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1. Introduction

The purpose of this paper is to determine the exact formulas for weighted Lp

norms of a certain important class of operators in a wide context of measure
spaces. To present the motivation, let us start with the classical, dyadic set-
ting. Suppose that n is a �xed dimension and let D denote the standard grid
of dyadic cubes in Rn. A sequence α = (αQ)Q∈D of nonnegative numbers has
Carleson property, if

sup
R∈D

1

|R|
∑

Q∈D,Q⊆R

αQ|Q| ≤ 1,

where |·| is the Lebesgue measure. It is well-known that the Carleson property
is equivalent to the following fact (see e.g. [8]): there is a family {E(Q)}Q∈D
of pairwise disjoint sets such that E(Q) ⊆ Q and αQ = |E(Q)|/|Q| for each
Q. For any Carleson sequence α and any positive number r, we introduce the
associated shift operator Arα, acting on locally integrable functions f : Rn →
R by

Arαf =

∑
Q∈D

αQ〈f〉rQχQ

1/r

. (1.1)
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Here 〈f〉Q = 1
|Q|
∫
Q
f is the average of f over the cube Q. Such operators

are closely related to the class of the so-called sparse operators. Recall that a
collection S ⊂ D is called sparse, if there is a family {E(Q)}Q∈S of pairwise
disjoint sets such that E(Q) ⊆ Q and |E(Q)| ≥ |Q|/2 for each Q ∈ S. Given
any such class S and any r > 0, one can introduce the associated sparse
operator by

T S,rf =

∑
Q∈S
〈f〉rQχQ

1/r

.

Such an operator is of the form (1.1), if one sets αQ = 1 for Q ∈ S and αQ = 0
otherwise; in addition, it is easy to see that the sequence (αQ/2)Q∈D has the
Carleson property. The importance of the sparse operators (and hence also
the class of shift operators) lies in the fact that such objects dominate, in
an appropriate sense, large families of Calderón-Zygmund singular integrals
and Littlewood-Paley square functions [5, 6, 7], and thus many interesting
estimates can be reduced to the context of shift operators. This observation
has been exploited very intensively in the recent literature, especially in the
context of weighted inequalities, as we will brie�y discuss now. Here and
below, the word `weight' will refer to a positive, locally integrable function
on Rn, and the associated weighted Lp space (for 0 < p < ∞) is de�ned as
the collection of all (equivalence classes of) functions f : Rn → R for which
the quantity

‖f‖Lp(w) =

(∫
Rn
|f |pwdx

)1/p

is �nite. Recall that given 1 < p <∞, a weight w on Rn belongs to the class
Ap (or satis�es the Muckenhoupt condition Ap), if

[w]Ap = sup

(
1

|Q|

∫
Q

wdx

)(
1

|Q|

∫
Q

w1/(1−p)dx

)p−1
<∞, (1.2)

where the supremum is taken over all cubes Q ⊂ Rn with sides parallel to the
axes. There are also versions of this condition for p ∈ {1,∞}, which can be
obtained by passing to the appropriate limit; however, we will not present the
precise de�nition here, as we will not work with these endpoint cases. The Ap
condition appeared for the �rst time in the seminal work of Muckenhoupt [10]
and was shown to characterize the weighted Lp boundedness of the Hardy-
Littlewood maximal function. It was soon realized that the Ap condition also
characterizes the boundedness of other classical operators, including singular
integrals, fractional operators, square functions and area integrals, and many,
many more. The literature is extremely vast here and we recall the reader to
some basic works [2, 11, 3, 12] only.

Throughout this paper we will work with a slightly more general class
of dyadic Ap weights, which are again de�ned by the condition (1.2), but
this time the supremum is taken over the class of all dyadic cubes Q. Such
classes form a natural environment for various operators whose de�nition
refers to the dyadic lattice D: for instance, this is the case if we consider the
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dyadic maximal operator, dyadic square function or the dyadic shift operator
introduced above.

The motivation for the results in this paper comes from the question
about the optimal dependence of the weighted Lp norms of dyadic shift oper-
ators on the Ap characteristic of the weight. For maximal operators, Buckley
[1] proved that if M is a maximal operator, then for each 1 < p <∞ there is
a constant cp depending only on p such that

‖M‖Lp(w)→Lp(w) ≤ cp[w]
1/(p−1)
Ap

,

and the exponent 1/(p − 1) is optimal (see [4, 13] for the improvement of
this result). Concerning the dyadic shifts, Lerner [7] proved that the optimal
dependence is

‖A1
α‖Lp(w)→Lp(w) .p [w]

max{1,1/(p−1)}
Ap

,

and this led to the analogous weighted Lp-estimate for a large class of Calderón-
Zygmund singular integral operators. In a di�erent paper [6], Lerner showed
that

‖A2
α‖Lp(w)→Lp(w) .p [w]

max{1/2,(p−1)−1}
Ap

,

which yielded the similar statement for dyadic square functions; again, the
exponent max{1/2, 1/(p−1)} cannot be improved. We will continue the above
line of research and identify the explicit values of the weighted Lp norms
for dyadic shift operators Arα for a wide range of parameter r. The precise
statement of our main result requires the introduction of a certain special
parameter d(p, c), whose geometric interpretation is explained on Figure 1
below. Let c ≥ 1 and 1 < p < ∞ be �xed. Then the line, tangent to the
curve wvp−1 = c at the point (1, c1/(p−1)), intersects the curve wvp−1 = 1
at one point (if c = 1) or two points (if c > 1). Take the intersection point
with larger w-coordinate, and denote this coordinate by 1+d(p, c). Formally,
d = d(p, c) is the unique number in [0, p− 1) satisfying

c(1 + d)(p− 1− d)p−1 = (p− 1)p−1. (1.3)

The second intersection point is given by
(
1 + d∗(p, c), (1 + d∗(p, c))1/(1−p)

)
,

where d = d∗(p, c) is the unique number belonging to (−1, 0] satisfying (1.3).

The following theorem is one of our main results. Here and in what
follows, for any p ∈ (1,∞), the symbol p′ is the harmonic conjugate to p, i.e.,
p′ = p/(p− 1).

Theorem 1.1. Let 1 < p <∞ and 0 < r < p. Then for any w ∈ Ap and any
Carleson sequence, the associated dyadic shift operator satis�es

‖Arα‖Lp(w)→Lp(w) ≤ Cp,r,[w]Ap
, (1.4)

where

Cp,r,c =


p′
(p
r

) 1
r · c 1

r

(
1 + d

(
p′, c

1
p−1

)) p−1
r −1

if 0 < r < p− 1,

p′
(p
r

) 1
r · c

1
p−1
(
1 + d(p, c)

) 1
p−1−

1
r if p− 1 ≤ r < p.

(1.5)
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Figure 1. The geometric interpretation of the number d = d(p, c).

The constant Cp,r,c is the best possible in the following sense. For any p, r, c
and ε > 0 there is a weight w satisfying [w]Ap ≤ c and a Carleson sequence
α such that

‖Arα‖Lp(w)→Lp(w) > Cp,r,c − ε. (1.6)

Let us discuss brie�y on the size of the constants. Since 0 ≤ d(p, c) ≤
p − 1, we easily extract the optimal dependence of Cp,r,c on c: we have

Cp,r,c �p cmax{1/r,1/(p−1)} (here A �p B means that the ratio A/B is bounded
from below and from above by a quantity depending only on p). For r = 1, this
is precisely the optimal dependence on weight characteristic for a wide class
of singular integrals, while for r = 2 we recover the optimal dependence for a
wide class of square functions (see above). Another special case which is worth
mentioning is the Lp constant in the unweghted setting: this context corre-

sponds to the condition [w]Ap = 1 under which we have Cp,r,1 = p′
(
p
r

)1/r
.

As we will see below, our approach actually does not exploit any prop-
erty of the dyadic lattice and hence it allows the study of shift operators in
a much wider context. Suppose that (Ω, µ) is a nonatomic probability space,
and call two measurable subsets A, B of Ω almost disjoint if µ(A ∩B) = 0.

De�nition 1.2. A set T of measurable subsets of Ω will be called a tree if the
following conditions are satis�ed:

(i) Ω ∈ T and for every I ∈ T we have µ(I) > 0.

(ii) For every I ∈ T there is a �nite subset C(I) ⊂ T such that
(a) the elements of C(I) are pairwise almost disjoint subsets of I,
(b) I =

⋃
C(I).

(iii) T =
⋃
m≥0 T m, where T 0 = {Ω} and Tm+1 =

⋃
I∈Tm C(I).

(iv) We have limm→∞ supI∈T m µ(I) = 0.
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We can rede�ne the notions of Carleson sequences, Muckenhoupt weights
and dyadic shift operators, replacing Rn with Ω, the Lebesgue measure with
µ and the dyadic lattice D with the tree T . Then, as we shall see, the asser-
tion of Theorem 1.1 remains valid with the same value of the constant. We
should emphasize that the constants Cp,r,c will be the best possible for each
individual tree T . It is easy to see that the normalization requirement on the
measure µ can be signi�cantly relaxed, by the use of dilation and limiting
arguments; however, we will not go further into this direction, leaving it to
the interested reader, and we will restrict ourselves to probabilistic setup.

Our proof can be regarded as an extension of an argument due to
Moen [9]. It rests on duality and a change-of-measure, which allows to re-
late weighted estimates for dyadic shifts to the unweighted Lp bounds for
the dyadic maximal function (with respect to an arbitrary Borel measure).
However, a successful treatment of (1.4) requires the identi�cation of a Car-
leson constant of a certain auxiliary sequence, which is accomplished by the
so-called Bellman function method, a powerful tool used widely in probabil-
ity and harmonic analysis. This intermediate result is established in the next
section. The �nal part of the paper is devoted to the proof of Theorem 1.1
in the general probabilistic context.

2. An auxiliary bound for Ap weights

Throughout this section, 1 < p < ∞ and c ≥ 1 are �xed parameters and
d = d(p, c) is the nonnegative constant given by (1.3). Let β > 0 be another
�xed number. Consider the special function B = Bp,c,β : (0,∞)3 → R given
by the formula

B(x, y, z) = − β

d(p, c)
zβ +

(p− 1)β

pd(p, c)
zβ−1y +

β

pcd(p, c)
xzp−1+β .

We will need the following properties of this object.

Lemma 2.1. (i) We have B(x, y, y) ≤ 0 if xyp−1 ≤ c.
(ii) If 1 ≤ xyp−1 ≤ c, then we have the majorization

B(x, y, z) ≥ zβ − (c(1 + d(p, c)))β/(p−1)yβ . (2.1)

(iii) For any (x, y, z) ∈ (0,∞)3 satisfying xyp−1 ≤ c and y ≤ z, and
any r > −w, s > −v such that (w + r)(v + s)p−1 ≤ c we have

B(x+ r, y+s,max{y+s, z}) ≤ B(x, y, z)+Bx(x, y, z)r+By(x, y, z)s. (2.2)

Proof. (i) The functionB increases as x increases, soB(x, y, y) ≤ B(cy1−p, y, y),
and the latter quantity is equal to zero.

(ii) By the above monotonicity of B with respect to x, it is enough to
show the majorization for the smallest x, i.e., for x = y1−p. Then the estimate
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becomes

(p− 1)β

pd(p, c)
zβ−1y +

β

pcd(p, c)
y1−pzp−1+β + (c(1 + d(p, c)))β/(p−1)yβ

−
(

1 +
β

d(p, c)

)
zβ ≥ 0.

Fix z and denote the left-hand side by F (y). After some lengthy but straight-
forward computations involving (1.3), we check that

F
(
z(1 + d)1/(1−p)

)
= F ′

(
z(1 + d)1/(1−p)

)
= 0. (2.3)

In addition, we have

F ′′(y) = βy−1−p
(

(p− 1)zp−1+β

cd(p, c)
+ (β − 1)(c(1 + d(p, c)))β/(p−1)yp−1+β

)
.

Therefore, if β ≥ 1, then F is convex on [0,∞), which combined with (2.3)
gives F ≥ 0. On the other hand, if 0 < β < 1, then there exists y0 > 0
such that F is convex on (0, y0) and concave on (y0,∞). Combining this with
(2.3) and the obvious observation that F (y) ≥ 0 for su�ciently large y, we
conclude that F ≥ 0 on the whole hal�ine [0,∞).

(iii) For a �xed z, the function B is a linear function of x and y, so both
sides of (2.2) are equal if y + s ≤ z. If y + s > z, then the desired inequality
is equivalent to B(x+ r, y + s, y + s) ≤ B(x+ r, y + s, z), or

− β

d(p, c)
zβ +

(p− 1)β

pd(p, c)
zβ−1(y + s) +

β

pcd(p, c)
(x+ r)zp−1+β

≥ − β

pd(p, c)
(y + s)β +

β

pcd(p, c)
(x+ r)(y + s)p−1+β .

Since (y + s)p−1+β ≥ zp−1+β , it is enough to prove this bound when x+ r is
as large as possible, i.e., for x+r = c(y+s)1−p. For this choice the right-hand
side vanishes and the claim reduces to

β

d(p, c)
zβ

[
−1 +

p− 1

p
· y + s

z
+

1

p
·
(

z

y + s

)p−1]
≥ 0,

which follows at once from Young's inequality. �

We are ready to establish the main result of this section. We assume
that (Ω, µ) is an arbitrary probability space equipped with a tree structure
T . Let M be the associated maximal operator, acting on integrable random
variables ϕ by

Mϕ(ω) = sup〈|ϕ|〉Q,

where the supremum is taken over all Q ∈ T containing ω. Here and below,
the averages are computed with respect to the probability measure µ.
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Theorem 2.2. Let 1 < p <∞, c ≥ 1 and β ≥ 0. Let w : Ω→ (0,∞) be an Ap
weight satisfying [w]Ap ≤ c and let v = w1/(1−p) stand for the dual weight.
Then for any R ∈ T , we have

〈
(
M(vχR)

)β〉R ≤ (c(1 + d(p, c))
) β
p−1 〈vβ〉R. (2.4)

For any p, c and β, the constant
(
c(1 + d(p, c))

) β
p−1 cannot be improved.

Proof of (2.4). We may assume that β is strictly positive, since the claim for
β = 0 is obvious. We split the reasoning into a few parts.

Step 1. Some notation. Fix R ∈ T : then R ∈ T m for some nonnegative
integer m. For any integer k ≥ m and any ω ∈ R, let Qk(ω) be the unique
element of T k which contains ω. Furthermore, de�ne

xk(ω) = 〈w〉Qk(ω), yk(ω) = 〈v〉Qk(ω), zk(ω) = max
0≤`≤k

y`(ω).

Of course, for any k and any Q ∈ T k, the functions xk, yk and zk are constant
on Q and we have∫

Q

xk+1dµ = µ(Q)xk|Q,
∫
Q

yk+1dµ = µ(Q)yk|Q. (2.5)

Furthermore, the sequence (zk)k≥0 is non-decreasing and satis�es

lim
k→∞

zk(ω) = sup
k≥0
〈v〉Qk(ω) = sup

k≥0
〈vχR〉Qk(ω) = M(vχR)(ω) (2.6)

µ-almost everywhere. Finally, we record the double inequality

1 ≤ xkyp−1k ≤ c, (2.7)

noting that the left bound follows from Jensen's inequality, while the right is
due to [w]Ap ≤ c.

Step 2. Monotonicity property. Let B = Bp,c,β be the function con-
structed above. We will prove that the sequence(∫

R

B(xk, yk, zk)dµ

)
k≥m

is non-increasing. To this end, we �x k and apply the concavity property (2.2)
with x := xk, y := yk, z := zk and r = xk+1 − xk, s = yk+1 − yk. As the
result, we obtain the pointwise estimate

B(xk+1, yk+1, zk+1)

≤ B(xk, yk, zk) +Bx(xk, yk, zk)(xk+1 − xk) +By(xk, yk, zk)(yk+1 − yk).

As we have already mentioned above, if Q is an element of T k, then xk, yk
and zk are constant on Q. Furthermore, by (2.5), we have

∫
Q

(
xk+1−xk

)
dµ =∫

Q

(
yk+1 − yk

)
dµ = 0. Consequently, integrating the above inequality over

Q, we obtain ∫
Q

B(xk+1, yk+1, zk+1)dµ ≤
∫
Q

B(xk, yk, zk)dµ.
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Summing over all Q ∈ T k contained in R, we get the aforementioned mono-
tonicity property of the sequence

(∫
R
B(xk, yk, zk)dµ

)
k≥m.

Step 3. Completion of the proof. For a given k, we apply (2.1) to get∫
R

(
zβk − (c(1 + d(p, c)))

β
p−1 yβk

)
dµ ≤

∫
R

B(xk, yk, zk)dµ

≤
∫
R

B(xm, ym, zm)dµ.

(2.8)

But the functions xm and ym are constant on R and zm = ym. Therefore,
by Lemma 2.1 (i),

∫
R
B(xm, ym, zm)dµ ≤ 0. To analyze the left-hand side of

(2.8), observe that by Lebesgue's monotone convergence theorem,∫
R

zβkdµ→
∫
R

M(vχR)βdµ.

Furthermore, recall that yk is the conditional expectation of v with respect
to T k. Therefore, if β ≥ 1, Jensen's inequality yields∫

R

yβkdµ ≤
∫
R

vβdµ,

while for β < 1, the sequence
(∫

R
yβkdµ

)
k≥m

decreases to
∫
R
vβdµ (this is a

simple application of Lebesgue's dominated convergence theorem). Putting
all the above facts together, we get the estimate (2.4). The sharpness of this
estimate will follow from our considerations below. If the constant in (2.4)
could be improved, it would imply that (1.4) can also be improved which, as
we shall see, is impossible. �

The above estimate has the following important consequence. Introduce
an auxiliary constant

Kp,r,c =

c
(

1 + d
(
p′, c

1
p−1

))p−r−1
if 0 < r < p− 1,

c
r
p−1
(
1 + d(p, c)

) 1−p+r
p−1 if r ≥ p− 1.

Theorem 2.3. Let 1 < p < ∞, r > 0 be given parameters and let w be
an Ap weight satisfying [w]Ap ≤ c. Fix R ∈ T and an arbitrary Carleson
sequence (αQ)Q∈T with a �nite number of nonzero terms. Then there is a
family (E(Q))Q∈T of pairwise disjoint sets such that for each Q we have
E(Q) ⊆ Q and

αQµ(Q)〈w〉Q〈v〉rQ = Kp,r,c

∫
E(Q)

v1−p+rdµ. (2.9)

Proof. This follows by a straightforward backward induction argument. As-
sume �rst that r ≥ p− 1. Since (αQ)Q∈T contains a �nite number of nonzero
terms, there is an integer N such that αQ vanishes for all Q ∈ T n, n ≥ N .
For such Q we set E(Q) = ∅. Now, let k < N and assume that we have con-
structed pairwise disjoint sets E(Q) ⊆ Q satisfying (2.9) for all Q ∈

⋃
n>k T n.
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Fix Q ∈ T k. By the Ap condition, Carleson property and (2.4), we have

1

µ(Q)

∑
Q′∈T , Q′⊆Q

αQ′µ(Q′)〈w〉Q′〈v〉rQ′ ≤ c
1

µ(Q)

∑
Q′∈T , Q′⊆Q

αQ′µ(Q′)〈v〉1−p+rQ′

≤ c 1

µ(Q)

∑
Q′∈T , Q′⊆Q

µ(e(Q′))〈v〉1−p+rQ′

≤ c 1

µ(Q)

∫
Q

(M(vχQ))1−p+rdµ

≤ c(c(1 + d(p, c)))
1−p+r
p−1

1

µ(Q)

∫
Q

v1−p+rdµ.

Here {e(Q)}Q∈T is the family of subsets guaranteed by the Carleson property
of (αQ)Q∈T . Hence, by the induction hypothesis,

αQµ(Q)〈w〉Q〈v〉Q +
∑
Q′∈T ,
Q′ 6=Q

c(c(1 + d(p, c)))
1−p+r
p−1

∫
E(Q′)

v1−p+rdµ

≤ c(c(1 + d(p, c)))
1−p+r
p−1

∫
Q

v1−p+rdµ,

or, equivalently,

αQµ(Q)〈w〉Q〈v〉Q ≤ c(c(1 + d(p, c)))
1−p+r
p−1

∫
Q\

⋃
E(Q′)

v1−p+rdµ,

where the union in the lower limit of the integral is taken over all Q′ ∈ T ,
Q′ 6= Q. Therefore, we may pick a subset E(Q) with the desired properties,
which completes the induction step.

The proof in the case 0 < r < p − 1 follows the same pattern, but
applied to the dual weight. Namely, the weight v = w1/(1−p) belongs to Ap′

and satis�es [v]Ap′ = [w]
1/(p−1)
Ap

≤ c1/(p−1), so

1

µ(Q)

∑
Q′∈T , Q′⊆Q

αQ′µ(Q′)〈w〉Q′〈v〉rQ′

≤ c
r
p−1 · 1

µ(Q)

∑
Q′∈T , Q′⊆Q

αQ′µ(Q′)〈w〉1−
r
p−1

Q′

≤ c
r
p−1 · 1

µ(Q)

∫
Q

(M(wχQ))1−
r
p−1 dµ

≤ c
r
p−1

(
c

1
p−1

(
1 + d

(
p′, c

1
p−1

)))p−r−1
· 1

µ(Q)

∫
Q

w1− r
p−1 dµ

= c
r
p−1

(
c

1
p−1

(
1 + d

(
p′, c

1
p−1

)))p−r−1
· 1

µ(Q)

∫
Q

v1−p+rdµ.

Here in the last inequality we exploited (2.4) applied to the weight v and the
parameter p′. The remaining part of the proof is the same as above. �
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3. Proof of Theorem 1.1

The contents of this section splits naturally into a few parts.

3.1. Proof of (1.4)

Fix 1 < p < ∞, r < p and an Ap weight w satisfying [w]Ap = c. By
standard approximation, we may restrict ourselves to shift operators asso-
ciated with Carleson sequences possessing only a �nite number of nonzero
terms. To prove (1.4), it is enough to show that for any f ∈ Lp(w) and
g ∈ Lp/(p−r)(w−r/(p−r)),∑

Q∈T
αQµ(Q)〈f〉rQ〈g〉Q ≤ Crp,r,c‖f‖rLp(w)‖g‖L

p
p−r
(
w
− r
p−r
).

Substituting fv and gw in the places of f and g, respectively, we rewrite the
above bound in the equivalent form∑

Q∈T
αQµ(Q)〈w〉Q〈v〉rQ · 〈f〉rv,Q〈g〉w,Q ≤ Crp,r,c‖f‖rLp(v)‖g‖L

p
p−r (w)

.

Here 〈f〉v,Q and 〈g〉w,Q denote the averages of f and g over Q with respect
to the measures vdµ and wdµ, respectively. Let (E(Q))Q∈T be the collection
of subsets of Ω guaranteed by Theorem 2.3. Since∫

E(Q)

v1−p+rdµ =

∫
E(Q)

v
r
pw

p−r
p dµ ≤ v(E(Q))

r
pw(E(Q))

p−r
p ,

we get, by Hölder's inequality and the unweighted Lp bound for maximal
functions,∑

Q∈T
αQµ(Q)〈w〉Q〈v〉rQ · 〈f〉rv,Q〈g〉w,Q

≤ Kp,r,c

∑
Q∈T

v(E(Q))
r
pw(E(Q))

p−r
p · 〈f〉rv,Q〈g〉w,Q

≤ Kp,r,c

∑
Q∈T

v(E(Q))〈f〉pv,Q

 r
p
∑
Q∈T

w(E(Q))〈g〉
p
p−r
w,Q


p−r
p

≤ Kp,r,c

(∫
X

(Mvf)pvdµ

) r
p
(∫

X

(Mwg)
p
p−rwdµ

) p−r
p

≤ Kp,r,c

(
p

p− 1

)r
p

r
· ‖f‖rLp(v)‖g‖L

p
p−r (w)

.

HereMw,Mv stand for the maximal functions on the measure spaces (Ω, wdµ)
and (Ω, vdµ) equipped with the tree T , respectively. The above bound is
precisely the desired estimate: the latter multiplicative constant is equal to
Crp,r,c.
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3.2. Sharpness: a special function and its properties

Now we will address the optimality of the constant in (1.4). The examples
which yield the sharpness have a quite complicated, fractal-type structure
and hence we will use a di�erent method. Namely, we will show that the
validity of the estimate implies the existence of a certain special function
of �ve variables, enjoying appropriate size and concavity conditions. Then,
exploiting these properties in the right order, we will get the desired lower
bound for the constant.

Let T be a given tree on some probability space (X,µ) and let 1 < p <
∞, r ∈ (0, p), c ∈ [1,∞), C > 0 be �xed parameters. Consider the domain

D = Dp,r,c,C =

{
(x, y, u, v, t) ∈ [0,∞)4 × [0, 1] : 1 ≤ uvp−1 ≤ c

}
and the function BX,T : D → R de�ned by the formula

BX,T (x, y, u, v, t) = sup

{∫
X

([
yr + (Ar,Xα f)r

] p
r − Cpfp

)
wdµ

}
.

Here the supremum is taken over all nonnegative functions f on X satisfying∫
X
fdµ = x and taking a �nite number of values, all Carleson sequences α =

(αR)R∈T satisfying
∑
R∈T αRµ(R) ≤ t and all Ap weights w on X satisfying

[w]Ap ≤ c,
∫
X
wdµ = u,

∫
X
w1/(1−p)dµ = v. Finally, de�ne B : D → R by

B(x, y, u, v, t) = inf
X,T
BX,T (x, y, u, v, t).

This functions has the following properties.

Lemma 3.1. Fix C ′ ∈ (0, C). Assume that there is a probability space (X,µ)
and a tree T such that ‖Ar,Xα ‖Lp(w)→Lp(w) ≤ C ′ for all Carleson sequences
α and all weights w satisfying [w]Ap ≤ c. Then B is �nite on D.

Proof. We have [
yr + (Ar,Xα f)r

] p
r ≤

(
C

C ′

)p
(Ar,Xα f)p + κyp

for some constant κ depending only on C and C ′. Consequently, we get

BX,T (x, y, u, v, t) ≤ κypu+

(
C

C ′

)p
sup

{∫
X

((
Ar,Xα f

)p − (C ′)pfp
)
wdµ

}
≤ κypu,

by the assumption on the norm ‖Ar,Xα ‖Lp(w)→Lp(w). Therefore BX,T , and
hence also B, are �nite on D. �

Lemma 3.2. We have B(x, y, u, v, t) ≥ (yp − Cpxp)u.

Proof. For any X and T , consider a constant function f ≡ x, a zero Car-
leson sequence α and any Ap weight satisfying the required conditions on the

averages of w and w1/(1−p). Then by the very de�nition of BX,T we get

BX,T (x, y, u, v, t) ≥
∫
X

([
yr + (Ar,Xα f)r

] p
r − Cpfp

)
wdµ = (yp − Cpxp)u
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and the claim is proved, since the right-hand side does not depend on X or
T . �

Next we will handle the main, concavity-type property of B. To this
end, we need two simple observations studied in two lemmas below.

Lemma 3.3. Let (X,µ) be an arbitrary probability space equipped with a tree
T . Then for any λ ∈ (0, 1) there is a measurable set E such that µ(E) = λ
and

• E is the union of pairwise almost disjoint elements of T ;
• X \ E is the union of pairwise almost disjoint elements of T .

Proof. This follows from a simple inductive argument. Set E0 = F0 = ∅
and de�ne En, Fn ∈ T n as maximal sets (i.e., possessing maximal measure)
satisfying En ⊃ En−1, Fn ⊃ Fn−1 and µ(En) ≤ λ, µ(Fn) ≤ 1− λ. It is easy
to see that E =

⋃
nEn and X \ E =

⋃
n Fn have the desired decomposition

property; furthermore, the equality µ(E) = λ follows from the condition (iv)
in the de�nition of a tree. �

Lemma 3.4. Let (X,µ) be an arbitrary probability space equipped with a tree
structure T . For any u, v > 0 satisfying 1 ≤ uvp−1 ≤ c, there is a weight w
on X satisfying

∫
X
wdµ = u,

∫
X
w1/(1−p)dµ = v and [w]Ap ≤ c.

Proof. If uvp−1 = 1, then the constant weight w ≡ u satis�es all the re-
quirements; so, suppose that uvp−1 > 1. Let I be a line segment passing
through (u, v), lying entirely in the set {(x, y) : xyp−1 ≤ c}, with endpoints
(u−, v−) and (u+, v+) belonging to the curve xyp−1 = 1. It is easy to see
that such an interval exists (if uvp−1 = c, then it is unique - it must be
then tangent to the curve xyp−1 = c). Let λ ∈ (0, 1) be determined by
(u, v) = λ(u−, v−)+(1−λ)(u+, v+), and let E be the subset of X guaranteed
by the previous lemma: in particular, we have

E =
⋃
j

Q−j , X \ E =
⋃
j

Q+
j

for some pairwise almost disjoint sets Q±j of T . Set w = u−χE + u+χX\E .
Then ∫

X

wdµ = λu− + (1− λ)u+ = u

and∫
X

w1/(1−p)dµ = λu
1/(1−p)
− + (1− λ)u

1/(1−p)
+ = λv− + (1− λ)v+ = v.

It remains to check that [w]Ap ≤ c. Pick an arbitrary Q ∈ T . If Q = X, then(
1

µ(Q)

∫
Q

wdµ

)(
1

µ(Q)

∫
Q

w1/(1−p)dµ

)p−1
= uvp−1 ≤ c, (3.1)

by the assumption of the lemma. If Q is almost contained in E or in X \ E
(in the sense that µ(Q \ E) = 0 or µ(Q ∩ E=0), then w is constant on Q
and the above inequality is also true. Finally, if Q 6= X and Q is not almost
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contained in E or X \ E, then we set Q− = Q ∩ E, Q+ = Q \ E and note
that

1

µ(Q)

∫
Q

wdµ =
1

µ(Q)

∫
Q−

wdµ+
1

µ(Q)

∫
Q+

wdµ =
µ(Q−)

µ(Q)
u− +

µ(Q+)

µ(Q)
u+,

and, similarly,

1

µ(Q)

∫
Q

w1/(1−p)dµ =
µ(Q−)

µ(Q)
v− +

µ(Q+)

µ(Q)
v+.

Thus we have proved that the point
(

1
µ(Q)

∫
Q
wdµ, 1

µ(Q)

∫
Q
w1/(1−p)dµ

)
is a

convex combination of (u−, v−) and (u+, v+), i.e., it lies on the segment I.
Since I lies below the curve xyp−1 ≤ c, this yields (3.1) and completes the
proof. �

We are ready for the concavity condition of B.

Lemma 3.5. Suppose that two points (u−, v−) and (u+, v+) in (0,∞)2 have
the property that the entire line segment joining them lies below the curve
uvp−1 = c. Assume further that x± ≥ 0, y ≥ 0, t± ∈ [0, 1] and λ± ∈ (0, 1)
satisfy λ− + λ+ = 1 and set x = λ−x− + λ+x+, u = λ−u− + λ+u+, v =
λ−v− + λ+v+. If ∆t = t− (λ−t− + λ+t+) ≥ 0 and y′ = [yr + xr∆t]1/r, then

B(x, y, u, v, t) ≥ λ−B(x−, y
′, u−, v−, t−) + λ+B(x+, y

′, u+, v+, t+), (3.2)

Proof. It is convenient to split the reasoning into a few steps.

Step 1. Splicing. Pick an arbitrary probability space (X,µ) with a tree
structure T . Let E be set guaranteed by Lemma 3.3, corresponding to the
measure λ−. Setting E− = E and E+ = X \ E, let E± =

⋃
Qj± be the

decompositions of E± into pairwise almost disjoint elements of T . For each
j, treat Q+

j as a probability space, with the normalized measure µ/|Q+
j | and

the tree T +
j formed by those Q ∈ T , which are contained in Q+

j . By the

de�nition of BQ
+
j ,T

+
j (x+, y

′, u+, v+, t+), there exist a function f+j , a weight

w+
j and a Carleson sequence α+,j satisfying the appropriate requirements,

for which the integral

1

µ(Q+
j )

∫
Q+
j

([
y+j +Arα+,jf

]p − Cpfp)wdµ
is as close to BQ

+
j ,T

+
j (x+, y

′, u+, v+, t+) as we wish. A similar statement is true
for any Q−j . Now we splice all the functions, weights and Carleson sequences
into one function, one weight and one Carleson sequences as follows. We
set f =

∑
j f
−
j χQ−j

+
∑
j f

+
j χQ+

j
, w =

∑
j w
−
j χQ−j

+
∑
j w

+
j χQ+

j
and de�ne

a sequence (αR)R∈T by taking the union of all sequences (αQ±j
)j , putting

αX = ∆t and letting αR = 0 for all remaining R (i.e., those R 6= X which
are not contained in any Q±j ).

Step 2. Checking the properties. Let us verify that as the result of the
above splicing procedure, we get objects which enjoy the properties needed at
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the de�nition of B(x, y, u, v, t). First, we see that f is a nonnegative function
and ∫

X

fdµ =
∑
j

∫
Q−j

fdµ+
∑
j

∫
Q+
j

fdµ = µ(E−)x− + µ(E+)x+ = x,

since the average of f over each Q±j is equal to x±. The veri�cation that
w satis�es the appropriate conditions is the repetition of the arguments ap-
pearing in the previous lemma (see also the below analysis of the Carleson
property of the sequence α). It remains to handle the sequence α. First note
that

1

µ(X)

∑
Q∈T

αQµ(Q) = αX +
∑
j

∑
Q⊆Q−j

αQµ(Q) +
∑
j

∑
Q⊆Q+

j

αQµ(Q)

≤ ∆t+
∑
j

t−µ(Q−j ) +
∑
j

t+µ(Q+
j ) = t.

To check the Carleson property, �x R ∈ T . If R = X, then
∑
Q∈T αQµ(Q) ≤

t ≤ µ(X), as we have just proved. If R is almost contained in some Q±j , then∑
Q∈T , Q⊆R

αQµ(Q) ≤ µ(R)

follows from the Carleson property of the sequence α±,j . Finally, if R 6= X is
not almost contained in any Q±j , then we write∑
Q∈T , Q⊆R

αQµ(Q) =
∑
j

∑
Q∈T , Q⊆R∩Q−j

αQµ(Q) +
∑
j

∑
Q∈T , Q⊆R∩Q+

j

αQµ(Q)

≤
∑
j

µ(R ∩Q−j ) +
∑
j

µ(R ∩Q+
j ) ≤ µ(R),

where in the �rst inequality we have again used the Carleson property of α±j .

Step 3. The concavity condition. By the very de�nition of BX,T , we
obtain

BX,T (x, y, u, v, t) ≥
∫
X

([
yr + (Ar,Xα f)r

] p
r − Cpfp

)
wdµ

=
∑
j

∫
Q−j

([
yr + (Ar,Xα f)r

] p
r − Cpfp

)
wdµ

+
∑
j

∫
Q+
j

([
yr + (Ar,Xα f)r

] p
r − Cpfp

)
wdµ.

However, for each j we have, on Q±j ,

yr + (Ar,Xα f)r = yr + xr∆t+

(
Ar,Q

±
j

α±,j f

)r
= (y′)r +

(
Ar,Q

±
j

α±,j f

)r
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and hence the right-hand side above can be made arbitrarily close to∑
j

µ(Q−j )BQ
−
j ,T

−
j (x−, y

′, u−, v−, t−) +
∑
j

µ(Q+
j )BQ

+
j ,T

+
j (x+, y

′, u+, v+, t+).

Therefore, by the de�nition of B, we see that for any ε > 0 we have

BX,T (x, y, u, v, t) ≥ λ−B(x−, y−, u−, v−, t−) + λ+B(x+, y+, u+, v+, t+)− ε.

Since the probability space and the tree were arbitrary, the claim is proved.
�

We conclude the analysis by providing a certain homogeneity property.

Lemma 3.6. For any (x, y, u, v, t) ∈ D and any λ, η > 0 we have

B(λx, λy, ηu, η1/(1−p)v, t) = λpηB(x, y, u, v, t). (3.3)

Proof. Pick an arbitrary probability space (X,µ) with some tree T . Let f ,
w, α be objects as in the de�nition of BX,T (x, y, u, v, t). Then λf , ηw and α
satisfy all the requirements of the de�nition of BX,T (λx, λy, ηu, η1/(1−p)v, t),
so

BX,T (λx, λy, ηu, η1/(1−p)v, t)

≥
∫
X

([
λryr + (Ar,Xα (λf))r

] p
r − Cp(λf)p

)
(ηw)dµ

= λpη

∫
X

([
yr + (Ar,Xα f)r

] p
r − Cpfp

)
wdµ.

Since f , w and α were arbitrary, we get

BX,T (λx, λy, ηu, η1/(1−p)v, t) ≥ λpηBX,T (x, y, u, v, t) ≥ λpηB(x, y, u, v, t).

Taking the in�mum over all X and T gives

B(λx, λy, ηu, η1/(1−p)v, t) ≥ λpηB(x, y, u, v, t).

To get the reverse, replace �rst x, y, u and v with λ−1x, λ−1y, η−1u and
η−1/(1−p)v, and then put λ−1 and η−1 in the place of λ and µ. �

3.3. Sharpness, the unweighted case

First we study the case in which the weights are constant, i.e., satisfy [w]Ap =
1. Let 1 < p <∞ and r ∈ (0, p) be �xed. Suppose that for some probability
space (X,µ) with a tree structure T we have ‖Ar,Xα ‖Lp→Lp ≤ C ′ for any
Carleson sequence α. We apply the machinery developed in the previous
subsection, setting c = 1, picking an arbitrary C > C ′ and considering the
associated function B. Pick a small positive number δ and apply (3.2), with
u = v = u± = v± = 1, t = t+ = 1, t− = 0,

x− = 1− δ

(1 + δ)p − 1
, x+ = 1 + δ, λ− = 1− (1 + δ)−p, λ+ = (1 + δ)−p
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and y =

[
1− (1 + δ)−p

(1 + δ)r − 1

]1/r
. Then x = λ−x−+λ+x+ = 1, ∆t = 1−(1+δ)−p

and (y′)r = yr + xr∆t = yr + 1− (1 + δ)−p = yr(1 + δ)r, so (3.2) yields

B(1, y, 1, 1, 1)

≥ λ−B
(

1− δ

(1 + δ)p − 1
, y(1 + δ), 1, 1, 0

)
+ λ+B(1 + δ, y(1 + δ), 1, 1, 1).

By (3.3), we have λ+B(1+δ, y(1+δ), 1, 1, 1) = B(1, y, 1, 1, 1). By Lemma 3.1,
the latter quantity is �nite, so combining this with the above estimate yields

B
(

1− δ

(1 + δ)p − 1
, y(1 + δ), 1, 1, 0

)
≤ 0.

By Lemma 3.2, this gives yp(1+δ)p−Cp
(

1− δ
(1+δ)p−1

)p
≤ 0. Letting δ → 0,

we get y →
(
p
r

)1/r
and 1− δ

(1+δ)p−1 →
p−1
p , and hence C ≥ p

p−1
(
p
r

)1/r
. Since

C > C ′ was arbitrary, we get that the latter bound is true for C ′ as well.
This is precisely the desired sharpness.

3.4. Sharpness, the weighted case, r ≥ p− 1

Suppose that 1 < p < ∞ and r ∈ [p − 1, p) are �xed. Suppose that there is
a probability space (X,µ) with a tree T such that ‖Ar,Xα ‖Lp(w)→Lp(w) ≤ C ′

for any Carleson sequence α and any Ap weight w satisfying [w]Ap ≤ c. Take
an arbitrary constant C > C ′ and let B be the associated special function
constructed in Subsection 3.2. Let c̃ ∈ (1, c) be a constant close to c and
let δ be a small positive number. Consider the line segment starting at the
point (1−δ, c̃1/(p−1)(1−δ)−1/(p−1)), passing through (1, c̃1/(p−1)) and ending
at the curve xyp−1 = 1. If δ is su�ciently small, then the line segment lies
below the curve xyp−1 = c (this is due to the fact that the �rst two of
the aforementioned points lie on the curve xyp−1 = c̃). A glance at Figure 1

reveals that the second endpoint of the line segment is of the form (1+ d̃, (1+

d̃)1/(p−1)), with d̃→ d(p, c) as δ → 0 and c̃→ c.

Now, introduce the parameter s = δ−1
[(

1 + δ
d̃

)1/p (
1 + δ

1−δ

)1/p
− 1

]
,

so that

(1 + δs)p =
d̃+ δ

d̃(1− δ)
. (3.4)

Apply (3.2) with λ− = δ
d̃+δ

, λ+ = d̃
d̃+δ

, x̃− = 1 − d̃s, x+ = 1 + δs, y =(
δ

(d̃+δ)((1+δs)r−1)

)1/r
, u− = 1 + d̃, u+ = 1 − δ, v− = (1 + d̃)1/(1−p), v+ =

c̃1/(p−1)(1 − δ)1/(1−p), t− = 0 and t+ = 1. Then x = 1, u = 1, v = c̃1/(p−1),
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∆t = δ
d̃+δ

and y′ = y(1 + δs), so we obtain

B(1, y, 1,c̃1/(p−1), 1)

≥ δ

d̃+ δ
B(1− d̃s, y(1 + δs), 1 + d̃, (1 + d̃)1/(1−p), 0)

+
d̃

d̃+ δ
B(1 + δs, y(1 + δs), 1− δ, c̃1/(p−1)(1− δ)1/(1−p), 1).

Using the homogeneity property (3.3) and (3.4), we check that the second
term on the right is equal to B(1, y, 1, c̃1/(p−1), 1). Since this quantity is �nite
(by virtue of Lemma 3.1), the above estimate implies

B(1− d̃s, y(1 + δs), 1 + d̃, (1 + d̃)1/(1−p), 0) ≤ 0,

which combined with Lemma 3.2 gives yp(1+δs)p−Cp(1− d̃s)p ≤ 0. Now we

let δ → 0 and then c̃→ c. Then it is easy to see that d̃→ d(p, c), s→ d(p,c)+1
pd(p,c) ,

y →
(

p
r(d(p,c)+1)

)1/r
and the latter estimate implies

C ≥ p

p− d(p, c)− 1

(
p

r(d(p, c) + 1)

)1/r

= Cp,r,c,

where the last equality follows from (1.3). As in the unweighted context, since
C > C ′ was chosen arbitrarily, we see that C ′ ≥ Cp,r,c and the sharpness is
established.

3.5. Sharpness, the weighted case, r < p− 1

The argument is word-by-word the same as previously, the only di�erence is
that we pick a negative parameter δ (close to 0). As the result, the constant

d̃ (which determines the second endpoint of the appropriate line segment
passing through (1, c̃1/(p−1))) is also negative. Furthermore, if we let δ →
0 and then c̃ → c, then, as one easily sees by looking at Figure 1, (1 +

d̃, (1 + d̃)1/(1−p)) converges to the second intersection point of the dotted line

with the curve xyp−1 = 1. Equivalently, d̃ converges to the unique solution
d∗(p, c) ∈ (−1, 0) of the equation (1.3). All the remaining arguments are the
same and, as the result, we obtain

C ≥ p

p− d∗(p, c)− 1

(
p

r(d∗(p, c) + 1)

)1/r

.

It remains to note that the right-hand side is equal to Cp,r,c. To see this, note
that the equation

c(1 + d∗(p, c))(p− 1− d∗(p, c))p−1 = (p− 1)p−1

is equivalent to

c
1
p−1

(
1− d∗(p, c)

p− 1

)(
p′ − 1 +

d∗(p, c)

p− 1

)p′−1
= (p′ − 1)

p′−1
.
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In other words, we have −d
∗(p,c)
p−1 = d

(
p′, c

1
p−1

)
. Plugging this above and

using (1.3), we get the estimate C ≥ Cp,r,c and hence also C ′ ≥ Cp,r,c, since
the constant C ∈ (C ′,∞) was arbitrary. This completes the proof.
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