
EMBEDDING BMO INTO WEIGHTED BMO

ADAM OS�KOWSKI

Abstract. A classical result of harmonic analysis asserts that if a weight w satis�es
Muckenhoupt's condition A∞, then the unweighted class BMO is contained in the
weighted space BMO(w). The paper identi�es the norm of this embedding in the
one-dimensional setting. Speci�cally, for any function f ∈ BMO(R) and any weight
w ∈ A∞(R) of characteristic [w]A∞ , we have the estimate

‖f‖BMO(w) ≤ e
√
2[w]A∞‖f‖BMO.

The constant e
√
2 = 3.8442 . . . is the best possible. We also prove a sharp version of

this result in which the characteristic [w]A∞ of the weight is �xed. Further extensions
to the theory of martingales are obtained.

1. Introduction

The principal purpose of this paper is to compare the BMO norms of a function in
the weighted and the unweighted setting, under the assumption that the weight satis�es
Muckenhoupt's condition A∞. Let us start with the necessary background and notation.
Suppose that f is a real-valued locally integrable function on Rn. It belongs to BMO,
the class of functions of bounded mean oscillation, if we have

(1.1) sup
Q

〈
|f − 〈f〉Q|

〉
Q
<∞,

where the supremum is taken over all cubes Q in Rn with edges parallel to the coordinate
axes and

〈f〉Q =
1

|Q|

∫
Q

f(x)dx

is the average of f over Q. The space BMO was introduced by John and Nirenberg in [6]
and has turned out to play a fundamental role in analysis and probability. For example,
many classical operators (e.g., singular integrals, wide classes of Fourier multipliers, etc.)
map L∞ into BMO; this space also behaves nicely from the viewpoint of interpolation.
Let us also mention the remarkable result of Fe�erman [2] which asserts that the space
BMO is dual to the Hardy space H1. We refer the interested reader to any textbook on
harmonic analysis for more on the subject, its connections and applications.

It is well-known that the functions of bounded mean oscillation have very strong inte-
grability properties (see e.g. [6]). In particular, the p-oscillations

(1.2) ||f ||BMOp := sup
Q

〈
|f − 〈f〉Q|p

〉1/p
Q
, 1 < p <∞,
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are �nite for any f ∈ BMO, and form a family of equivalent quasinorms on BMO(Rn).
In our considerations, we will work with ‖ ·‖BMO2 and denote it simply by ‖ ·‖BMO. One
of the reasons we choose this particular norm is that we have the convenient identity

(1.3) ||f ||BMO2 = sup
Q

{
〈f2〉Q − 〈f〉2Q

}1/2
.

In what follows, we will be interested in the weighted context. Suppose that w is a
weight, i.e., a positive, locally integrable function on Rd or Q, depending on the context.
This function gives rise to the associated measure wdx, i.e., de�ned by the formula w(Q) =∫
Q
wdx. Then one de�nes the associated weighted BMO space as before, but replacing

the norm by

‖f‖BMO(w) = sup
Q

〈(
f − 〈f〉Q,w

)2〉1/2
Q,w

,

where 〈f〉Q,w = 1
w(Q)

∫
Q
fwdx is the weighted average.

There is a natural question about those weights w, for which we have the inclusion
BMO ↪→ BMO(w). A classical and well-known result asserts that this embedding holds
true if w belongs to the Muckenhoupt's class A∞. The latter means that

(1.4) [w]A∞ := sup
〈
w
〉
Q

exp
(
−
〈

logw
〉
Q

)
<∞,

where the supremum is taken over all cubes Q, with axes parallel to the axes, contained
in the domain of w. (The original de�nition of Muckenhoupt was slightly di�erent, the
above formulation, due to Khrushchev [8], will be more convenient for our purposes). The
quantity [w]A∞ will be called the characteristic of the weight w. By Jensen's inequality
we have [w]A∞ ≥ 1, and equality holds for weights which are constant almost everywhere.
Roughly speaking, the characteristic measures how disbalanced the weight is: the bigger
[w]A∞ , the more oscillations of w should be expected.

One of the main results of this paper is the identi�cation of the norm of the embedding
BMO ↪→ BMO(w) in the one-dimensional setting. Here is the precise statement.

Theorem 1.1. For any function f ∈ BMO(R) and any weight w ∈ A∞(R) we have the
estimate

(1.5) ‖f‖BMO(w) ≤ e
√

2[w]A∞‖f‖BMO.

The constant e
√

2 = 3.8442 . . . is the best possible.

Actually, we will prove a much more precise statement: we will establish a sharp
version of the above inequality when restricted to the class of weights of a prescribed
characteristic. To formulate the result, we need to introduce a certain special parameter.
Namely, for a given c ≥ 1, let d = d(c) be a number belonging to [0, 1) which satis�es

(1.6) c(1− d)ed = 1.

Such a number d exists and is unique: this follows at once from Darboux property and
the fact that the function s 7→ (1− s)es is strictly decreasing on [0, 1].

Theorem 1.2. Let c ≥ 1 be a �xed parameter and let d = d(c) be the solution to (1.6).
For any function f ∈ BMO(R) and any weight w ∈ A∞(R) satisfying [w]A∞ ≤ c we have
the estimate

(1.7) ‖f‖BMO(w) ≤
2d/2

1− d
‖f‖BMO.
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The constant 2d/(1− d) is the best possible.

At some points we will deal with the localized versions of BMO spaces and A∞ weights.
Suppose that Q ⊂ Rn is a given base cube. Then one de�nes the spaces BMO(Q) and
A∞(Q) as above, the only di�erence is that in (1.1) and (1.4) one needs to take the
suprema over all cubes Q contained in Q (with sides parallel to the axes). Theorems
1.1 and 1.2 remains valid (with unchanged constants) in the localized one-dimensional
setting, i.e., when f and w are de�ned on an arbitrary interval contained in R. Our
reasoning, combined with the results and the arguments from [16], imply the validity of
Theorems 1.1 and 1.2 also in the context of functions on the circle T (i.e., 1-periodic
functions/weights on R).

A few words about the proof are in order. The e�cient control of the norm ‖f‖BMO(w)

requires the e�ective handling of the integral
∫
I
f2wdx, where I ⊂ R is an arbitrary

interval. The problem is that the functions f , w evolve `independently' and according
to their own restrictions (coming from the BMO property and the A∞ condition), and
it seems di�cult to deal with them simultaneously. Quite unexpectedly, the following
simple idea turned out to be successful. Namely, the use of the Young inequality allows
to estimate the integral

∫
I
f2wdx from above by the sum

∫
I

Φ(|f |)dx+
∫
I

Ψ(w)dw, for a
wide class of functions Φ and Ψ. Now each of the summands depends on one function only
and can be handled more easily with the use of the so-called Bellman function method
(which is very well understood in these contexts: see [4, 9, 10, 11, 12, 13, 17]). However,
it was quite surprising to the author that the functions Φ, Ψ can be chosen appropriately
so that the information on the best constants is not lost on the way. We shall see that
the functions Φ and Ψ above have quite involved formulas; we discovered them simply by
guessing what the extremal f and w in (1.7) should be, and then choosing Φ and Ψ for
which both sides of the corresponding Young inequality were the same. See Section 5 for
details.

The remaining part of the paper is organized as follows. The next section contains
the formulas for the functions Φ and Ψ as well as the proofs of sharp upper bounds
for

∫
I

Φ(|f |)dx and
∫
I

Ψ(w)dw. Section 3 is devoted to the proofs of our main results,
Theorems 1.1 and 1.2. Section 4 contains extensions of (1.5) and (1.7) to the probabilistic
setting. The �nal part of the paper contains the description of some steps which have led
us to the discovery of the key special functions Φ and Ψ used in the proof.

2. Two auxiliary inequalities

In this section we prove a sharp exponential estimate for BMO functions and a sharp
logarithmic bound for A∞ weights. Throughout, c ≥ 1 is a �xed parameter and d =
d(c) ∈ [0, 1) is the unique solution to (1.6). Let Φ, Ψ : [0,∞)→ [0,∞) be given by

Φ(t) = 2d(1− d)

∫ t2

0

ed
√
sds

and

Ψ(t) =


0 if t ≤ 2d(1− d),∫ t

2d(1−d)

log2

(
2

(
1− d
s

)1/d
)
ds if t ≥ 2d(1− d).
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Both formulas for Φ and Ψ can be expressed explicitly, but we prefer the above more
concise forms, which make the calculations shorter. We easily see that Φ is of class C∞

on (0,∞), while Ψ is of class C1 there (it is of class C∞ if we remove the point 2d(1−d)).
The main results of this section can be formulated as follows.

Theorem 2.1. Let I ⊂ R be an arbitrary interval. If f ∈ BMO satis�es ‖f‖BMO ≤ 1
and 〈f〉I = 0, then

(2.1)
1

|I|

∫
I

Φ(|f |)ds ≤ 2d

1− d
.

Theorem 2.2. Let I ⊂ R be an arbitrary interval. For any A∞ weight w satisfying
〈w〉I = 1 and [w]A∞ ≤ c, we have

(2.2)
1

|I|

∫
I

Ψ(w)ds ≤ d2d

(1− d)2
.

In the case c = 1 we have d(c) = 0 and the inequalities (2.1), (2.2) are trivial. Indeed,
then Φ(t) = t2 and the �rst estimate is equivalent to 〈f2〉I ≤ 1 (which holds since
〈f2〉I ≤ ‖f‖2BMO); concerning (2.2), the condition [w]A∞ ≤ 1 implies that w is constant
(and hence w ≡ 1, because of the assumption 〈w〉I = 1) and the inequality is equivalent to
0 ≤ 0. Therefore, from now on, we assume that c is bigger than 1; by (1.6), the parameter
d(c) must be strictly positive.

We will handle the above theorems in two separate subsections below.

2.1. An exponential estimate for BMO functions. Consider the auxiliary function
F : [0,∞)→ [0,∞) de�ned by

F (t) = et
∫ ∞
t

e−sΦ(s)ds.

The Bellman function B : {(x, y) ∈ R2 : x2 ≤ y ≤ x2 + 1} → R is given by the formula

B(x, y) =


y
2F (0) if 2|x| < y, |x| ≤ 1,√
x2 − y + 1Φ

(
|x|+

√
x2 − y + 1− 1

)
+(1−

√
x2 − y + 1)F

(
|x|+

√
x2 − y + 1− 1

)
otherwise.

It is easy to check that B is continuous on its domain and of class C1 in the interior.

Lemma 2.3. The function B satis�es By ≥ 0 and is locally concave, i.e., concave along
any line segment contained in the domain.

Proof. If 2|x| ≤ y and |x| ≤ 1, then By(x, y) = F (0)/2. For remaining (x, y), we use the
equation F ′ = F − Φ and compute that

By(x, y) =
−Φ− Φ′ + F

2
=

1

2
exp(|x|+

√
x2 − y + 1− 1)

∫ ∞
|x|+
√
x2−y+1−1

e−sΦ′′(s)ds

(the functions Φ, Φ′ and F are evaluated at the point |x| +
√
x2 − y + 1 − 1 and the

last equality follows from integration by parts). The expression on the right is obviously
nonnegative, so the �rst part of the lemma is established. To show the second part, we
start with the observation that B is linear on {(x, y) : x2 ≤ y ≤ x2 + 1, 2|x| ≤ y, |x| ≤ 1}.
Hence it is enough to prove that for (x, y) belonging to the interior of the remaining part
of the domain, the Hessian matrix D2B(x, y) is seminegative-de�nite. To this end, note
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that the function B is linear along the line segment of slope a = 2x
(
1 +
√
x2 − y + 1/|x|

)
passing through (x, y). Therefore, we get

(2.3) Bxx(x, y) + 2aBxy(x, y) + a2Byy(x, y) = 0.

Now, let us compute the partial derivatives Bxy and Byy, di�erentiating the formula for
By, obtained above, with respect to x and y. Integration by parts reveals that

Bxy(x, y)

=
1

2

(
x

|x|
+

x√
x2 − y + 1

)
exp(|x|+

√
x2 − y + 1− 1)

∫ ∞
|x|+
√
x2−y+1−1

e−sΦ′′′(s)ds

and

Byy(x, y) = − 1

4
√
x2 − y + 1

exp(|x|+
√
x2 − y + 1− 1)

∫ ∞
|x|+
√
x2−y+1−1

e−sΦ′′′(s)ds.

Consequently, we obtain aByy(x, y) + Bxy(x, y) = 0, which combined with (2.3) yields
aBxy(x, y)+Bxx(x, y) = 0 and implies that the Hessian matrixD2B(x, y) has determinant
zero. It remains to note that Byy(x, y) ≤ 0, which is evident from the above formula. �

Note that B(x, x2) = Φ(|x|): the Bellman function coincides with Φ on the lower part
of its domain. This observation, combined with the lemma above, yields the validity of
the BMO estimate (2.1). This follows from Theorem 4.13 in [15], which can be used to
study much more general estimates, far beyond the BMO context.

For the reader's convenience, we have decided to present below how to deduce (2.1).
The starting point is the following auxiliary lemma, which can be found in [12] (consult
Lemma 4c there).

Lemma 2.4. Fix ε < 1. Then for every interval I and every f : I → R with ||f ||BMO(I) ≤
ε, there exists a splitting I = I− ∪ I+ such that the whole straight-line segment with
the endpoints (〈f〉I± , 〈f2〉I±) is contained within Ω. Moreover, the splitting parameter
α = |I+|/|I| can be chosen uniformly (with respect to f and I) separated from 0 and 1.

We proceed to the estimate for BMO functions.

Proof of (2.1). Let ε ∈ (0, 1) be a �xed parameter and de�ne f̃ = εf ; then ||f̃ ||BMO(I) ≤
ε. Consider the family {In}n≥0 of partitions of I, generated by the inductive use of

Lemma 2.4. We start with I0 = {I}; then, given In = {In,1, In,2, . . . , In,2n}, we split

each In,k according to Lemma 2.4, applied to the function f̃ , and put

In+1 =
{
In,1− , In,1+ , In,2− , In,2+ , . . . , In,2

n

− , In,2
n

+

}
.

Next, we de�ne functional sequences (fn)n≥0 and (gn)n≥0 by the formulas

fn(x) = 〈f̃〉In(x) and gn(x) = 〈f̃2〉In(x),

where In(x) ∈ In is an interval containing x (if there are two such intervals, we pick
the one which has x as its right endpoint). An important observation, which is the
consequence of the fact that we work with || · ||BMO2-norm, is that for each n the pair
(fn, gn) takes values in {(x, y) : x2 ≤ y ≤ x2 + ε2}. Indeed, for any J ∈ In we have

0 ≤ 〈f̃2〉J − 〈f̃〉2J ≤ ε2,
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where the left bound is due to Schwarz inequality, and the right follows from (1.3) and

the assumption ||f̃ ||BMO ≤ ε. Now, we will show that for any n ≥ 0 and any 1 ≤ k ≤ 2n,

(2.4)

∫
In,k

B(fn(s), gn(s))ds ≥
∫
In,k

B(fn+1(s), gn+1(s))ds.

To do this, note that fn, gn are constant on In,k, while fn+1, gn+1 are constant on the

intervals In,k± into which In,k splits; therefore, dividing both sides by |In,k|, we see that
the above estimate is equivalent to

B
(
〈f̃〉In,k , 〈f̃2〉In,k

)
≥
|In,k− |
|In,k|

B
(
〈f̃〉In,k

−
, 〈f̃2〉|In,k

−

)
+
|In,k+ |
|In,k|

B
(
〈f̃〉In,k

+
, 〈f̃2〉In,k

+

)
.

This bound follows from the local concavity of B and the fact that the whole line segment
with endpoints

(
〈f̃〉In,k

±
, 〈f̃2〉In,k

±

)
is contained in {(x, y) : x2 ≤ y ≤ x2 + 1} (which is

guaranteed by Lemma 2.4). Summing (2.4) over all k = 1, 2, . . . , 2n, we get∫
I

B(fn(s), gn(s))ds ≥
∫
I

B(fn+1(s), gn+1(s))ds

and hence, by induction,

(2.5)

∫
I

B(f0(s), g0(s))ds ≥
∫
I

B(fn(s), gn(s))ds

for any n = 0, 1, 2, . . .. But f0 ≡ 0, since f is assumed to have vanishing integral;
furthermore, we have g0(s) ≤ f0(s)2 + 1 = 1 and hence by the �rst part of Lemma 2.3,

B(f0(s), g0(s)) ≤ B(0, 1) =
1

2
F (0).

To deal with the right-hand side of (2.5), let n go to in�nity. Since the splitting ratio of
Lemma 2.4 is bounded away from 0 and 1, we see that the diameter of the partition In
(i.e., sup1≤k≤2n |In,k|) tends to 0. Consequently, by Lebesgue's di�erentiation theorem,

we have fn → εf and gn → ε2f2 almost everywhere on I. Combining the above facts
with Fatou's lemma, we see that (2.5) leads to

1

|I|

∫
I

B(εf(s), ε2f2(s))ds =
1

|I|

∫
I

B(f̃(s), f̃2(s))ds ≤ 1

2
F (0),

or, since B(x, x2) = Φ(|x|),
1

|I|

∫
I

Φ(ε|f(s)|)ds ≤ 1

2
F (0).

Letting ε→ 1 and using continuity of Φ and Fatou's lemma again, gives

1

|I|

∫
I

Φ(|f(s)|)ds ≤ 1

2
F (0).

It remains to compute directly that

1

2
F (0) =

1

2

∫ ∞
0

e−sΦ(s)ds =
1

2

∫ ∞
0

e−sΦ′(s)ds = 2d(1− d)

∫ ∞
0

se−s(1−d)ds =
2d

1− d
.

The claim is proved. �
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2.2. A logarithmic bound for A∞ weights. Consider the logarithmic domain

Dc
∞ = {(x, y) ∈ (0,∞)× R : log(x/c) ≤ y ≤ log x}

and the Bellman function U = U c : Dc
∞ → R uniquely determined by the equality

U

(
x(1− t),− t+ log(x/c)

)
=
t

d
·Ψ(x(1− d)) +

(
1− t

d

)
(x(1− d))1/d

d

∫ ∞
x(1−d)

Ψ(s)s−1/d−1ds

= Ψ(x(1− d)) +

(
1− t

d

)
(x(1− d))1/d

∫ ∞
x(1−d)

Ψ′(s)s−1/dds,

for x > 0 and t ∈ [0, d]. To understand the above de�nition, observe that on the upper
boundary of the set Dc

∞, i.e., for y = log x, one takes U(x, y) = Ψ(x) (this corresponds to
the choice x := x/(1− d) and t = d in the above formula for U). On the lower boundary
y = log(x/c), we take

U(x, y) =
(x(1− d))1/d

d

∫ ∞
x(1−d)

Ψ(s)s−1/d−1ds

(take t = 0 in the formula for U). To understand the behavior of U in the interior of Dc
∞,

we `foliate' the domain, splitting it into the union of pairwise disjoint line segments which
start from the lower boundary, are tangent to it and go to the left: see Figure 1 below.
The de�nition of U states that the function is linear along any leaf of the foliation. So,
for any point (x(1− t),−t+ log(x/c)) lying in the interior of Dc

∞, the function U is linear
along a small line segment of slope 1/x passing through this point.

Figure 1. The function U is linear along the leaves of the foliation.
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Note that by standard theorems on implicit functions, we get that U is of class C1.
Furthermore, it is of class C2 outside the leaf of the foliation which starts from the point
(2d, log(2d/c)) (this particular leaf corresponds to the choice x = 2d in the formula for U ,
and the point 2d(1− d) is the only one at which Ψ is not twice di�erentiable).

In the lemma below, we prove further important properties of U .

Lemma 2.5. The function U satis�es Uy ≤ 0 and is locally concave.

Proof. In the calculations below, all the partial derivatives are evaluated at an arbitrary
point (x(1− t),−t+log(x/c)). We assume that this point lies in the interior of Dc

∞ and is
not contained in the particular leaf of the foliation just described above. This guarantees
that U is of class C2 in some neighborhood of the point. Di�erentiating formula for U
with respect to x, we obtain

(1− t)Ux +
1

x
Uy

= (1− d)

[
t

d
Ψ′(x(1− d)) +

(
1− t

d

)
(x(1− d))1/d−1

d

∫ ∞
x(1−d)

Ψ′(s)s−1/dds

]
,

(2.6)

while the di�erentiation with respect to t yields

(2.7) −xUx − Uy = − (x(1− d))1/d

d

∫ ∞
x(1−d)

Ψ′(s)s−1/dds.

If we multiply the �rst identity by x, the second by 1− t and add, we obtain

tUy =
tx(1− d)

d

[
Ψ′(x(1− d)) +

(
1− 1

d

)
(x(1− d))1/d−1

∫ ∞
x(1−d)

Ψ′(s)s−1/dds

]

= − t(x(1− d))1/d

d

∫ ∞
x(1−d)

Ψ′′(s)s1−1/dds ≤ 0

(the second equality follows from integration by parts). This gives the �rst part of the
lemma. To show the local concavity of U , multiply (2.6) by x and add (2.7) to get

−txUx =
tx(1− d)

d

[
Ψ′(x(1− d))− (x(1− d))1/d−1

d

∫ ∞
x(1−d)

Ψ′(s)s−1/dds

]
,

that is,

(2.8) Ux =
(1− d)

d

[
−Ψ′(x(1− d)) +

(x(1− d))1/d−1

d

∫ ∞
x(1−d)

Ψ′(s)s−1/dds

]
.

Di�erentiation of both sides with respect to t gives

(2.9) −xUxx − Uxy = 0.

But, as we have noted above, the function U is linear along a short line segment of slope
1/x passing through (x(1− t),−t+log(x/c)). This gives x2Uxx+2xUxy +Uyy = 0, which
combined with (2.9) implies xUxy + Uyy = 0 and hence detD2U = 0. Therefore, we will
be done if we prove that Uxx ≤ 0. To this end, let us di�erentiate (2.8) with respect to x
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to obtain

(1− t)Uxx +
1

x
Uxy =

(1− d)2

d

[
1

d

(
1

d
− 1

)
(x(1− d))1/d−2

∫ ∞
x(1−d)

Ψ′(s)s−1/dds

− Ψ′(x(1− d))

dx(1− d)
−Ψ′′(x(1− d))

]
=

(1− d)2

d

[
(x(1− d))1/d−2

d

∫ ∞
x(1−d)

Ψ′′(s)s1−1/dds−Ψ′′(x(1− d))

]
,

where the last passage follows from integration by parts. Combining this identity with
(2.9), we get

−txUxx =
x(1− d)2

d

[
(x(1− d))1/d−2

d

∫ ∞
x(1−d)

Ψ′′(s)s1−1/dds−Ψ′′(x(1− d))

]
and hence, to prove that Uxx ≤ 0, we must check whether

(2.10)
u1/d−2

d

∫ ∞
u

Ψ′′(s)s1−1/dds ≥ Ψ′′(u)

for all u > 0, u 6= 2d(1 − d) (the latter requirement comes from the fact that Ψ′′ does
not exist at 2d(1 − d)) . If u < 2d(1 − d), then the inequality is trivial, since Ψ′′(u) = 0
and the integral is positive. If u > 2d(1 − d), we compute explicitly that Ψ′′(u) =

−2 log
(

2
(

1−d
u

)1/d) · (du)−1 and∫ ∞
u

Ψ′′(s)s1−1/dds = −2

d

∫ ∞
u

log

(
2

(
1− d
s

)1/d
)
s−1/dds

=
2d

(1− d)1/d

∫ 2((1−d)/u)1/d

0

(− log s)(s1−d)′ds

=
2u1−1/d

1− d

[
− log

(
2

(
1− d
u

)1/d
)

+
1

1− d

]
,

where in the last passage we have exploited the integration by parts. Therefore, (2.10) is
equivalent to

1

1− d

[
− log

(
2

(
1− d
u

)1/d
)

+
1

1− d

]
≥ − log

(
2

(
1− d
u

)1/d
)
,

which is obvious (we have 1/(1− d) ≥ 1). This completes the proof. �

As we have already noted above, U(x, log x) = Ψ(x). Together with the above lemma,
this gives the validity of (2.2): this is due to Theorem 4.13 in [15]. For the sake of
completeness, we provide the detailed proof of the weighted inequality. We will need the
following technical fact, a version of Lemma 2.4 for A∞ weights. See Lemma 4∞ in [17].

Lemma 2.6. For any ε > c and an arbitrary weight on I with [w]A∞(I) ≤ c there exists

a splitting I = I− ∪ I+, |I±| = α±|I|, such that the entire interval with the endpoints
p± = (〈w〉I± , 〈logw〉I±) is in Dε

∞. Moreover, the splitting parameters α± can be chosen
bounded away from 0 and 1 uniformly with respect to w and, therefore, with respect to I
as well.



10 ADAM OS�KOWSKI

Equipped with the above facts, we proceed to our estimate for A∞ weights. The
argumentation is quite similar to that used in the proof of the BMO estimate (2.1).

Proof of (2.2). Fix an A∞ weight w as in the statement. Let ε > c be an auxiliary
parameter.

Step 1. Consider the family {In}n≥0 of partitions of I, generated by the inductive use

of Lemma 2.6. Namely, we put I0 = {I} and then, given In = {In,1, In,2, . . . , In,2n}, we
split each In,k according to Lemma 2.6, applied to the function w|In,k and the parameter
ε. Finally, put

In+1 =
{
In,1− , In,1+ , In,2− , In,2+ , . . . , In,2

n

− , In,2
n

+

}
.

Next, we de�ne the sequences (fn)n≥0, (gn)n≥0 of functions on I by

fn(x) = 〈w〉In(x), gn(t) = 〈logw〉In(x),

where In(x) ∈ In is an interval containing x (as previously, if there are two such intervals,
we pick the one which has x as its right endpoint). Since [w]A∞ ≤ c, we have (fn, gn) ∈
Dc
∞ almost everywhere for each n.

Step 2. Let U = Uε be the Bellman function constructed above, corresponding to the
parameter ε. Then for any nonnegative integer n and any In,k ∈ In we have

(2.11)

∫
In,k

Uε(fn+1, gn+1) ds ≤
∫
In,k

Uε(fn, gn) ds.

This follows from the local concavity of Uε: the pair (fn, gn) is constant on In,k, say, equal
to p = (〈w〉In,k , 〈logw〉In,k) there, while (fn+1, gn+1) takes two values on this interval:
p± = (〈w〉In,k

±
, 〈logw〉In,k

±
)). By Lemma 2.6, the entire interval with the endpoints p± is

contained within Dε
∞, and hence Uε is concave along this interval.

Step 3. Summing (2.11) over k, we get∫
I

Uε(fn+1, gn+1)ds ≤
∫
I

Uε(fn, gn) ds.

Consequently, for any nonnegative integer n we have

1

|I|

∫
I

Uε(fn, gn) ds ≤ 1

|I|

∫
I

Uε(f0, g0) ds.

But f0 ≡ 〈w〉I = 1 and g0 ≥ log(f0/ε) = − log ε, so by the �rst part of Lemma 2.5, we have
U(f0, g0) ≤ U(1,− log ε). Similarly, we have gn ≤ log fn, so U(fn, gn) ≥ U(fn, log fn) =
Ψ(fn) and the above inequality yields

(2.12)
1

|I|

∫
I

Ψ(fn)ds ≤ Uε (1,− log ε) .

However, recall that the splitting ratios α± of Lemma 2.6 were bounded away from 0 and
1. Therefore, the diameter of In tends to 0 as n → ∞ and Lebesgue's di�erentiation
theorem yields fn → w almost everywhere on I. By Fatou's lemma, (2.12) yields

1

|I|

∫
I

Ψ(w)ds ≤ Uε (1,− log ε) ,

and letting ε→ c gives

1

|I|

∫
I

Ψ(w)ds ≤ U c(1,− log c) = (1− d)1/d

∫ ∞
2d(1−d)

Ψ′(s)s−1/dds.
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It remains to compute that the right hand side equals∫ ∞
2d(1−d)

− log

(
2

(
1− d
s

)1/d
)(

1− d
s

)1/d

ds = d2d−1

∫ 1

0

(log s)2(s1−d)′ds,

which is d2d/(1− d)2, by the integration by parts. �

3. Proof of BMO estimates

Equipped with the estimates (2.1) and (2.2), we are ready for the comparison of BMO
norms in the weighted and the unweighted settings. The starting lemma below is, essen-
tially, the Young inequality for the functions t 7→ Φ(

√
t) and Ψ. However, we need to

provide the proof, since, formally, these functions are not Young functions (the �rst of
them has non-vanishing derivative at zero, the second is zero on a nontrivial interval).
Hence the classical Young inequality does not apply directly. Nevertheless, the argument
is standard and easy.

Lemma 3.1. For any x ∈ R and y > 0 we have the estimate

(3.1) x2y ≤ Φ(|x|) + Ψ(y).

Proof. Fix x ∈ R and consider the function F (y) = x2y −Ψ(y). We compute that

F ′(y) = x2 −Ψ′(y) =

x
2 if y ≤ 2d(1− d),

x2 − log2

(
2
(

1−d
y

)1/d
)

if y > 2d(1− d),

so F attains its maximal value for y0 satisfying x2 = log2

(
2
(

1−d
y0

)1/d
)
, i.e., for y0 =

2d(1− d) exp(|x|d). We have

F (y0) = x2y0 −
∫ y0

2d(1−d)

log2

(
2

(
1− d
s

)1/d
)
ds = Φ(|x|),

which can be computed after some straightforward manipulations. �

We turn our attention to our main result.

Proof of (1.7). Fix a function f ∈ BMO and an A∞ weight w satisfying [w]A∞ ≤ c. Let
d = d(c) be the parameter given by (1.6) and let I be an arbitrary subinterval of R. By
(3.1), we may write

1

w(I)

∫
I

(
f − 〈f〉I
‖f‖BMO

)2

wds ≤ 1

|I|

∫
I

Φ

(
|f − 〈f〉I |
‖f‖BMO

)
ds+

1

|I|

∫
I

Ψ

(
w

〈w〉I

)
ds.

The function (f − 〈f〉I)/‖f‖BMO, restricted to I, has integral zero and the BMO norm
less or equal to 1; in addition, w/〈w〉I , considered as a weight on I, has average 1 and
characteristic not exceeding c. Therefore, applying (2.1) and (2.2), we obtain

(3.2)
1

w(I)

∫
I

(
f − 〈f〉I
‖f‖BMO

)2

wds ≤ 2d

1− d
+

d2d

(1− d)2
=

2d

(1− d)2
.

Now we are ready for (1.7). The crucial fact is that for any a ∈ R,

1

w(I)

∫
I

(
f − 1

w(I)

∫
I

fw

)2

wds ≤ 1

w(I)

∫
I

(f − a)
2
wds,
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so in particular, plugging a = 〈f〉I and applying (3.2), we get

1

w(I)

∫
I

(
f − 1

w(I)

∫
I

fw

)2

wds ≤ 2d

(1− d)2
‖f‖2BMO.

The proof is complete, since I was arbitrary. �

Sharpness, the localized case. Suppose that c ≥ 1 is a �xed parameter and let d = d(c) be
given by (1.6). Let I = [−1, 1] and introduce the functions f, w : I → R by the formulas

(3.3) f(u) =


log(2(1 + u)) if u < −1/2,

0 if − 1/2 ≤ u ≤ 1/2,

− log(2(1− u)) if u > 1/2,

w(u) = (1− d)(1− |u|)−d.

Since f is odd and w is even, we have
∫
I
fw = 0. Furthermore, we easily compute that

w(I) = 2 and ∫
I

f2wds = 2

∫ 1

1/2

[
log(2(1− s))

]2
(1− d)(1− s)−dds

= 2d(1− d)

∫ 1

0

(log s)2s−dds =
2d+1

(1− d)2
.

This implies

‖f‖2BMO(w) ≥
1

w(I)

∫
I

f2wds−
(

1

w(I)

∫
I

fwds

)2

=
2d

(1− d)2
.

Therefore, we will be done if we show that ‖f‖BMO ≤ 1 and [w]A∞ ≤ c. Let us handle
these two properties separately.

The inequality ‖f‖BMO ≤ 1. We need to prove that for any −1 ≤ a < b ≤ 1, the point(
〈f〉[a,b], 〈f2〉[a,b]

)
lies in the set {(x, y) : x2 ≤ y ≤ x2 + 1}. By the Schwarz inequality we

have 〈f2〉[a,b] ≥ 〈f〉2[a,b], so we only need to check that any such point lies on or below the

upper parabola y = x2 + 1. For clarity, we split the veri�cation into several steps.

Step 1. Suppose �rst that a ≥ 1/2 and b = 1. A direct computation reveals that

(3.4)
1

1− a

∫ 1

a

log(2(1− u))du = 1− log(2(1− a))

and
1

1− a

∫ 1

a

(
log(2(1− u))

)2
du =

(
log(2(1− a))

)2 − 2 log(2(1− a)) + 2,

so 〈f2〉[a,1] − 〈f〉2[a,1] = 1.

Step 2. Now suppose that 1/2 ≤ a < b ≤ 1. We have the identity

1

1− a

∫ 1

a

fdu =
1

1− a

(∫ b

a

fdu+

∫ 1

b

fdu

)
=
b− a
1− a

· 1

b− a

∫ b

a

fdu+
1− b
1− a

· 1

1− b

∫ 1

b

fdu

and similarly for 1
1−a

∫ 1

a
f2du. In other words, we have(

〈f〉[a,1], 〈f2〉[a,1]

)
=
b− a
1− a

(
〈f〉[a,b], 〈f2〉[a,b]

)
+

1− b
1− a

(
〈f〉[b,1], 〈f2〉[b,1]

)
,
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that is, the point
(
〈f〉[a,1], 〈f2〉[a,1]

)
lies on the line segment with the endpoints equal to(

〈f〉[a,b], 〈f2〉[a,b]
)
and

(
〈f〉[b,1], 〈f2〉[b,1]

)
. But, as we have just shown above, the �rst and

the third of these points belong to the parabola y = x2 + 1; consequently, the second
point must lie below. Let us also make an observation which will be useful later. Namely,
by (3.4), we have 〈f〉[b,1] ≥ 〈f〉[ 12 ,1] = 1 and hence

(3.5) 〈f〉[ 12 ,b] =
1

2b− 1
〈f〉[ 12 ,1] −

2− 2b

2b− 1
〈f〉[b,1] ≤ 1.

Step 3. Now suppose that 0 ≤ a < b ≤ 1. If b ≤ 1/2, then there is nothing to prove:
we have 〈f〉[a,b] = 〈f2〉[a,b] = 0. Therefore, let us assume that b > 1/2. Arguing as above,
we observe that(

〈f〉[a,b], 〈f2〉[a,b]
)

=
1
2 − a
b− a

(
〈f〉[a, 12 ], 〈f2〉[a, 12 ]

)
+
b− 1

2

b− a
(
〈f〉[ 12 ,b], 〈f

2〉[ 12 ,b]
)

=
b− 1

2

b− a
(
〈f〉[ 12 ,b], 〈f

2〉[ 12 ,b]
)
.

But as we have shown in the previous step, the point
(
〈f〉[ 12 ,b], 〈f

2〉[ 12 ,b]
)
lies below the

parabola y = x2 + 1; furthermore, by (3.5), we have 〈f〉[ 12 ,b] ≤ 1. Consequently,

〈f2〉[a,b] =
b− 1

2

b− a
〈f2〉[ 12 ,b] ≤

b− 1
2

b− a
[
〈f〉2[ 12 ,b] + 1

]
≤
(
b− 1

2

b− a

)2

〈f〉2[ 12 ,b] +
b− 1

2

b− a

( 1
2 − a
b− a

+ 1

)
= 〈f〉2[a,b] +

(
−

1
2 − a
b− a

+ 1

)( 1
2 − a
b− a

+ 1

)
≤ 〈f〉2[a,b] + 1,

as desired. As a by-product of the above reasoning, note that

〈f2〉[0,b] =

(
1− 1

2b

)
〈f2〉[ 12 ,b] ≤

1

2
〈f2〉[ 12 ,b] ≤

1

2

(
〈f〉2[ 12 ,b] + 1

)
≤ 1.

Step 4. The only possibility which needs to be considered is −1 ≤ a < 0 < b ≤ 1 (the
case −1 ≤ a < b ≤ 0 follows by the symmetry of f). We write(

〈f〉[a,b], 〈f2〉[a,b]
)

=
−a
b− a

(
〈f〉[a,0], 〈f2〉[a,0]

)
+

b

b− a
(
〈f〉[0,b], 〈f2〉[0,b]

)
.

By the symmetry of f and the last line of the previous step, both points on the right lie
on or below the line {(x, y) : y = 1}, and hence so does

(
〈f〉[a,b], 〈f2〉[a,b]

)
. It remains to

note that this line is tangent to the parabola y = x2 + 1.

The inequality [w]A∞ ≤ c. There are lots of similarities with the above veri�cation
of the BMO property of f . We need to check that for each −1 ≤ a < b ≤ 1 the point(
〈w〉[a,b], 〈logw〉[a,b]

)
lies in the set {(x, y) ∈ (0,∞) × R : log(x/c) ≤ y ≤ log x}. By

Jensen's inequality we have 〈logw〉[a,b] ≤ log〈w〉[a,b], so we only need to check that the
above point lies on or above the logarithmic curve y = log(x/c), the lower boundary of
the set. As previously, it is convenient to split the argumentation.

Step 1. We �rst consider the case a ≥ 0 and b = 1. Since

〈w〉[a,1] = (1− a)−d and 〈logw〉[a,1] = d+ log
1− d

(1− a)d
,
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we see that 〈logw〉[a,1]− log〈w〉[a,1] = d+log(1−d) = − log c. Here in the last equality we

have used (1.6). Therefore, the point
(
〈w〉[a,1], 〈logw〉[a,1]

)
lies at the logarithmic curve

y = log(x/c).

Step 2. Now suppose that 0 ≤ a < b ≤ 1. We write the identity

(3.6)
(
〈w〉[a,1], 〈logw〉[a,1]

)
=
b− a
1− a

(
〈w〉[a,b], 〈logw〉[a,b]

)
+

1− b
1− a

(
〈w〉[b,1], 〈logw〉[b,1]

)
,

which guarantees that the three points involved are colinear. As we checked in the previous
step, the point on the left and the second point on the right lie on the curve y = log(x/c).
By the concavity of the logarithmic function, the third point must lie above the curve.

Step 3. Now we will study the �nal case a ≤ 0 < b (the possibility a < b < 0 follows
by the symmetry of w). We start with an observation. Let us specify a = 0 and rewrite
(3.6) in the form

(1,− log c) = b
(
〈w〉[0,b], 〈logw〉[0,b]

)
+ (1− b)

(
(1− b)−d, d+ log

1− d
(1− b)d

)
.

We can infer the following information about the location of the point
(
〈w〉[0,b], 〈logw〉[0,b]

)
.

See Figure 2 below. First, note that both (1,− log c) and
(

(1− b)−d, d+ log 1−d
(1−b)d

)
lie

Figure 2. The location of the point
(
〈w〉[0,b], 〈logw〉[0,b]

)
.

on the curve y = log(x/c) and the second point has a bigger x-coordinate. Consequently,
〈w〉[0,b] ≤ 1 and the slope of the line joining the above three points is smaller than the
slope of a line ` tangent to the curve y = log(x/c) at (1,− log c). This in particular implies
that the point

(
〈w〉[0,b], 〈logw〉[0,b]

)
lies above `. We return to the general case and write(

〈w〉[a,b], 〈logw〉[a,b]
)

=
−a
b− a

(
〈w〉[a,0], 〈logw〉[a,0]

)
+

b

b− a
(
〈w〉[0,b], 〈logw〉[0,b]

)
.
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It follows from the symmetry of w and the above observation that both points on the
right lie above `, and hence so does the point on the left. Therefore it must also lie above
the curve y = log(x/c), by the concavity of the logarithmic function.

The proof is complete. �

Sharpness, the general case. Let c ≥ 1 and d = d(c) be as previously, and let ε > 0
be arbitrary. The idea is to apply the transference result from [16]. First, we use a
discretization argument (see e.g. Section 4 in [16]) to obtain a pair (fε, wε) of functions
on [−1, 1], which takes values in a �nite set, ‖fε‖BMO ≤ 1 + ε, [wε]A∞ ≤ c + ε and
‖fε‖BMO(wε) ≥ 2d/2/(1− d)− ε. Next, we use the periodization argument developed in

[16] (see Section 2 there): it allows us to obtain a pair (f̃ε, w̃e) de�ned on the whole real

line, such that ‖f̃ε‖BMO ≤ 1 + 2ε, [w̃ε]A∞ ≤ c + 2ε and ‖f̃ε‖BMO(w̃ε) ≥ ‖fε‖BMO(wε).
This yields the desired sharpness, since ε was arbitrary. �

Proof of Theorem 1.1. The inequality (1.5) follows directly from (1.7) by optimization of
the constant. Namely, suppose that c ≥ 1 and let d = d(c) be given by (1.6). We have
d < 1, so

2d/2

1− d
= c(e

√
2)d ≤ e

√
2c.

The fact that e
√

2 is optimal follows immediately from the sharpness of (1.7) established
above and the equality limc→∞ d(c) = 1: the examples constructed above show that

sup
f, w

‖f‖BMO(w)

‖f‖BMO[w]A∞
≥ sup

c≥1

2d(c)/2

(1− d(c))c
= sup

c≥1
(e
√

2)d(c) = e
√

2. �

4. Inequalities for BMO martingales

In this section we will extend Theorems 1.1 and 1.2 to the martingale context. Let
(Ω,F ,P) be a complete probability space, equipped with a right-continuous �ltration
(Ft)t≥0 such that F0 contains all the sets of probability zero. We will assume in ad-
dition that any local martingale adapted to this �ltration is continuous: for instance,
this requirement is satis�ed for the Brownian �ltration. For any adapted martingale
X = (Xt)t≥0, we denote the corresponding square bracket by 〈X,X〉: see Dellacherie
and Meyer [1] for the de�nition. Following Getoor and Sharpe [3], given 1 ≤ p < ∞, a
uniformly integrable martingale X = (Xt)t≥0 belongs to the class BMOp, if

‖X‖BMOp = sup
T≥0

∥∥∥∥E[|X∞ −XT |p
∣∣FT ]1/p∥∥∥∥

∞
<∞.

This is precisely the probabilistic counterpart of the oscillations (1.2). In analogy to the
analytic setting, it can be shown that all the seminorms ‖ · ‖BMOp

are equivalent and
hence all the probabilistic classes BMOp coincide. It will be convenient for us to work
with the L2-based seminorm ‖ · ‖BMO2 , denoted, for notational simplicity, by ‖ · ‖BMO.
Note that we have the following probabilistic version of (1.3):

(4.1) ‖X‖2BMO = sup
T≥0

essup

(
E(X2

∞|FT )−X2
T

)
.

We also need to introduce the stochastic version of the A∞ theory. Any integrable and
positive random variable W is called a weight, and it gives rise to the associated uni-
formly integrable martingale (Wt)t≥0 = (E(W |Ft))t≥0. The weight W is said to satisfy
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Muckenhoupt's condition A∞, if its characteristic

[W ]A∞ = sup
T≥0

∥∥∥∥WT exp
(
− E

(
logW |FT

))∥∥∥∥
∞

is �nite. See [5, 7] for more on the subject. The associated weighted BMO space is
de�ned as the collection of all uniformly integrable martingales X = (Xt)t≥0, for which

‖X‖BMO(W ) = sup
T≥0

∥∥∥∥EW [∣∣X∞ − EW
(
X∞|FT

)∣∣2 ∣∣FT ]1/2∥∥∥∥
∞
<∞.

Here EW (·|FT ) is the conditional expectation with respect to the measure WdP, i.e.,
EW (ξ|FT ) = E(ξW |FT )/WT for any WdP-measurable random variable ξ.

We will prove the following.

Theorem 4.1. For any BMO martingale X and any probabilistic weight W ∈ A∞ we
have

(4.2) ‖X‖BMO(W ) ≤ e
√

2[W ]A∞‖X‖BMO.

The constant e
√

2 = 3.8442 . . . is the best possible.

Theorem 4.2. Let c ≥ 1 be a �xed parameter and let d = d(c) be the solution to (1.6).
For any BMO martingale X and any probabilistic weight W ∈ A∞ satisfying [W ]A∞ ≤ c
we have

(4.3) ‖X‖BMO(W ) ≤
2d/2

1− d
‖X‖BMO.

The constant 2d/(1− d) is the best possible.

The proof is an adaptation of the analytic argumentation presented in the previous
two sections. In particular, we will need appropriate versions of the inequalities (2.1) and
(2.2).

Theorem 4.3. Let T ≥ 0 be �xed. Then for any BMO martingale X = (Xt)t≥0 satis-
fying ‖X‖BMO ≤ 1 and E(X|FT ) = 0, we have

E
[
Φ
(
|X∞|

)∣∣FT ] ≤ 2d

1− d
.

Proof. By a standard limiting argument, we may assume that ‖X‖BMO is strictly less
than 1: say, ‖X‖2BMO = 1 − ε for some ε > 0. Consider an auxiliary martingale Yt =
E(X2

∞|Ft), t ≥ 0. By (4.1) and the assumption ‖X‖BMO = 1− ε, the pair (X,Y ) takes
values in the parabolic domain DBMO = {(x, y) : x2 ≤ y ≤ x2 + (1− ε)2}. Let B be the
Bellman function introduced in Section 2. We apply Itô's formula to the process B(X,Y ).
Formally this is not permitted, since B is only of class C1. This obstacle is handled by
performing an appropriate molli�cation argument (see e.g. [14], formula (5.3)). Namely,
let g be a nonnegative C∞ function on R2, supported on the unit ball and satisfying∫
R2 g = 1. Given δ ∈ (0, ε/2), we consider the function Bδ : DBMO → R given by the
convolution-type expression

Bδ(x, y) =

∫
[−1,1]2

B(x− δu, y + δ − 2xδu+ δ2u2 − δv)g(u, v)dudv.

Note that the integrand is well-de�ned: we have(
y + δ − 2xδu+ δ2u2 − δv

)
− (x− δu)2 = y − x2 + δ − δv ∈ [0, 1]
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for v ∈ [−1, 1]. The function Bδ is of class C∞ and, by the very de�nition, it inherits the
local concavity. Therefore, the application of Itô's formula gives, for any t ≥ T ,

(4.4) Bδ(Xt, Yt) = Bδ(XT , YT ) + I1 + I2/2,

where

I1 =

∫ T

t

Bδx(Xs, Ys)dXs +

∫ T

t

Bδy(Xs, Ys)dYs,

I2 =

∫ T

t

Bδxx(Xs, Ys)d〈X,X〉s + 2

∫ T

t

Bδxy(Xs, Ys)d〈X,Y 〉s +

∫ T

t

Bδyy(Xs, Ys)d〈Y, Y 〉s.

Observe that E(I1|FT ) = 0, by the properties of stochastic integrals with respect to
martingales. Furthermore, since Bδ is locally concave, the term I2 is nonpositive: this
can be seen by approximating the integrals with Riemann sums. Consequently, taking
the conditional expectation in (4.4), we obtain E(Bδ(Xt, Yt)|FT ) ≤ Bδ(XT , YT ). Now
we let δ → 0: since B is continuous, we have Bδ → B pointwise and therefore Fatou's
lemma yields E(B(Xt, Yt)|FT ) ≤ B(XT , YT ). But by Lemma 2.3 and the inequality
X2
t ≤ Yt ≤ X2

t + 1, we conclude that

B(Xt, Yt) ≥ B(Xt, X
2
t ) = Φ(|Xt|) and B(XT , YT ) = B(0, YT ) ≤ B(0, 1) =

2d

1− d
.

Thus we have proved the estimate

E
[
Φ(|Xt|)|FT

]
≤ 2d

1− d
and it remains to let t→∞ and apply Fatou's lemma. �

The martingale version of (2.2) is the following.

Theorem 4.4. Let T ≥ 0 be �xed. Then for any A∞ weight W satisfying [W ]A∞ ≤ c
and WT ≡ 1, we have

E
[
Ψ(W )

∣∣FT ] ≤ d2d

(1− d)2
.

Proof. The argumentation is the same as above and rests on the application of the Itô
formula to U(W,V ), where V = (Vt)t≥0 is the martingale given by Vt = E

[
logW |Ft

]
.

The details are left to the reader. �

Proof of (4.2) and (4.3). Pick arbitrary T ≥ 0. By (3.1), we may write

(4.5) E
[

(X∞ −XT )2

‖X‖2BMO

· W∞
WT

∣∣∣FT] ≤ E
[
Φ

(
|X∞ −XT |
‖X‖BMO

) ∣∣∣FT]+ E
[
Ψ

(
W∞
WT

) ∣∣∣FT] .
Observe that the martingale

X̃t =


Xt −XT

‖X‖BMO
if t > T,

0 if t ≤ T

satis�es the assumptions of Theorem 4.3 and hence

E
[
Φ

(
|X∞ −XT |
‖X‖BMO

) ∣∣∣FT] = E
[
Φ
(
|X̃∞|

)∣∣FT ] ≤ 2d

1− d
.
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Similarly, the weight W̃ = (W̃t)t≥0 given by

W̃t =

{
Wt/WT if t > T,

1 if t ≤ T

has all the properties required in Theorem 4.4, so

E
[
Ψ

(
W∞
WT

) ∣∣∣FT] = E
[
Ψ(W̃ )

∣∣FT ] ≤ d2d

(1− d)2
.

Plugging the above two estimates into (4.5) yields

EW
[
(X∞ −XT )2|FT

]
= E

[
(X∞ −XT )2

‖X‖2BMO

· W
WT

∣∣∣FT] · ‖X‖2BMO ≤
2d

(1− d)2
‖X‖2BMO.

But for any FT measurable random variable ξ we have,

EW
[(
X∞ − EW (X∞|FT )

)2|FT ] ≤ EW
[(
X∞ − ξ

)2|FT ],
so taking ξ = XT and using the previous estimate, we get

EW
[(
X∞ − EW (X∞|FT )

)2|FT ] ≤ 2d

(1− d)2
‖X‖2BMO.

Since T was arbitrary, the estimate (4.3) follows. The inequality (4.2) is an immediate
consequence, by optimizing over c: see the proof in the analytic setting. �

Sharpness. The idea is very simple and natural: we will show that the pair f, w con-
structed in the proof of the sharpness of (1.7) can be reinterpreted as a pair X, W of
martingales which have the required properties. To this end, consider the probability
space ([−1, 1],B([−1, 1]), | · |/2), equipped with the �ltration (Ft)t≥0, where for each t,
Ft is generated by all sets of measure zero, the interval [0, 1] and all intervals [a, b] with
−t ≤ a < b ≤ t. Then the calculations for f above give that the martingale Xt = E(f |Ft),
t ≥ 0, satis�es ‖X‖BMO ≤ 1: this follows directly from the identities

E(f |Ft) = 〈f〉[−1,−t]χ[−1,−t] + fχ(−t,t) + 〈f〉[t,1]χ[t,1]

and

E(f2|Ft) = 〈f2〉[−1,−t]χ[−1,−t] + f2χ(−t,t) + 〈f2〉[t,1]χ[t,1].

Similarly, the weight W = E(w|Ft), t ≥ 0, satis�es the A∞ condition with [W ]A∞ ≤ c.
Furthermore, we have W0 ≡ 1 and EW (X2

∞|F0) = 2d/(1− d)2. Unfortunately, we do not
have the identity EW (X∞|F0) = 0 (this would allow us to �nish the proof), but only

EW (X∞|F0) = −1

2
χ[−1,0) +

1

2
χ[0,1].

But this di�culty can be easily overcome: we may enlarge the above probability space
and the �ltration (to, say (Ft)t≥−1) such that F−1 is a trivial σ-algebra, i.e., generated
by all sets of measure 0. Then the `extended' martingale X = (Xt)t≥−1 still satis�es
‖X‖BMO ≤ 1. Indeed, it su�ces to note that for t ∈ [−1, 0) we have

E(X2
∞|Ft) = E

[
E(X2

∞|F0)|Ft
]

= E
[
1|Ft

]
= 1 ≤ 1 + E

(
X∞|Ft

)2
.
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Similarly, the weight W = (Wt)t≥−1 still satis�es [W ]A∞ ≤ c and E[W |F−1] = 1: this
follows immediately from the fact that W0 is already a constant random variable (equal
to 1). Taking all the above observations into account, we get

EW (X2
∞|F−1) = EW

[
EW (X2

∞|F0)
∣∣F−1

]
=

2d

(1− d)2
, EW (X∞|F−1) = 0

and hence ‖X‖BMO(W ) ≥ 2d/2/(1−d)2. This gives the sharpness of (4.3), for the estimate
(4.2) just repeat the reasoning used in the analytic setting. �

5. On the discovery of Φ and Ψ

Now we will describe informally some steps which lead to the exponential function Φ
and the logarithmic function Ψ used above. Suppose that we are interested in the sharp
bound for ‖f‖BMO(w) in the localized setting, in which both f and w are given on the
interval [−1, 1]. Let us recall the argument which has led us to (1.7). The key point is
the Young inequality (3.1):

(5.1) x2y ≤ Φ(|x|) + Ψ(y), x ∈ R, y > 0,

which implies that for any subinterval I ⊆ [−1, 1] we have

1

w(I)

∫
I

(
f − 〈f〉I
‖f‖BMO

)2

wds ≤ 1

|I|

∫
I

Φ

(
|f − 〈f〉I |
‖f‖BMO

)
ds+

1

|I|

∫
I

Ψ

(
w

〈w〉I

)
ds

≤ CΦ + C ′Ψ,c.

(5.2)

Here

(5.3) CΦ = sup

{
1

|I|

∫
I

Φ(|f |)ds : 〈f〉I = 0, ‖f‖BMO(I) ≤ 1

}
and

(5.4) C ′Ψ,c = sup

{
1

|I|

∫
I

Ψ(w)ds : 〈w〉I = 1, [w]A∞(I) ≤ c
}
.

(By a standard a�ne transformation argument, the de�nitions of CΦ and C ′Ψ,c do not

depend on I). This in particular gives

(5.5)
1

w(I)

∫
I

(
f − 〈f〉I
‖f‖BMO

)2

wds−
(

1

w(I)

∫
I

f − 〈f〉I
‖f‖BMO

wds

)2

≤ CΦ + C ′Ψ,c.

To ensure that the bound for ‖f‖BMO(w) we obtain in this manner is sharp, we need to
�nd an interval I, a function f and a weight w for which all the intermediate estimates
become equalities (or almost equalities, up to an arbitrary positive error term). The
�rst observation is that we may assume that I = [−1, 1], by the a�ne transformation
argument already mentioned above. Second, substituting f := (f − 〈f〉I)/‖f‖BMO, we
see that we may restrict our search to functions of integral zero and BMO norm equal
to 1. To guarantee that there is no loss when passing from (5.2) to (5.5), we need to
�nd f , w such that

∫
I
fw = 0: it seems plausible to search for an odd function f and

an even weight w: then this vanishing condition will be automatic. Now we look at the
second inequality in (5.2). The quantities of the form (5.3) and (5.4), for various choices
of Φ and Ψ, have been studied in many papers in the literature; for instance, convenient
references are [12], [13] and [17] (but the full list of papers is much, much longer). A little
thought and experimentation, motivated by these examples, leads us to the functions f
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and w given by (3.3) (actually, up to an a�ne transformation, the function f appears
in [13, formula (8.2)]; concerning the weight, see the second half of Appendix 2 in [17]).
Now it remains to �nd Φ and Ψ so that the �rst estimate in (5.2) becomes an equality.
Looking back at (5.1), we see that for any �xed s ∈ [0, 1], we want the function

ξ : y 7→ f(s)2y − Φ(|f(s)|)−Ψ(y)

to attain its maximal value equal to zero at y = w(s). In particular, plugging s = 0, we
obtain 0 = ξ(w(0)) = −Φ(0)−Ψ(1− d). We may assume that Φ(0) = 0 and Ψ(t) = 0 for
t ∈ [0, 1 − d]: adding a constant κ to Φ and subtracting it from Ψ does not change the
overall argument (5.2) (the quantities CΦ and C ′Ψ,c increase/decrease by κ, respectively).

Next, note that the derivative of ξ vanishes for Ψ′(y) = f(s)2, which leads us to the
equation Ψ′(w(s)) = f(s)2. If s ∈ [0, 1/2], this is equivalent to saying that Ψ′(t) = 0 for
t ∈ [1− d, 2d(1− d)]; for s ∈ (1/2, 1] we obtain

Ψ′(s) = log2

(
2

(
1− d
s

)1/d
)
.

Together with the condition Ψ(t) = 0 for t ∈ [0, 1− d], this yields the special function Ψ
used in the previous sections. The equation 0 = ξ(w(s)) = f(s)2w(s)−Φ(|f(s)|)−Ψ(w(s))
leads to the exponential function Φ.
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