ON THE BEST CONSTANT IN THE WEAK TYPE INEQUALITY FOR THE SQUARE FUNCTION OF A CONDITIONALLY SYMMETRIC MARTINGALE

ADAM OSESKOWSKI

Abstract

Let f be a real conditionally symmetric martingale and $S(f)$ denote its square function. The purpose of this note is to show that the inequality $\sup _{\lambda>0}(\lambda \mathbb{P}(S(f) \geq \lambda)) \leq K\|f\|_{1}, \quad K=\exp \left(-\frac{1}{2}\right)+\int_{0}^{1} \exp \left(-\frac{t^{2}}{2}\right) d t \approx 1,4622$, due to Bollobás, is sharp.

1. Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, filtered by a nondecreasing family $\left(\mathcal{F}_{n}\right)$ of sub- σ-fields of \mathcal{F}. Assume $f=\left(f_{n}\right)$ is a martingale, that is, an adapted sequence of integrable variables satisfying $\mathbb{E}\left(f_{n} \mid \mathcal{F}_{n-1}\right)=f_{n-1}$ almost surely for $n=1,2, \ldots$. We define the square function $S(f)$ of f by

$$
S(f)=\left(\sum_{k=0}^{\infty}\left|d f_{k}\right|^{2}\right)^{1 / 2}
$$

where $\left(d f_{k}\right)$ is a difference sequence of f, given by $d f_{0}=f_{0}$ and $d f_{n}=f_{n}-f_{n-1}$ for $n \geq 1$. We will also use the notation $S_{n}(f)=\left(\sum_{k=0}^{n}\left|d f_{k}\right|^{2}\right)^{1 / 2}, n=0,1,2, \ldots$.

We will be interested in special classes of martingales. A martingale is conditionally symmetric if for any n, the conditional distributions of $d f_{n}$ and $-d f_{n}$ with respect to \mathcal{F}_{n-1} coincide (we set $\mathcal{F}_{-1}=\{\emptyset, \Omega\}$). In particular, all dyadic martingales are conditionally symmetric. A martingale on the Lebesgue unit interval is called dyadic, if it has dyadic differences: for all n, its n-th difference and the norm of $n+1$-st difference are both constant on the interval $\left[(k-1) / 2^{n}, k / 2^{n}\right)$ for all $k=1,2, \ldots, 2^{n}$.

In [1], Bollobás established the weak type $(1,1)$ inequality for the square function of a dyadic martingale with a constant

$$
K=\exp \left(-\frac{1}{2}\right)+\int_{0}^{1} \exp \left(-\frac{t^{2}}{2}\right) d t \approx 1,4622
$$

and proved that the best constant is not smaller than 1,44 . As explained in the paper [2] by Burkholder, the optimal constant does not change if we allow the martingale to be conditionally symmetric. In this note we will show that the constant K is the best possible. Here is the precise statement.

[^0]Theorem 1.1. Let f be conditionally symmetric martingale. Then for any $\lambda>0$,

$$
\begin{equation*}
\lambda \mathbb{P}(S(f) \geq \lambda) \leq K\|f\|_{1} \tag{1.1}
\end{equation*}
$$

and the constant K can not be replaced by a smaller one.
Clearly, by homogeneity, it suffices to deal with the case $\lambda=1$ only.

2. The Sharpness

Let $B=\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion starting from 0 and ε be a Rademacher random variable independent of B. Introduce a stopping time $\tau=$ $\inf \left\{t: B_{t}^{2}+t \geq 1\right\}$, satisfying $\tau \leq 1$ almost surely, and let the process $X=\left(X_{t}\right)_{t \geq 0}$ be given by

$$
X_{t}=B_{\tau \wedge t}+\varepsilon B_{\tau} I_{\{t \geq 1\}}
$$

The process X is a Brownian motion, which stops at the moment τ, and then at time 1 jumps to one of the points $0,2 B_{\tau}$ with probability $1 / 2$ and stays there forever. Clearly, it is a martingale with respect to its natural filtration. Its square bracket process $[X]$ (which is a continuous-time extension of a square function, see e.g. Dellacherie and Meyer [3]) satisfies

$$
[X]_{1}=[B]_{\tau}+\left|B_{\tau}\right|^{2}=\tau+B_{\tau}^{2}=1 \quad \text { almost surely, }
$$

and, as we shall prove now, $\|X\|_{1}=1 / K$. Observe that $\|X\|_{1}=\left\|X_{1}\right\|_{1}=\left\|X_{\tau}\right\|_{1}=$ $\left\|B_{\tau}\right\|_{1}$. Let $U: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
U(t, x)=\sqrt{1-t} \exp \left(-\frac{x^{2}}{2(1-t)}\right)+|x| \int_{0}^{|x| / \sqrt{1-t}} \exp \left(-s^{2} / 2\right) d s
$$

if $t+x^{2}<1$, and $U(t, x)=K|x|$ otherwise. It can be verified readily that U is continuous and satisfies the heat equation $U_{t}+\frac{1}{2} U_{x x}=0$ on the set $\{(t, x)$: $\left.t+x^{2}<1\right\}$. This implies that $\left(U\left(\tau \wedge t, B_{\tau \wedge t}\right)\right)_{t \geq 0}$ is a martingale adapted to \mathcal{F}^{B} and therefore

$$
K\left\|B_{\tau}\right\|_{1}=\mathbb{E} U\left(\tau, B_{\tau}\right)=U(0,0)=1
$$

This shows the sharpness of (1.1) in the continuous-time setting. Now the passage to the discrete-time case can be carried out using standard approximation techniques. However, our proof will be different. Suppose that the best constant in the inequality (1.1) for dyadic martingales equals K_{0}. Exploiting the ideas of Burkholder (cf. [2]), we see that this implies the existence of a function $W: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfying the following three conditions:
(i) $W(0,0) \leq 0$,
(ii) $W(t, x) \geq I_{\{t \geq 1\}}-K_{0}|x|$ for all $t \geq 0, x \in \mathbb{R}$,
(iii) $W\left(t+d^{2}, x-d\right)+W\left(t+d^{2}, x+d\right)-2 W(t, x) \leq 0$ for all $t \geq 0, x, d \in \mathbb{R}$.

Indeed, one takes

$$
W(t, x)=\sup \left\{\mathbb{P}\left(t+x^{2}-S^{2}(f) \geq 1\right)-K_{0}\|f\|_{1}\right\}
$$

where the supremum is taken over all the simple martingales starting from x and dyadic differences $d f_{n}, n=1,2, \ldots$. It is not difficult to see that W is continuous. To see this, let $f, f_{0} \equiv x$, be as in the definition of W. Fix x^{\prime} and let $f^{\prime}=f+x^{\prime}-x$. Then we have $x^{2}-S^{2}(f)=\left(x^{\prime}\right)^{2}-S^{2}\left(f^{\prime}\right)$ and, for any $t \geq 0$,
$\mathbb{P}\left(t+x^{2}-S^{2}(f) \geq 1\right)-K_{0}\|f\|_{1} \leq \mathbb{P}\left(t+\left(x^{\prime}\right)^{2}-S^{2}\left(f^{\prime}\right) \geq 1\right)-K_{0}\left\|f^{\prime}\right\|_{1}+K_{0}\left|x-x^{\prime}\right|$,
which implies $W(t, x) \leq W\left(t, x^{\prime}\right)+K_{0}\left|x-x^{\prime}\right|$ and hence, for fixed $t, W(t, \cdot)$ is K_{0}-Lipschitz. Hence, applying (iii), for any $s<t$ and any x,

$$
W(s, x) \geq \frac{1}{2}\left[W(t, x-\sqrt{t-s})+W(t, x+\sqrt{t-s}] \geq W(t, x)-K_{0} \sqrt{t-s}\right.
$$

On the other hand, $W(s, x) \leq W(t, x)$ by the definition of W. Therefore, for any $x, W(x, \cdot)$ is continuous. This yields the continuity of W.

Now extend W to the whole \mathbb{R}^{2} by setting $W(t, x)=W(0, x)$ for $t<0$. Let $\delta>0$ and convolve W with a nonnegative smooth function g^{δ} satisfying $\left\|g^{\delta}\right\|_{1}=1$ and supported on the ball centered at $(0,0)$ and radius δ. As the result, we obtain a smooth function W^{δ}, for which (iii) is still valid. Dividing this inequality by d^{2} and letting $d \rightarrow 0$ gives $W_{t}^{\delta}+W_{x x}^{\delta} \leq 0$ and hence, by Itô's formula, $\mathbb{E} W^{\delta}\left(\tau, B_{\tau}\right) \leq$ $W^{\delta}(0,0)$. Now let $\delta \rightarrow 0$ and use the continuity of W and Lebesgue's dominated convergence theorem to conclude that $\mathbb{E} W\left(\tau, B_{\tau}\right) \leq W(0,0)$. The final step is that, by (iii),
$W\left(\tau+B_{\tau}^{2}, B_{\tau}-B_{\tau}\right)+W\left(\tau+B_{\tau}^{2}, B_{\tau}+B_{\tau}\right) \leq 2 W\left(\tau, B_{\tau}\right) \quad$ almost surely, which yields $\mathbb{E} W\left([X]_{1}, X_{1}\right) \leq W(0,0)$ and, by (i) and (ii), $K_{0} \geq K$.

References

[1] B. Bollobás, Martingale inequalities, Math. Proc. Camb. Phil. Soc. 87 (1980), 377-382.
[2] D. L. Burkholder, Explorations in martingale theory and its applications, Ecole d'Ete de Probabilités de Saint-Flour XIX—1989, pp. 1-66, Lecture Notes in Math., 1464, Springer, Berlin, 1991.
[3] C. Dellacherie and P. A. Meyer, Probabilities and potential B, North-Holland, Amsterdam, 1982.

Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

E-mail address: ados@mimuw.edu.pl

[^0]: 2000 Mathematics Subject Classification. Primary: 60G42. Secondary: 60G44.
 Key words and phrases. Martingale, square function.
 Partially supported by MEiN Grant 1 PO3A 01229 and Foundation of Polish Science.

