By Fubini’s theorem, this yields βp,Lp(X;H) = p∗ − 1 for
1 < p <∞, where Lp(X;H) denotes the Lp-space of H-valued functions on a given
measurable space X. Thus, Hilbert spaces and Lp-spaces are UMD. Other examples
include all finite-dimensional Banach spaces, reflexive Orlicz spaces, reflexive trace-
class spaces and the reflexive noncommutative Lp(M, τ)-spaces associated with a
von Neumann algebra M possessing a faithful, normal, semifinite trace τ . But for
these, the values of the corresponding constants βp,B are not known. The negative
examples include the spaces `1, `∞, L1(0, 1) and L∞(0, 1). Actually, as Aldous
proved in [1], any UMD space needs to be superreflexive (but on the other hand,
there are superreflexive spaces which are not UMD: see the work of Pisier [17]).
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Many classical results from harmonic analysis on Hilbert spaces carry over to
the UMD setting. For example, these spaces arise when one tries to extend the
work of M. Riesz on the Lp-boundedness of the Hilbert transform and that of
Calderón and Zygmund on more general singular integral operators to the case of
functions with values in a Banach space. To be more specific, let 1 < p < ∞ be
a fixed number. It turns out that the (periodic) Hilbert transform is bounded as
an operator on Lp(T;B) if and only if B has the UMD property: this equivalence
is due to Burkholder and McConnell [5], who showed that UMD spaces are well-
behaved for the Hilbert transform, and Bourgain [3], who established the reverse
implication. This, by the use of Calderón-Zygmund method of rotations, showed
that UMD spaces form a natural context for the study of singular integrals with
odd kernels. These spaces also provide the right setting for the study of evolution
equations (cf. Coulhon and Lamberton [11]), the closedness of the sum of two closed
operators (see Dore and Venni [12]), spectral theory (Berkson, Gillespie and Muhly
[2]), multiplier theory (see Hytönen [13], McConnell [15]), and many others.

In the beginning of the eighties, Burkholder provided a beautiful geometrical
characterization of UMD spaces. To recall it, we need some more definitions.
Suppose that D ⊆ B × B is a biconvex set, i.e., for any z ∈ B, the sections
{x ∈ B : (x, z) ∈ D} and {y ∈ B : (z, y) ∈ D} are convex subsets of B. A
function ζ : D → R is called biconvex, if for any z ∈ B, the functions x 7→ ζ(x, z)
and y 7→ ζ(z, y) are convex. Let K = KB be the unit ball of B. Following Burkholder
[4], we say that B is ζ-convex, if there is a biconvex function ζ on KB×KB, satisfying

(1.2) ζ(0, 0) > 0

and

(1.3) ζ(x, y) ≤ ||x+ y||B if ||x||B = ||y||B = 1.

Burkholder showed (see [4] and Lemma 3.1 in [7]) that B is UMD if and only if it
is ζ-convex. Let us explain the interplay between the existence of such a function
and the validity of (1.1). If there is ζ satisfying (1.2) and (1.3), then
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Now, using the classical good-lambda approach of Burkholder and Gundy [10], one
proves that for 1 < p <∞,

(1.5)
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for n = 0, 1, 2, . . .. And conversely: Burkholder showed (see e.g. Section 6 in [7])
that the validity of (1.1) for some given 1 < p < ∞ implies the existence of a
biconvex function ζ on the whole B × B, which enjoys ζ(0, 0) ≥ (βp,B)−1 and the
property (1.3). This was done by providing an abstract, non-explicit formula for ζ.

For a general UMD space B, the class of all biconvex functions ζ satisfying
(1.2) and (1.3) is infinite. Indeed, if ζ satisfies (1.2) and (1.3), then any convex
combination of ζ and the function (x, y) 7→ ||x + y||B also has all the required
properties. Nonetheless, one can distinguish a certain extremal element. Namely, it
can be proved that there is the largest function in this class: the function ζB(x, y) =
supζ ζ(x, y) for all x, y ∈ K (see [4], [7]). This extremal object brings a lot of
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information on the size of optimal constants in the weak- and strong type estimates
above. More precisely, it can be shown that the constant 2/ζB(0, 0) in (1.4) is the
best possible (cf. [4]). Furthermore, it follows from (1.5) and Section 6 in [7] that

1

ζB(0, 0)
≤ βp,B ≤

72

ζB(0, 0)
· (p+ 1)2

p− 1
.

Thus, for a given UMD space B, it is of significant interest to find the explicit
formula for ζB or, at least, to identify the value ζB(0, 0). This is a very difficult
task, as it requires the understanding of very delicate geometrical structures of B.
So far, this problem has been successfully solved for Hilbert spaces only. Precisely,
Burkholder [7] showed that

ζB(x, y) =
[
1 + 2〈x, y〉B + ||x||2B||y||2B

]1/2
,

where 〈·, ·〉B denotes the scalar product in B. For non-Hilbert spaces, essentially
nothing is known. The only non-trivial result is the formula for a function ζ when
B = Lp(X;H) is the space of p-integrable functions on a fixed measure space (X,µ)
taking values in a certain Hilbert space H, 1 < p <∞. In such a case, one can take

ζ(x, y) =
2

1 + (p∗ − 1)p

[
1−

∫
X

U(x(s), y(s))dµ(s)

]
,

where, for a, b ∈ H,
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and αp = p (1− 1/p∗)
p−1

. See [9] for details. However, this function is far from
being optimal: we have

ζ(0, 0) =
2

1 + (p∗ − 1)p

and the inequality (1.5) gives the constant of order O(pp) as p → ∞, while the
correct order is O(p).

The main contribution of the present paper is to provide an explicit formula for a
function ζ in the case when B = `N1 = `N1 (H), where H is a given separable Hilbert
space and N ≥ 2.

Theorem 1.1. Let N ≥ 2. There is a biconvex function ζ : K`N1 ×K`N1 → R, which

satisfies the conditions

(1.6) ζ(0, 0) =
2

lnN + ln(3 lnN)

(
1− 1

2 lnN

)
and

(1.7) ζ(x, y) ≤ ||x+ y||`N1 if ||x||`N1 = ||y||`N1 = 1.

The above function is close to ζ`N1 in the following sense. Observe that when

N → ∞, the value ζ(0, 0) above behaves as 2/ lnN (in the sense that the ratio of
these two quantities tends to 1). The order 1/ lnN and the factor 2 in the numerator
are both optimal even when H = R, as the following statement indicates.

Theorem 1.2. Let H = R. Then for any N ≥ 2 we have

ζ`N1 (0, 0) ≤ 2

ln(2N)
.
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As a by-product, we obtain the following information on the size of the constants
in the weak- and strong-type estimates discussed above.

Corollary 1.3. (i) For any N ≥ 2 we have
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Furthermore, βp,`N1 is of order O(lnN) as N →∞.

While the behavior of the constants βp,`N1 as N → ∞ is well-known, the above
precise information on the weak-type constants seems to be new. This result should
be compared to a related “dual” result for `N∞, obtained by the author in [16], in
the context of a different geometrical characterization of UMD spaces obtained by
Lee [14].

We have organized the remainder of this paper as follows. The next section
contains the construction of the function ζ of Theorem 1.1. The proof of Theorem
1.2 can be found in Section 3.

2. A biconvex function for `N1

From now on, H will be a fixed separable Hilbert space, with a norm | · | and a
scalar product denoted by 〈·, ·〉. Let a > 0 be a fixed parameter. The first step of the
construction of ζ is to introduce an auxiliary special function z = za : H×H → R.
If |x+ y|+ |x− y| ≤ 2/a, put

z(x, y) =
a〈x, y〉

2
− 1

2a
.

On the other hand, if |x+ y|+ |x− y| > 2/a, we set

z(x, y) =
|x+ y|

2
ln
[a

2

(
|x+ y|+ |x− y|

)]
− |x− y|

2
.

It is easy to see that the function z is continuous (simply use the identity 〈x, y〉 =
(|x+ y|2 − |x− y|2)/4). Let us study further crucial properties of this function.

Lemma 2.1. The function z is biconvex on H×H.

Proof. Observe that z satisfies the symmetry property z(x, y) = z(y, x) for all
x, y ∈ H. Consequently, it is enough to establish the convexity with respect to the
first variable. So, fix x, y, h ∈ H and consider the function G = Gx,y,h : R → R
given by

G(t) = z(x+ th, y).

We must show that G is convex. By continuity of z, we may assume that |x+ y +
th| and |x − y + th| are nonzero for all t ∈ R (indeed, if this is not the case, it
suffices to add to x a small vector orthogonal to the subspace spanned by y and h).
Then, as we shall prove now, G is of class C1. This property is evident if we have
|x+ y + th|+ |x+ y − th| ≥ 2/a for all t ∈ R. On the other hand, if there is t ∈ R
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for which |x+y+ th|+ |x−y+ th| < 2/a, then there exist two numbers t−, t+ ∈ R,
t− < t+, such that |x+ y+ t±h|+ |x− y+ t±h| = 2/a. Now we verify directly that

d

dt

[
a〈x+ th, y〉

2
− 1

2a

] ∣∣∣∣∣
t=t±

=
a〈h, y〉

2
,

d

dt

{
|x+ y + th|

2
ln
[a

2

(
|x+ y + th|+ |x− y + th|

)]
− |x− y + th|

2

} ∣∣∣∣∣
t=t±

=
|x+ y + t±h|

2
· a

2

(
〈x+ y + t±h, h〉
|x+ y + t±h|

+
〈x− y + t±h, h〉
|x− y + t±h|

)
− 〈x− y + t±h, h〉
|x− y + t±h|

=
a〈h, y〉

2
.

This yields the smoothness of G. So, to show the desired convexity, it is enough to
check that G′′(t) ≥ 0 provided |x + y + th| + |x − y + th| 6= 2/a (clearly, then the
second derivative exists). Since G satisfies the translation property Gx,y,h(t+ s) =
Gx+th,y,h(s), it suffices to prove the latter inequality for t = 0. If |x+ y|+ |x− y| <
2/a, then G′′(0) = 0; on the other hand, if |x + y| + |x − y| > 2/a, some tedious
calculations show that G′′(0) = I + II, where

I =
1

2

(
|h|2|x+ y|2 − 〈h, x+ y〉2

|x+ y|3

)
ln
[a

2

(
|x+ y|+ |x− y|

)]
,

II =
|x− y|

2(|x+ y|+ |x− y|)2

[
〈x+ y, h〉
|x+ y|

+
〈x− y, h〉
|x− y|

]2

.

Of course, both I and II are nonnegative, and hence so is G′′(0). This completes
the proof. �

In our further considerations, we will also make use of the following majorization.

Lemma 2.2. If x, y belong to the unit ball of H and a ≥
√
e/3, then

(2.1) z(x,−x) ≤ −|x|

and

(2.2) z(x, 2y + x) ≤ ln(3a) · |x+ y| − |y|.

Proof. The estimate (2.1) is evident: if |x| ≤ 1/a, then the inequality is equivalent
to (|x| − a−1)2 ≥ 0; if |x| > 1/a, then z(x,−x) = −|x|. To show (2.2), suppose first
that |x+ y|+ |y| > 1/a. Then the majorization can be rewritten in the form

ln [a(|x+ y|+ |y|)] ≤ ln(3a),

which follows directly from the assumption |x|, |y| ≤ 1. On the other hand, if
|x+ y|+ |y| ≤ 1/a, then we must prove that

a

2
(|x+ y|2 − |y|2)− 1

2a
≤ ln(3a) · |x+ y| − |y|,

or, equivalently,

(2.3) |x+ y|
(

ln(3a)− a|x+ y|
2

)
+
a

2

(
|y| − a−1

)2 ≥ 0.
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However, we have |x + y| ≤ 1/a; furthermore, a ≥
√
e/3, as we have assumed in

the statement of the lemma. Therefore,

ln(3a)− a|x+ y|
2

≥ ln
√
e− 1

2
= 0.

Therefore, the first summand on the left-hand side of (2.3) is nonnegative; clearly
the second summand also has this property. This gives the claim. �

We are ready to introduce the formula for a function ζ corresponding to the
UMD space `N1 = `N1 (H). Actually, we will provide a whole family of special
functions. Recall that K`N1 denotes the unit ball of `N1 . For a fixed a ≥

√
e/3, let

ζ = ζa : K`N1 ×K`N1 → R be given by

ζ(x, y) =
2

ln(3a)

1 +

N∑
j=1

z(xj , yj)

 ,

where x1, x2, . . ., xN , y1, y2, . . ., yN ∈ H are the coordinates of the vectors
x, y ∈ `N1 .

Theorem 2.3. For any a > N/2, the function ζ = ζa is biconvex,

(2.4) ζ(0, 0) =
2

ln(3a)

(
1− N

2a

)
and

(2.5) ζ(x, y) ≤ ||x+ y||`N1 provided ||x||`N1 = ||y||`N1 = 1.

Proof. The biconvexity of ζ follows at once from Lemma 2.1. The equality (2.4)
is also clear. To show (2.5), note that the condition ||x||`N1 = ||y||`N1 = 1 implies
that for each j = 1, 2, . . . , N , the coordinates xj , yj belong to the unit ball of H.
Furthermore, since N ≥ 2, we have N/2 ≥ 1 >

√
e/3. Consequently, we are allowed

to apply (2.1) and (2.2) to xj and yj , and obtain

z(xj ,−xj) ≤ −|xj |, z(xj , xj + 2yj) ≤ ln(3a) · |xj + yj | − |yj |.
Summing over j = 1, 2, . . . , N , we get that

1 +

N∑
j=1

z(xj ,−xj) ≤ 1− ||x||`N1 = 0

and

1 +

N∑
j=1

z(xj , xj + 2yj) ≤ 1 + ln(3a)||x+ y||`N1 − ||y||`N1 = ln(3a)||x+ y||`N1 .

These two estimates combined with the biconvexity of z imply

ζ(x, y) =
2

ln(3a)

1 +

N∑
j=1

z(xj , yj)


≤ 1

2
· 2

ln(3a)

1 +

N∑
j=1

z(xj ,−xj)

+
1

2
· 2

ln(3a)

1 +

N∑
j=1

z(xj , xj + 2yj)


≤ ||x+ y||`N1 .
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This is the desired property (2.5) and the proof is complete. �

To establish Theorem 1.1, it suffices to set a = N lnN . Up to a numerical factor,
this choice maximizes the right-hand side of (2.4) over all admissible values of the
parameter a.

3. An upper bound for ζ`N1 (0, 0)

Now we turn our attention to the proof of Theorem 1.2. In the light of the
discussion presented in the introductory section, it suffices to provide an efficient
lower bound for the best constant CN in the estimate

(3.1) P

sup
n

∣∣∣∣∣
∣∣∣∣∣
n∑
k=0

εkdfk

∣∣∣∣∣
∣∣∣∣∣
`N1

≥ 1

 ≤ CN sup
n

∣∣∣∣∣
∣∣∣∣∣
n∑
k=0

dfk

∣∣∣∣∣
∣∣∣∣∣
L1(Ω;`N1 )

,

i.e., we need to construct appropriate examples. Let N , K be positive integers and
set δ = (N − 1)/(2NK). Let (Ω,F ,P) be a given non-atomic probability space.

Consider the sequence (ξj)
2K+1
j=1 of independent, real-valued random variables, with

the distribution uniquely determined by the following requirements:

(i) We have

P(ξ1 = −(2N)−1) = P(ξ1 = (2N)−1) = 1/2.

(ii) For n = 2, 3, . . . , 2K,

P(ξn = −N−1 − (n− 2)δ) = 1− P(ξn = δ) =
δ

N−1 + (n− 1)δ
.

(iii) We have

P(ξ2K+1 = −1 + δ) = 1− P(ξ2K+1 = 1 + δ) =
1 + δ

2
.

Observe that the variables ξn have mean zero. Let ε be a Rademacher variable,
independent of (ξn)2K+1

n=1 . Introduce τ = inf{n : ξn ≤ 0 or n = 2K + 1}; then τ is

a stopping time with respect to the natural filtration of the sequence (ξn)2K+1
n=1 , so

by Doob’s optional sampling theorem, the process

fn = ε
(
(2N)−1 + ξ1 + ξ2 + . . .+ ξτ∧n

)
, n = 0, 1, 2, . . . , 2K + 1,

is a mean-zero martingale. Let g = (gn)2K+1
n=0 be the transform of f by the deter-

ministic sequence v = ((−1)n)2K+1
n=0 : that is,

gn =

n∑
k=0

(−1)kdfk =
ε

2N
+

n∑
k=1

(−1)kεξk, n = 0, 1, 2, . . . , 2K + 1.

To gain some intuition about the pair (f, g), let us look at the pattern of its be-
havior. Because of the random sign ε, we see that the variable (f0, g0) takes values
(± 1

2N ,±
1

2N ) (each with probability 1/2). Suppose that (f0, g0) is equal to ( 1
2N ,

1
2N )

(if it equals (− 1
2N ,−

1
2N ), the movement is symmetric with respect to the point

(0, 0)). Then (f1, g1) moves along the line of slope −1 and jumps either to (0, 1/N),

or to (1/N, 0). If the first possibility occurs, then τ = 1 ((ξn)2K+1
n=0 experiences its

first negative jump) and the evolution of (f, g) stops (that is, f1 = f2 = . . . = f2K+1,
g1 = g2 = . . . = g2K+1). If (f1, g1) = (1/N, 0), then the pair (f, g) starts moving
along the line of slope 1, and goes to (0,−1/N) or to (1/N+δ, δ). In the first case, we
see that τ = 2 and the pair (f, g) terminates. Otherwise, if (f2, g2) = (1/N + δ, δ),
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then the pair continues its evolution and moves along the line of slope −1, jumping
to (0, 1/N + 2δ) or to (1/N + 2δ, 0). In the first case the pair stops, in the second
its evolution continues, according to the above pattern. The procedure (almost)
finishes after 2K steps: by this time, (f, g) either has already landed on the y-axis,
or gets to the point (1/N + (2K − 1)δ, δ) = (1 − δ, δ); in the latter case, the pair
makes its final, 2K + 1-st move, either jumping to (0, 1), or to (2,−1).

From the above description, we immediately extract several useful properties of
the sequence (f, g). First, the martingales f , g are simple, i.e., they are finite and
for each n, the variables fn and gn take only a finite number of values. Secondly, we
see that the martingale f does not change its sign (more precisely, sgn fn = sgn ε)
and hence ||f ||L1(Ω;R) = supn ||fn||L1(Ω;R) = E|f0| = (2N)−1. Finally, we easily
compute the distribution of the variable |g2K+1|. From the above discussion, it is
clear that it takes values in the set {N−1, N−1 + 2δ,N−1 + 4δ, . . . , 1}. So, if N = 1,
then |g2K+1| = 1 almost surely. On the other hand, if N ≥ 2, then we see that

P(|g2K+1| = N−1 + 2nδ) = P(τ = 2n+ 1 or τ = 2n+ 2)

for n = 0, 1, 2, . . . , K − 1, and

P(|g2K+1| = N−1 + 2Kδ) = P(τ = 2K + 1).

The above probabilities are easy to compute. We have

P(τ = 2n+ 1) = P(ξ1 > 0, ξ2 > 0, . . . , ξ2n > 0, ξ2n+1 ≤ 0)

= P(ξ1 > 0)P(ξ2 > 0) . . .P(ξ2n > 0)P(ξ2n+1 ≤ 0).

Using the above information on the distribution of the sequence (ξn)2K+1
n=0 , we get

P(τ = 2n+ 1) =


1
2 if n = 0,

(2N)−1

N−1+(2n−1)δ ·
δ

N−1+2nδ if n = 1, 2, . . . , K − 1,
(2N)−1

N−1+(2K−1)δ if n = K.

Similarly, one derives that for n = 1, 2, . . . , K − 1,

P(τ = 2n+ 2) =
(2N)−1

N−1 + 2nδ
· δ

N−1 + (2n+ 1)δ
.

Now we are ready for the construction of the `N1 -valued extremal martingales.
The definition is inductive, and we will formulate it as a separate statement.

Theorem 3.1. Let (ζN )N≥1 be a sequence defined by the recursion

ζ1 =
1

2
, ζN =

1

2N
+

(
1− 1

N
− lnN

2N

)
ζN−1.

For any positive integer N and any positive number η there is an `N1 -valued, mean-
zero simple martingale F satisfying ||F ||L1(Ω;`N1 ) ≤ ζN + η such that its transform

G by the deterministic sequence ((−1)n)n≥0 satisfies P(supn ||Gn||`N1 ≥ 1) = 1.

Proof. ForN = 1, we use the above example withK = 1: we have ||F ||L1(Ω;R) = 1/2
and P(|G3| ≥ 1) = 1 so the required conditions are satisfied. Now suppose that
N ≥ 2 and that the assertion of the theorem holds for N −1. For a given η > 0, let
F̃ be the `N−1

1 -valued martingale given by the inductive assumption and let f =

(fn)2K+1
n=0 be a martingale as in the above construction. We define F as follows: for
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n = 0, 1, 2, . . . , 2K + 1 we put Fn = (fn, 0, 0, . . . , 0︸ ︷︷ ︸
N−1 times

). To define Fn for n > 2K + 1,

pick an arbitrary atom A of the σ-algebra generated by f1, f2, . . . , f2K+1, satisfying
P(A) > 0. On this atom the random variable g2K+1 is constant, say, g2K+1 = c
(from the above analysis, we know that c ∈ {±N−1,±(N−1 + 2δ), . . . ,±1}). If
|c| = 1, then we set Fn = F2K+1 for n > 2K+1; if |c| < 1, then we define F by saying
that the distribution of the N − 1-dimensional vector (F 2

n , F
3
n , . . . , F

N
n )n≥2K+2 is

the same as the distribution of (1 − |c|)F̃ . The reason for which we choose the
scaling factor 1 − |c| is that then the transform G of the martingale F we have
just constructed (the transforming sequence is ((−1)n)n≥0, as usual) satisfies the
following property. On each atom A as above,

sup
n
|G1

n| = |g2K+1| = |c|, sup
n
||(G2

n, G
3
n, . . . , G

N
n )||`N−1

1
≥ 1− |c|

with probability 1 (here we use the inductive assumption) and therefore we have
P(supn ||Gn||`N1 ≥ 1) = 1, as desired. Let us now look at the first norm of F . From
the construction and the induction hypothesis, we see that

||F ||L1(Ω;`N1 )

= E|f2K+1|+ ||(F 2, F 3, . . . , FN )||L1(Ω;`N−1
1 )

≤ (2N)−1 +

K∑
n=0

(
1−N−1 − 2nδ

)
||F̃ ||L1(Ω;`N−1

1 )P
(
|g2K+1| = N−1 + 2nδ

)
.

However, we have computed the above probabilities in our earlier considerations. If
we plug them, we see that the above expression becomes an appropriate Riemann
sum: if K is chosen sufficiently large, we can make the right-hand side arbitrarily
close to

1

2N
+ ||F̃ ||L1(Ω;`N−1

1 )

[
1

2

(
1− 1

N

)
+

∫ 1

1/N

(2N)−1

x2
(1− x)dx

]

=
1

2N
+ ||F̃ ||L1(Ω;`N−1

1 )

[
1− 1

N
− lnN

2N

]
.

It remains to recall that ||F̃ ||L1(Ω;`N−1
1 ) ≤ ζN−1 + η, where η was an arbitrary

positive number. Thus we see the recursion defining the sequence (ζN )N≥1 and
hence, if K and η are chosen appropriately, the norm ||F ||L1(Ω;`N1 ) can be as close
to ζN as we wish. This proves the theorem. �

Therefore, the above example shows that the optimal constant CN in the weak-
type inequality (3.1) satisfies CN ≥ ζ−1

N and hence ζ`N1 (0, 0) ≤ 2ζN . So, to get the
assertion of Theorem 1.2, it is enough to establish the following statement.

Lemma 3.2. The sequence (ζN )N≥1 satisfies ζN ln(2N) ≤ 1.

Proof. We have ζ1 ln 2 = (ln 2)/2 ≤ 1, ζ2 ln 4 = (1/2 − (ln 2)/8) ln 4 ≤ (ln 4)/2 ≤ 1
and

ζ3 ln 6 =

[
1

6
+

(
2

3
− ln 3

6

)(
1

2
− ln 2

8

)]
ln 6 ≤

(
1

6
+

1

3

)
ln 6 ≤ 1.

For N ≥ 4, we use induction; assuming that ζN−1 ln(2N −2) ≤ 1, we compute that

ζN =
1

2N
+

(
1− 1

N
− lnN

2N

)
ζN−1 ≤

1

2N
+

(
1− 1

N
− lnN

2N

)
1

ln(2N − 2)
.
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Hence, it is enough to show that the latter expression does not exceed 1/ ln(2N).
After some straightforward manipulations, this amounts to saying that

1

2
≤
N ln N−1

N + ln(2N) + 1
2 lnN · ln(2N)

ln(2N) ln(2N − 2)
,

or

1

2
≤
N ln N−1

N + (1− ln
√

2) ln(2N) + 1
2 ln(2N) · ln(2N)

ln(2N) ln(2N − 2)
.

Clearly, we will be done if we prove that N ln N−1
N +(1−ln

√
2) ln 2N ≥ 0 for N ≥ 4.

But this is easy: the left-hand side is an increasing function of N , and for N = 4 it
is equal to 0.208 . . . > 0, as computer simulations show. The proof is complete. �
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d’Analyse Fonctionnelle, 1984/1985, Publ. Math. University Paris VII 26 (1986), 155–165.
[12] G. Dore and A. Venni, Some results about complex powers of closed operators, J. Math. Anal.

Appl. 149 (1990), 124–136.

[13] T. P. Hytönen, Aspects of probabilistic Littlewood-Paley theory in Banach spaces, in: Banach
spaces and their applications in analysis, 343–355, de Gruyter, Berlin, 2007.

[14] J. M. Lee, Biconcave-function characterisations of UMD and Hilbert spaces, Bull. Austral.

Math. Soc. 47 (1993), 297–306.
[15] T. R. McConnell, On Fourier multiplier transformations of Banach-valued functions, Trans.

Amer. Math. Soc. 285 (1984), 739–757.
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École Polytechnique, Paris (1975)



UMD PROPERTY 11

Department of Mathematics, Informatics and Mechanics, University of Warsaw, Ba-

nacha 2, 02-097 Warsaw, Poland

E-mail address: ados@mimuw.edu.pl


