ON THE BEST CONSTANT IN THE WEAK TYPE INEQUALITY FOR THE SQUARE FUNCTION OF A CONDITIONALLY SYMMETRIC MARTINGALE

ADAM OSĘKOWSKI

ABSTRACT. Let f be a real conditionally symmetric martingale and S(f) denote its square function. The purpose of this note is to show that the inequality

$$\begin{split} \sup_{\lambda>0} \left(\lambda \mathbb{P}(S(f) \geq \lambda)\right) \leq K ||f||_1, \ K = \exp\left(-\frac{1}{2}\right) + \int_0^1 \exp\left(-\frac{t^2}{2}\right) dt \approx 1,4622, \\ \text{due to Bollobás, is sharp.} \end{split}$$

1. INTRODUCTION

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, filtered by a nondecreasing family (\mathcal{F}_n) of sub- σ -fields of \mathcal{F} . Assume $f = (f_n)$ is a martingale, that is, an adapted sequence of integrable variables satisfying $\mathbb{E}(f_n | \mathcal{F}_{n-1}) = f_{n-1}$ almost surely for $n = 1, 2, \ldots$. We define the square function S(f) of f by

$$S(f) = \left(\sum_{k=0}^{\infty} |df_k|^2\right)^{1/2}$$

where (df_k) is a difference sequence of f, given by $df_0 = f_0$ and $df_n = f_n - f_{n-1}$ for $n \ge 1$. We will also use the notation $S_n(f) = (\sum_{k=0}^n |df_k|^2)^{1/2}$, $n = 0, 1, 2, \ldots$ We will be interested in special classes of martingales. A martingale is *condi*-

We will be interested in special classes of martingales. A martingale is *condi*tionally symmetric if for any n, the conditional distributions of df_n and $-df_n$ with respect to \mathcal{F}_{n-1} coincide (we set $\mathcal{F}_{-1} = \{\emptyset, \Omega\}$). In particular, all dyadic martingales are conditionally symmetric. A martingale on the Lebesgue unit interval is called dyadic, if it has dyadic differences: for all n, its n-th difference and the norm of n + 1-st difference are both constant on the interval $[(k - 1)/2^n, k/2^n)$ for all $k = 1, 2, \ldots, 2^n$.

In [1], Bollobás established the weak type (1, 1) inequality for the square function of a dyadic martingale with a constant

$$K = \exp\left(-\frac{1}{2}\right) + \int_0^1 \exp\left(-\frac{t^2}{2}\right) dt \approx 1,4622,$$

and proved that the best constant is not smaller than 1,44. As explained in the paper [2] by Burkholder, the optimal constant does not change if we allow the martingale to be conditionally symmetric. In this note we will show that the constant K is the best possible. Here is the precise statement.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 60G42. Secondary: 60G44.

Key words and phrases. Martingale, square function.

Partially supported by MEiN Grant 1 PO3A 012 29 and Foundation of Polish Science.

Theorem 1.1. Let f be conditionally symmetric martingale. Then for any $\lambda > 0$,

(1.1)
$$\lambda \mathbb{P}(S(f) \ge \lambda) \le K ||f||_1$$

and the constant K can not be replaced by a smaller one.

Clearly, by homogeneity, it suffices to deal with the case $\lambda = 1$ only.

2. The sharpness

Let $B = (B_t)_{t\geq 0}$ be a standard Brownian motion starting from 0 and ε be a Rademacher random variable independent of B. Introduce a stopping time $\tau = \inf\{t: B_t^2 + t \geq 1\}$, satisfying $\tau \leq 1$ almost surely, and let the process $X = (X_t)_{t\geq 0}$ be given by

$$X_t = B_{\tau \wedge t} + \varepsilon B_\tau I_{\{t > 1\}}.$$

The process X is a Brownian motion, which stops at the moment τ , and then at time 1 jumps to one of the points 0, $2B_{\tau}$ with probability 1/2 and stays there forever. Clearly, it is a martingale with respect to its natural filtration. Its square bracket process [X] (which is a continuous-time extension of a square function, see e.g. Dellacherie and Meyer [3]) satisfies

$$[X]_1 = [B]_{\tau} + |B_{\tau}|^2 = \tau + B_{\tau}^2 = 1$$
 almost surely,

and, as we shall prove now, $||X||_1 = 1/K$. Observe that $||X||_1 = ||X_1||_1 = ||X_\tau||_1 = ||B_\tau||_1$. Let $U : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ be given by

$$U(t,x) = \sqrt{1-t} \exp(-\frac{x^2}{2(1-t)}) + |x| \int_0^{|x|/\sqrt{1-t}} \exp(-s^2/2) ds,$$

if $t + x^2 < 1$, and U(t, x) = K|x| otherwise. It can be verified readily that U is continuous and satisfies the heat equation $U_t + \frac{1}{2}U_{xx} = 0$ on the set $\{(t, x) : t + x^2 < 1\}$. This implies that $(U(\tau \wedge t, B_{\tau \wedge t}))_{t \geq 0}$ is a martingale adapted to \mathcal{F}^B and therefore

$$K||B_{\tau}||_{1} = \mathbb{E}U(\tau, B_{\tau}) = U(0, 0) = 1.$$

This shows the sharpness of (1.1) in the continuous-time setting. Now the passage to the discrete-time case can be carried out using standard approximation techniques. However, our proof will be different. Suppose that the best constant in the inequality (1.1) for dyadic martingales equals K_0 . Exploiting the ideas of Burkholder (cf. [2]), we see that this implies the existence of a function $W : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ satisfying the following three conditions:

- (i) $W(0,0) \le 0$,
- (ii) $W(t,x) \ge I_{\{t\ge 1\}} K_0|x|$ for all $t \ge 0, x \in \mathbb{R}$,

(iii) $W(t+d^2, x-d) + W(t+d^2, x+d) - 2W(t, x) \le 0$ for all $t \ge 0, x, d \in \mathbb{R}$. Indeed, one takes

coa, one canos

$$W(t,x) = \sup\{\mathbb{P}(t+x^2 - S^2(f) \ge 1) - K_0 ||f||_1\}$$

where the supremum is taken over all the simple martingales starting from x and dyadic differences df_n , n = 1, 2, ... It is not difficult to see that W is continuous. To see this, let f, $f_0 \equiv x$, be as in the definition of W. Fix x' and let f' = f + x' - x. Then we have $x^2 - S^2(f) = (x')^2 - S^2(f')$ and, for any $t \ge 0$,

$$\mathbb{P}(t+x^2-S^2(f) \ge 1) - K_0||f||_1 \le \mathbb{P}(t+(x')^2-S^2(f') \ge 1) - K_0||f'||_1 + K_0|x-x'|,$$

which implies $W(t,x) \leq W(t,x') + K_0|x - x'|$ and hence, for fixed t, $W(t,\cdot)$ is K_0 -Lipschitz. Hence, applying (iii), for any s < t and any x,

$$W(s,x) \ge \frac{1}{2} [W(t,x - \sqrt{t-s}) + W(t,x + \sqrt{t-s})] \ge W(t,x) - K_0 \sqrt{t-s}.$$

On the other hand, $W(s, x) \leq W(t, x)$ by the definition of W. Therefore, for any $x, W(x, \cdot)$ is continuous. This yields the continuity of W.

Now extend W to the whole \mathbb{R}^2 by setting W(t, x) = W(0, x) for t < 0. Let $\delta > 0$ and convolve W with a nonnegative smooth function g^{δ} satisfying $||g^{\delta}||_1 = 1$ and supported on the ball centered at (0,0) and radius δ . As the result, we obtain a smooth function W^{δ} , for which (iii) is still valid. Dividing this inequality by d^2 and letting $d \to 0$ gives $W_t^{\delta} + W_{xx}^{\delta} \leq 0$ and hence, by Itô's formula, $\mathbb{E}W^{\delta}(\tau, B_{\tau}) \leq W^{\delta}(0,0)$. Now let $\delta \to 0$ and use the continuity of W and Lebesgue's dominated convergence theorem to conclude that $\mathbb{E}W(\tau, B_{\tau}) \leq W(0,0)$. The final step is that, by (iii),

 $W(\tau + B_{\tau}^2, B_{\tau} - B_{\tau}) + W(\tau + B_{\tau}^2, B_{\tau} + B_{\tau}) \le 2W(\tau, B_{\tau}) \quad \text{almost surely},$

which yields $\mathbb{E}W([X]_1, X_1) \leq W(0, 0)$ and, by (i) and (ii), $K_0 \geq K$.

References

- [1] B. Bollobás, Martingale inequalities, Math. Proc. Camb. Phil. Soc. 87 (1980), 377–382.
- [2] D. L. Burkholder, Explorations in martingale theory and its applications, Ecole d'Ete de Probabilités de Saint-Flour XIX—1989, pp. 1–66, Lecture Notes in Math., 1464, Springer, Berlin, 1991.
- [3] C. Dellacherie and P. A. Meyer, Probabilities and potential B, North-Holland, Amsterdam, 1982.

Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

E-mail address: ados@mimuw.edu.pl