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Abstract. For any 1 ≤ p, q < ∞, we determine the optimal constant Cp,q

such that the following holds. If (hk)k≥0 is the Haar system on [0, 1], then
for any vectors ak from a separable Hilbert space H and εk ∈ {−1, 1}, k =
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This is generalized to the sharp weak-type inequality

||Y ||q,∞ ≤ Cp,q ||X||p,

where X, Y stand for H-valued martingales such that Y is differentially sub-
ordinate to X.

1. Introduction

The motivation of this paper comes from a basic question about the Haar system
(hk)k≥0 on [0, 1]. Let us start with some related classical results from the literature.
As shown by Marcinkiewicz [7] (see also Paley [12]), if 1 < p < ∞, then there is a
universal finite constant cp such that
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for any n and any ak ∈ R, εk ∈ {−1, 1}, k = 0, 1, 2, . . ., n. This result was extended
by Burkholder [1] to the martingale setting. Let (Ω,F ,P) be a probability space,
filtered by (Fk)k≥0, a nondecreasing family of sub-σ-fields of F . Let f = (fk)k≥0

be a real-valued martingale with the difference sequence (dfk)k≥0 given by df0 = f0

and dfk = fk − fk−1 for k ≥ 1. Let g be a transform of f by a real predictable
sequence v = (vk)k≥0 bounded in absolute value by 1: that is, dgk = vkdfk for all
k ≥ 0 and by predictability we mean that each term vk is measurable with respect
to F(k−1)∨0. Then (cf. [1]) for 1 < p <∞ there is an absolute constant c′p for which

(1.2) ||g||p ≤ c′p||f ||p.

Here we have used the notation ||f ||p = supn ||fn||p. Let cp(1.1), c′p(1.2) denote the
optimal constants in (1.1) and (1.2), respectively. The Haar system is a martingale
difference sequence with respect to its natural filtration (on the probability space
being the Lebesgue’s unit interval) and hence so is (akhk)k≥0, for given fixed real
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numbers a0, a1, a2, . . .. Therefore, cp(1.1) ≤ c′p(1.2) for all 1 < p < ∞. It
follows from the results of Burkholder [2] and Maurey [8] that in fact the constants
coincide: cp(1.1) = c′p(1.2) for all 1 < p < ∞. The question about the precise
value of cp(1.1) was answered by Burkholder in [3]: cp(1.1) = p∗ − 1 (where p∗ =
max{p, p/(p − 1)}) for 1 < p < ∞. Furthermore, the constant does not change
if we allow the martingales and the coefficients ak to take values in a separable
Hilbert space H. These results have been strengthened in [10], where the author
determined the optimal universal constants cp,q ∈ [1,∞], 1 ≤ p, q <∞, such that

(1.3) ||g||q ≤ cp,q||f ||p,

for any H-valued f , g as above. The description of these constants is quite compli-
cated, so we do not present it here and refer the interested reader to [10]. Let us
only mention here that cp,q are the best possible in∣∣∣∣∣
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even if we assume that the coefficients ak are real. This follows, for example, from
the reasoning presented in Section 10 of Burkholder [3].

For p = 1 the inequalities (1.1) and (1.2) do not hold with any finite constant; in
other words, we have c1,1 =∞ in (1.3). However, one can establish an appropriate
weak type bound. Here is the result of Burkholder [3], valid for a wider range of
parameters: if 1 ≤ p ≤ 2, then for any real valued f , g as above we have the sharp
inequality

(1.4) ||g||p,∞ ≤
(

2
Γ(p+ 1)

)1/p

||f ||p.

Here ||g||p,∞ = supλ>0 λ(P(supn |gn| ≥ λ))1/p denotes the weak p-th norm of g. For
p > 2, Suh [13] showed that

(1.5) ||g||p,∞ ≤
(
pp−1/2

)1/p ||f ||p
and that the constant (pp−1/2)1/p is the best. Both (1.4), (1.5) extend to a Hilbert
space setting and remain sharp even in the special case of the estimates for the
Haar system with real coefficients.

In fact, all the inequalities above are valid under less restrictive assumption
of differential subordination and can further be extended to the continuous-time
setting. Suppose that (Ω,F ,P) is complete and equip it with a right-continuous
filtration (Ft)t≥0 such that F0 contains all the events of probability 0. Let X,
Y be two adapted cadlag martingales taking values in H which, as we may and
do assume from now on, is equal to `2. Following Wang [14], we say that Y is
differentially subordinate to X, if the process ([X,X]t− [Y, Y ]t)t≥0 is nondecreasing
and nonnegative as a function of t. Here [X,Y ] =

∑∞
j=0[Xj , Y j ], where Xj , Y j

stand for the j-th coordinates ofX and Y , respectively, and [Xj , Y j ] is the quadratic
covariance process of Xj and Y j (see e.g. Dellacherie and Meyer [6]). If we treat the
discrete-time martingales f = (fk)∞k=0, g = (gk)∞k=0 as continuous-time processes
(via Xt = fbtc and Yt = gbtc for t ≥ 0), then the above condition reads

|dgk| ≤ |dfk| for k ≥ 0,
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which is the original definition of the differential subordination due to Burkholder
[3]. Of course, this condition is satisfied by the martingale transforms studied
above. Thus the following theorem (see [11], [13] and [14]) generalizes the previous
inequalities (1.3), (1.4) and (1.5). We use the notation ||X||p = supt ||Xt||p and
||X||p,∞ = supλ>0 λ(P(supt |Xt| ≥ λ))1/p, analogous to that of the discrete-time
setting.

Theorem 1.1. If Y is differentially subordinate to X, then

(1.6) ||Y ||q ≤ cp,q||X||p, 1 ≤ p, q <∞,

(1.7) ||Y ||p,∞ ≤
(

2
Γ(p+ 1)

)1/p

||X||p, 1 ≤ p ≤ 2,

||Y ||p,∞ ≤
(
pp−1

2

)1/p

||X||p, 2 ≤ p <∞,

and the inequalities are sharp.

There is a natural and interesting question about the best constants in the corre-
sponding weak type (p, q) estimates for the Haar system and the extension of these
bounds to continuous-time differentially subordinated martingales. The purpose of
this paper is to give a full answer to this question. Let

Cp,q =



∞ if q > p,

1 if 1 ≤ q ≤ 2 ≤ p <∞,(
2

Γ(p+1)

)1/p

if 1 ≤ q ≤ p < 2,

21/p−2/qq(p−1)/p
(
p−q
p−2

)(p−1)(p−q)/(pq)
if 2 < q ≤ p <∞.

Our main result can be stated as follows.

Theorem 1.2. Let X, Y be two Hilbert-space valued martingales such that Y is
differentially subordinate to X. Then for any 1 ≤ p, q <∞ we have

(1.8) ||Y ||q,∞ ≤ Cp,q||X||p
and the constant Cp,q is the best possible. It is already the best possible in the
following estimate for the Haar system: for all n and all ak ∈ R, εk ∈ {−1, 1},
k = 0, 1, 2, . . . , n,

(1.9)
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A few words about the proof and the organization of the paper. In the next
section we establish the estimate (1.8). As we shall see, the heart of the matter lies
in showing the inequality for 2 < q < p <∞; in the other cases the bound is either
trivial or follows immediately from the results above. To deal with the non-trivial
case, we shall exploit Burkholder’s technique, which extracts the desired inequality
from the existence of a certain special function on H ×H. Having completed the
proof of (1.8), we turn to the optimality of the constants Cp,q in the corresponding
inequalities for the Haar system. This is done in Section 3. It turns out that this
time there are two cases, 1 ≤ q < p < 2 and 2 < q < p < ∞, which require
some non-trivial reasoning. The final part of the paper contains the proofs of some
technical facts needed in the earlier sections.
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2. Proof of (1.8)

Of course, we may and do assume that q ≤ p, since otherwise the estimate is
trivial. Furthermore, the case p = q follows from the works of Burkholder [3] and
Suh [13] (see also Wang [14] and the author [11]). If 1 ≤ q ≤ 2 ≤ p, then

||Y ||q,∞ ≤ ||Y ||q ≤ ||Y ||2 ≤ ||X||2 ≤ ||X||p.
For 1 ≤ q < p < 2, the validity of (1.8) follows immediately from (1.7):

||Y ||q,∞ ≤ ||Y ||p,∞ ≤
(

2
Γ(p+ 1)

)1/p

||X||p.

Thus we are left with the case 2 < q < p < ∞. As already mentioned in the
Introduction, our approach rests on Burkholder’s technique. To recall its main
idea, fix a Borel function V : H ×H → R, a constant c ∈ R and suppose that we
want to prove that

(2.1) EV (Xt, Yt) ≤ c, t ≥ 0,

for all martingales X, Y such that Y is differentially subordinate to X (typically,
the martingales are also assumed to satisfy certain integrability assumptions which
guarantee the existence of the expectation in (2.1)). The method translates this
problem into that of finding a special function U which majorizes V and satisfies
EU(Xt, Yt) ≤ c for all t ≥ 0. Usually, the latter condition is usually checked by
proving that (U(Xs, Ys))s≥0 is a supermartingale such that U(X0, Y0) ≤ c almost
surely: see [5] and [14]. However, in this paper we shall verify this condition directly.

At the first sight, this approach is not directly applicable here, since the inequal-
ity (1.8) is not of the form (2.1). To overcome this difficulty, we shall prove a larger
family of related estimates, stated below in a separate theorem.

Theorem 2.1. Let X, Y be two Hilbert-space valued martingales such that Y is
differentially subordinate to X. Then for any 2 < p <∞ and any γ ∈ [0, 1− 2/p],
we have

(2.2) P(|Yt| ≥ 1) ≤ pp−1(1− γ)p

2
E|Xt|p +

1
4

γppp−1

(p− 2)p−1
, t ≥ 0.

The constant γppp−1/(4(p−2)p−1) is the best possible, even in the following estimate
for the Haar system: for all n and all ak ∈ R, εk ∈ {−1, 1}, k = 0, 1, 2, . . . , n,

(2.3)
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+
1
4

γppp−1
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Having proved (2.2), we shall deduce (1.8) simply by picking the optimal value
of γ. Observe that the estimates of Theorem 2.1 are of the appropriate form and
hence Burkholder’s method can be used. Hence, introduce Vp,γ : H×H → R by

Vp,γ(x, y) = 1{|y|≥1} −
pp−1(1− γ)p

2
|x|p.

To define the corresponding special function Up,γ , let us first study an auxiliary
object: a function u∞ : H×H → R given by

u∞(x, y) =

{
0 if |x|+ |y| < 1,
(|y| − 1)2 − |x|2 if |x|+ |y| ≥ 1.

We shall need the following properties of this function.



WEAK TYPE INEQUALITIES 5

Lemma 2.2. (i) There is an absolute constant A > 0 such that for all x, y ∈ H,

(2.4) u∞(x, y) ≤ A(|x|2 + |y|2 + 1).

(ii) For all x, y ∈ H we have

(2.5) u∞(x, y) ≤ (|y| − 1)2 − |x|2.

(iii) If x, y, h, k ∈ H satisfy

(2.6) |x|+ |y| ≤ 1, |x+ h|+ |y + k| ≥ 1 and |k| ≤ |h|,

then u∞(x+ h, y + k) ≤ 0.
(iv) If x, y ∈ H satisfy |y| ≤ |x|, then u∞(x, y) ≤ 0.

Proof. (i), (ii) This follows immediately from the formula for u∞.
(iii) The desired inequality is equivalent to ||y + k| − 1| ≤ |x+ h|. We have that

1 − |y + k| ≤ |x + h|, which is the middle bound in (2.6). Furthermore, using this
assumption and the triangle inequality, we see that

|y + k| − 1 ≤ |y|+ |k| − 1 ≤ −|x|+ |h| ≤ |x+ h|

and we are done.
(iv) The estimate is trivial if |x|+ |y| ≤ 1, while for remaining x, y,

u∞(x, y) = (|y|+ |x| − 1)(|y| − |x| − 1) ≤ 0. �

The key fact about u∞ is described in the following lemma.

Lemma 2.3. Suppose that martingales X, Y are bounded in L2 and Y is differen-
tially subordinate to X. Then for any t ≥ 0,

(2.7) Eu∞(Xt, Yt) ≤ 0.

Proof. By (2.4), we see that the random variable u∞(Xt, Yt) is integrable. Introduce
the stopping time τ = inf{s ≥ 0 : |Xs|+ |Ys| > 1}. We will show the following three
statements:

(2.8) Eu∞(Xt, Yt)1{|X0|+|Y0|>1} ≤ Eu∞(X0, Y0)1{|X0|+|Y0|>1},

(2.9) u∞(Xt, Yt) = u∞(X0, Y0) = 0 on {|X0|+ |Y0| ≤ 1, τ > t}

and

(2.10) Eu∞(Xt, Yt)1{|X0|+|Y0|≤1, τ≤t} ≤ Eu∞(X0, Y0)1{|X0|+|Y0|≤1, τ≤t}.

These three facts yield the claim: indeed, they give Eu∞(Xt, Yt) ≤ Eu∞(X0, Y0)
and it suffices to note that u∞(X0, Y0) ≤ 0, in view of the differential subordination
and part (iv) of Lemma 2.2.

To prove (2.8), use (2.5) to get

E
[
u∞(Xt, Yt)|F0

]
≤ E

[
|Yt|2 − |Xt|2|F0

]
− 2E(|Yt||F0) + 1.

Of course, E(|Yt||F0) ≥ |Y0|. Moreover,

E
[
(|Yt|2−|Xt|2)−(|Y0|2−|X0|2)|F0

]
= E

[
([Y, Y ]t−[X,X]t)−([Y, Y ]0−[X,X]0)|F0

]
is nonpositive, due to the differential subordination. Consequently, on the set
{|X0|+ |Y0| > 1},

E
[
u∞(Xt, Yt)|F0

]
≤ |Y0|2 − |X0|2 − 2|Y0|+ 1 = u∞(X0, Y0),
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which yields (2.8). The condition (2.9) is obvious, by the definition of u∞ and τ .
To get (2.10), we proceed as previously: on the set {|X0| + |Y0| ≤ 1, τ ≤ t} we
have, by (2.5),

E
[
u∞(Xt, Yt)|Fτ

]
= E

[
|Yt|2 − |Xt|2|Fτ

]
− 2E(|Yt||Fτ ) + 1

≤ |Yτ |2 − |Xτ |2 − 2|Yτ |+ 1

= u∞(Xτ , Yτ ).

Now use part (iii) of Lemma 2.2 with x = Xτ−, y = Yτ−, h = ∆Xτ and k = ∆Yτ :
the first two conditions in (2.6) follow from the definition of τ , while the third one,
|∆Yτ | ≤ |∆Xτ |, is due to the differential subordination. Thus, u∞(Xτ , Yτ ) ≤ 0 =
u∞(X0, Y0) and the proof is complete. �

Introduce the auxiliary parameters

(2.11) a = ap,γ =
γ

(1− γ)(p− 2)
, b = bp,γ = 1− 1

p(1− γ)
.

It is easy to see that a ≤ b. Next, define k = kp,γ : [0,∞)→ [0,∞) by

k(r) =
1
4
pp(p− 1)2−p(p− 2)(1− γ)3(γ + (1− γ)r)p−3r2 1[a,b](r)

and introduce Rp,γ : H×H → R by the formula

Rp,γ(x, y) =
1
4
γp−2(1− γ)2pp

(p− 2)p−2
(|y|2 − |x|2) +

1
4

γppp−1

(p− 2)p−1
.

The special function Up,γ corresponding to (2.2) is given by

Up,γ(x, y) =
∫ ∞

0

k(r)u∞(x/r, y/r)dr +Rp,γ(x, y).(2.12)

In the two lemmas below, we provide the explicit formula for Up,γ and prove the
majorization Up,γ ≥ Vp,γ .

Lemma 2.4. If |x|+ |y| < a, then

(2.13) Up,γ(x, y) =
1
4
γp−2(1− γ)2pp

(p− 2)p−2
(|y|2 − |x|2) +

1
4

γppp−1

(p− 2)p−1
.

If a ≤ |x|+ |y| ≤ b, then

Up,γ(x, y)

=
1
2

(
p

p− 1

)p−1(
γ + (1− γ)(|y| − (p− 1)|x|)

)(
γ + (1− γ)(|x|+ |y|)

)p−1
.

(2.14)

Finally, if |x|+ |y| > b, then

(2.15) Up,γ(x, y) =
p2

4

[(
(1− γ)|y| − 1− γ +

2
p

)2

− (1− γ)2|x|2 +
p− 2
p3

]
.

Lemma 2.5. For all x, y ∈ H we have

(2.16) Up,γ(x, y) ≥ Vp,γ(x, y).

The proofs of these two statements are quite involved, so for the sake of clarity
let us postpone them to Section 4 and proceed with the estimates of Theorem 2.1.
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Proof of (2.2). We may assume that E|Xt|p < ∞, since otherwise the estimate is
obvious. Thus the martingale (Xs)s≤t is bounded in Lp and hence, by (1.6), so is
(Ys)s≤t. Furthermore, again by (1.6), we have E|Yt|2 ≤ E|Xt|2, which implies

(2.17) ERp,γ(Xt, Yt) ≤
1
4

γppp−1

(p− 2)p−1
.

Next, by Lemma 2.3 and Fubini’s theorem,

(2.18) E
∫ ∞

0

k(r)u∞(Xt/r, Yt/r)dr ≤
∫ ∞

0

k(r)Eu∞(Xt/r, Yt/r)dr ≤ 0,

because Y/r is differentially subordinate to X/r for any r > 0. To see that Fubini’s
theorem is applicable, note that (2.4) gives the existence of a constant A depending
only on p and γ such that∣∣∣∣∫ ∞

0

k(r)u∞(x/r, y/r)dr
∣∣∣∣ ≤ A(|x|2 + |y|2 + 1)

for all x, y. Therefore, since Xt, Yt ∈ Lp, we see that (2.18) holds true. Adding
this bound to (2.17) gives

EUp,γ(Xt, Yt) ≤
1
4

γppp−1

(p− 2)p−1
,

and the use of the majorization from Lemma 2.5 yields the claim. �

Proof of (1.8). Of course, we may assume that ||X||p 6= 0. First we use a well-
known stopping time argument to strengthen (2.2) to a maximal weak-type bound

(2.19) P(sup
s
|Ys| ≥ 1) ≤ pp−1(1− γ)p

2
||X||pp +

1
4

γppp−1

(p− 2)p−1
.

To do this, fix ε > 0 and let τ = inf{t : |Yt| ≥ 1− ε}. We have

{sup
s
|Ys| ≥ 1} ⊆

{
|Yt| ≥ 1− ε for some t

}
=
⋃
t≥0

{|Yτ∧t| ≥ 1− ε}.

The events {|Yτ∧t| ≥ 1− ε} are non-decreasing. In consequence, applying (2.2) to
a new pair (Xτ∧t/(1− ε))t≥0, (Yτ∧t/(1− ε))t≥0 (for which the differential subordi-
nation is still valid), we obtain

P(sup
s
|Ys| ≥ 1) ≤ lim

t→∞
P(|Yτ∧t| ≥ 1− ε)

≤ lim sup
t→∞

pp−1(1− γ)p

2(1− ε)p
E|Xτ∧t|p +

1
4

γppp−1

(p− 2)p−1

≤ pp−1(1− γ)p

2(1− ε)p
||X||pp +

1
4

γppp−1

(p− 2)p−1
.

Since ε was arbitrary, (2.19) follows. Next, assume that ||X||p ≤ 1/2 and put

γ =
(

1 + (p− 2)−1(2||X||pp)−1/(p−1)
)−1

.

Then γ ≤ 1− 2/p and

1− γ =
(

1 + (p− 2)(2||X||pp)1/(p−1)
)−1

.
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Plugging this into (2.19) yields

P(sup
s
|Ys| ≥ 1) ≤

pp−1||X||pp
2
(
1 + (p− 2)(2||X||pp)1/(p−1)

)p−1

=
pp−1||X||p−qp

2
(
1 + (p− 2)(2||X||pp)1/(p−1)

)p−1 · ||X||
q
p.

(2.20)

To analyze the factor in front of ||X||qp, we define the function G : (0,∞)→ R by

G(t) =
pp−1t1−q/p

2
(
1 + (p− 2)(2t)1/(p−1)

)p−1 .

A straightforward analysis shows that the maximum of G is equal to Cqp,q. Thus,

(2.21)
(

P(sup
s
|Ys| ≥ 1)

)1/q

≤ G(||X||pp)1/q||X||p ≤ Cp,q||X||p.

We have proved this under the assumption ||X||p ≤ 1/2, but this is valid for all X.
Indeed, suppose that ||X||p > 1/2 and use (1.7) to get

P(sup
s
|Ys| ≥ 1) ≤ ||X||22 ≤ ||X||2p =

[
C−qp,q ||X||2−qp

]
· Cqp,q||X||qp.

However, the expression in the square brackets is smaller than

C−qp,q2q−2 =

[
2
q

(
p− 2
p− q

)(p−q)/q
]q(p−1)/p

and since the function x 7→ (1 + 1/x)x is increasing on (0,∞), we have

2
q

(
p− 2
p− q

)(p−q)/q

=
2
q

(
1 +

q − 2
p− q

)(p−q)/q

<
2
q
e1−2/q < 1.

Hence (2.21) holds, and it yields (1.8) by standard homogenization. �

3. Sharpness

In this section we shall prove that Cp,q is optimal in (1.9) and that the constant
γppp−1/(4(p− 2)p−1) is the best in (2.3). Let us first consider the trivial cases. It
is clear that for p < q the estimate (1.9) does not hold with any finite constant.
Otherwise, by interpolation, we would have∣∣∣∣∣

∣∣∣∣∣
n∑
k=0

εkakhk

∣∣∣∣∣
∣∣∣∣∣
(p+q)/2

≤ c

∣∣∣∣∣
∣∣∣∣∣
n∑
k=0

akhk

∣∣∣∣∣
∣∣∣∣∣
p

with some absolute c < ∞, which is impossible even for ε0 = ε1 = ε2 = . . . = 1.
Next, it is obvious that the choice Cp,q = 1 is optimal for q ≤ 2 ≤ p, simply by
taking a0 = 1, a1 = a2 = . . . = 0 and ε0 = ε1 = ε2 = . . . = 1. Thus we are left with
the cases 1 ≤ q ≤ p < 2 and 2 < q ≤ p <∞, and these will be studied separately.
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3.1. Sharpness of (1.9) for 1 ≤ q ≤ p < 2. . We shall prove that for any ε > 0
there are sequences (εk)k≥0, (ak)k≥0 and a nonnegative integer n such that

(3.1)

∣∣∣∣∣
{
r :

∣∣∣∣∣
n∑
k=0

εkakhk(r)

∣∣∣∣∣ ≥ 1

}∣∣∣∣∣ = 1 and

∣∣∣∣∣
∣∣∣∣∣
n∑
k=0

akhk

∣∣∣∣∣
∣∣∣∣∣
p

p

≤ Γ(p+ 1)
2

+ ε.

This will be accomplished by studying a corresponding boundary value problem
given by (3.3) below; see Section 11 in [3] or Section 5 in [4] for related reasoning
in the martingale setting.

For any (x, y) ∈ R2, let M(x, y) denote the class which consists of all functions
of the form ϕ = x +

∑n
k=1 akhk for some n and real a1, a2, . . . , an, which satisfy

the following condition: there is a sequence (εk)nk=1 of signs such that

(3.2)

∣∣∣∣∣y +
n∑
k=1

εkakhk(r)

∣∣∣∣∣ ≥ 1 for all r ∈ [0, 1].

Of course, the classM(x, y) is nonempty for each (x, y) ∈ R2. Consider the function
Wp : R× R→ R given by

(3.3) Wp(x, y) = inf
{
||ϕ||pp : ϕ ∈M(x, y)

}
.

Lemma 3.1. The function Wp has the following properties.
(P1) If |y| ≥ 1, then Wp(x, y) = |x|p for all x.
(P2) The function Wp is convex along the lines of slope ±1.

Proof. To show (P1), apply Jensen’s inequality to obtain ||ϕ||pp ≥ |x|p for any
ϕ ∈ M(x, y). This gives Wp(x, y) ≥ |x|p and the reverse bound follows from the
fact that ϕ ≡ x belongs to M(x, y). The property (P2) is a consequence of the
so-called “splicing” argument (see e.g. page 77 in Burkholder [4]). To be more
precise, fix a line L of slope 1, a point (x, y) lying on it and a positive number d.
Pick two functions ϕ± ∈M(x±d, y±d) and splice them together using the formula

(3.4) ϕ(r) =

{
ϕ−(2r) if r < 1/2,
ϕ+(2r) if r ≥ 1/2.

It is evident from the structure of the Haar system that the splice ϕ is given by
the finite Haar series x− dh1 +

∑n
k=2 akhk and each number ak coincides with an

appropriate coefficient of ϕ− or ϕ+, depending on whether the support of hk is
contained in the left or the right half of the interval [0, 1]. In addition, it is clear
that (3.2) is satisfied and hence ϕ ∈M(x, y). Consequently, we have

Wp(x, y) ≤ ||ϕ||pp =
1
2

∣∣∣∣ϕ−∣∣∣∣p
p

+
1
2

∣∣∣∣ϕ+
∣∣∣∣p
p
,

and taking infimum over all ϕ−, ϕ+ yields

Wp(x, y) ≤ (Wp(x− d, y − d) +Wp(x+ d, y + d))/2.

Since x, y, and d were arbitrary, Wp is midpoint convex along L. Analogous argu-
ments lead to the midpoint convexity of Wp along the lines of slope −1. However,
it is not difficult to see that Wp is locally bounded from above (for example, use
(P1) and the midpoint convexity just established). This proves (P2). �
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Using the above lemma we shall show that Wp(1/2, 1/2) ≤ Γ(p + 1)/2, thus
proving (3.1) (with a0 = 1/2 and ε0 = 1). To do this, observe that by (P2) and
then by (P1),

(3.5) Wp(1/2, 1/2) ≤ 1
2
Wp(0, 1) +

1
2
Wp(1, 0) =

1
2
Wp(1, 0).

Next, fix large integers K, N and put δ = K/(2N). For any n = 0, 1, 2, . . . we
have, by (P2),

Wp(1 + 2nδ, 0) ≤ δ

1 + δ
Wp(2nδ, 1) +

1
1 + δ

Wp(1 + 2nδ + δ,−δ)

≤ δ

1 + δ
Wp(2nδ, 1) +

δ

1 + δ
Wp(2nδ + 2δ,−1)

+
1− δ
1 + δ

Wp(1 + 2nδ + 2δ, 0).

(3.6)

However, Wp(2nδ, 1) = (2nδ)p ≤ ((2n+ 2)δ)p = Wp((2n+ 2)δ,−1) in view of (P1).
Consequently, multiplying (3.6) throughout by ((1− δ)/(1 + δ))n gives(

1− δ
1 + δ

)n
Wp(1 + 2nδ, 0)

≤ 2δ
1 + δ

(
1− δ
1 + δ

)n
((2n+ 2)δ)p +

(
1− δ
1 + δ

)n+1

Wp(1 + 2(n+ 1)δ, 0).

Let us write these estimates for n = 0, 1, 2, . . . , N − 1 and sum them. We obtain

Wp(1, 0) ≤ 2δ
1 + δ

N−1∑
n=0

(
1− δ
1 + δ

)n
((2n+ 2)δ)p +

(
1− δ
1 + δ

)N
Wp(1 + 2Nδ, 0).

Finally, recall that δ = K/(2N) and note that by (P1) and (P2),

Wp(1 + 2Nδ, 0) ≤ (Wp(2Nδ,−1) +Wp(2Nδ + 2, 1))/2 = (Kp + (K + 2)p)/2.

Thus, if we keep K fixed and take N sufficiently large, then the upper bound for
Wp(1, 0) we have just derived can be made arbitrarily close to∫ K

0

e−ttpdt+ e−K(Kp + (K + 2)p).

Since we put no restrictions on K, we get Wp(1, 0) ≤ Γ(p+ 1) and the use of (3.5)
completes the proof.

3.2. The case 2 < q ≤ p < ∞. Here the reasoning is more involved. Previously,
the sequences (ak)nk=0, (εk)nk=0 for which both sides of (1.9) were almost equal,
satisfied the bound |

∑n
k=0 εkakhk| ≥ 1: see (3.1). Here this will be no longer true

and we need to control both the size of
∑n
k=0 akhk and the measure of the set

{r ∈ [0, 1] : |
∑n
k=0 εkakhk(r)| ≥ 1}. This will slightly complicate the objects which

were introduced in the previous subsection.
We start with an appropriate extension of the class M which this time will

depend on three parameters. Namely, for any (x, y) ∈ R2 and t ∈ [0, 1], let
M(x, y, t) consist of all functions of the form ϕ = x +

∑n
k=1 akhk for some n
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and real a1, a2, . . . , an, which satisfy the following condition: there is a sequence
(εk)nk=1 of signs such that

(3.7)

∣∣∣∣∣
{
r ∈ [0, 1] :

∣∣∣∣∣y +
n∑
k=1

εkakhk(r)

∣∣∣∣∣ ≥ 1

}∣∣∣∣∣ ≥ t.
Observe that the class M(x, y) studied previously coincides with M(x, y, 1) in the
new notation. Next, we introduce the function Wp : R× R× [0, 1]→ R by

Wp(x, y, t) = inf
{
||ϕ||pp : ϕ ∈M(x, y, t)

}
.

Let us state the analogue of Lemma 3.1.

Lemma 3.2. The function Wp has the following properties.
(P1’) If |y| ≥ 1 or t = 0, then Wp(x, y, t) = |x|p.
(P2’) For any x, y ∈ R, v ∈ R and ε ∈ {−1, 1}, the function G = Gx,y,v, given

on [0, 1] by the formula G(t) = Wp(x+ tv, y + tεv, t), is convex.

Proof. To establish (P1’), we use Jensen’s inequality to get that Wp(x, y, t) ≥ |x|p
and obtain the reverse bound by noting that ϕ ≡ x belongs to M(x, y, t) when
|y| ≥ 1 or t = 0. To show (P2’), we apply the splicing argument to prove that Gx,y,v
is midpoint convex and then deduce its true convexity using the local boundedness
of Wp (which is obvious). The proof goes along the same lines, we only need to
make the following simple observation: if we splice ϕ± ∈M(x± dv, y ± εdv, t± d)
according to (3.4), then the coefficients a1, a2, . . . , an of the function ϕ we obtain
satisfy (3.7) for an appropriate sequence (εk)nk=1 of signs. �

Recall the parameters a and b defined in (2.11). We shall need the following
further properties of Wp.

Lemma 3.3. (i) If t ≤ 1/2, then

(3.8) Wp(a/2, a/2, t) ≤
1
2
Wp(0, a, 2t) +

1
2

(
γ

(1− γ)(p− 2)

)p
.

(ii) We have

(3.9) Wp(0, b, 1/2) ≤ (p(1− γ))−p.

(iii) Assume that γ ∈ (0, 1− 2/p), δ ∈ (0, (p− 1)−1), y > 0 and put

λp,δ =
1− (p− 1)δ
1 + (p− 1)δ

.

Then for any t ∈ [0, λp,q],

Wp(0, y, t) ≤ λp,δWp

(
0, y + 2

(
y +

γ

1− γ

)
δ, tλ−1

p,δ

)
+(1− λp,δ)

[
γ + (1− γ)y

(p− 1)(1− γ)

]p
.

We postpone the proof of this lemma to Section 4 and continue with the sharpness
of (1.9) and (2.3).

Lemma 3.4. For any γ ∈ (0, 1− 2/p) we have

Wp

(
a/2, a/2,

1
4

(
pγ

p− 2

)p−1
)
≤ 1

2

(
γ

(1− γ)(p− 2)

)p−1

.(3.10)
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Proof. If we set F (s, t) = Wp(0, s− γ/(1− γ), t), then the inequality from (iii) can
be rewritten in a more convenient form

F (s, t) ≤ λp,δF (s(1 + 2δ), tλ−1
p,δ) + (1− λp,δ)

(
s

p− 1

)p
,

where s = y + γ/(1− γ). Hence, by induction, we have

F (s, t) ≤ λnp,δF (s(1 + 2δ)n, tλ−np,δ ) + (1− λp,δ)
(

s

p− 1

)p [λp,δ(1 + 2δ)p]n − 1
λp,δ(1 + 2δ)p − 1

(3.11)

for all s > γ/(1 − γ), δ ∈ (0, (p − 1)−1), any positive integer n and any t ≤ λnp,δ.
Fix a large integer n and let s, δ, t be given by

s = a+
γ

1− γ
=

(p− 1)γ
(p− 2)(1− γ)

, (1 + 2δ)n =
b+ γ/(1− γ)
a+ γ/(1− γ)

=
p− 2
pγ

and t = λnp,δ/2. Note that if n is sufficiently large, then δ < (p − 1)−1, so we may
insert these parameters into (3.11) and let n go to ∞. We have

lim
n→∞

λnp,δ = lim
n→∞

(
1− 2(p− 1)δ

1 + (p− 1)δ

)n
=
(

pγ

p− 2

)p−1

,

lim
n→∞

1− λp,δ
λp,δ(1 + 2δ)p − 1

= lim
δ→0

2(p− 1)δ
(1− (p− 1)δ)(1 + 2δ)p − 1− (p− 1)δ

= p− 1

and, by (P2’), the function Wp(0, a, ·) : (0, 1)→ R is continuous. Therefore, in the
limit, (3.11) becomes

Wp

(
0, a,

1
2

(
pγ

p− 2

)p−1
)

≤
(

pγ

p− 2

)p−1

Wp

(
0, b,

1
2

)
+ (p− 1)

(
γ

(1− γ)(p− 2)

)p(
p− 2
pγ
− 1
)

≤
(

γ

(p− 2)

)p−1

(1− γ)−p
(

1− p− 1
p− 2

γ

)
,

where in the latter passage we have exploited (3.9). Plugging this estimate into
(3.8) gives (3.10). �

Now we can easily show the sharpness of (1.9) and (2.3). Let us start with the
second estimate. Fix ε > 0 and γ ∈ (0, 1− 2/p). Then, by (3.10) and the definition
of Wp, there are finite sequences (ak)nk=0 of real numbers and (εk)nk=0 of signs such
that a0 = a/2, ε0 = 1,

α :=

∣∣∣∣∣
∣∣∣∣∣
n∑
k=0

akhk

∣∣∣∣∣
∣∣∣∣∣
p

p

≤ 1
2

(
γ

(1− γ)(p− 2)

)p−1

+ ε

and

β :=

∣∣∣∣∣
{
r ∈ [0, 1] :

∣∣∣∣∣
n∑
k=0

εkakhk(r)

∣∣∣∣∣ ≥ 1

}∣∣∣∣∣ ≥ 1
4

(
pγ

p− 2

)p−1

.

Therefore,

β − pp−1(1− γ)p

2
α ≥ 1

4
γppp−1

(p− 2)p−1
− pp−1(1− γ)p

2
ε
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and hence (2.3) is sharp, since ε was arbitrary. The case γ ∈ {0, 1 − 2/p} follows
easily by passing to the limit. To deal with (1.9), pick γ = 1−q/p and observe that

β

αq/p
≥ 1

4

(
p− q
p− 2

)p−1

·

[
1
2

(
p− q
q(p− 2)

)p−1

+ ε

]−q/p
.

However, the right-hand side converges to Cqp,q when ε → 0. This completes the
proof.

4. Proofs of technical lemmas

4.1. Proof of Lemma 2.4. It is easy to show the formula for Up,γ(x, y) when
|x|+ |y| < a: then for any r ∈ [a, b] we have |x/r|+ |y/r| < 1 and hence the integral
in (2.12) vanishes. Now, suppose that a ≤ |x|+ |y| ≤ b. Rewrite the integral from
(2.12) in the form I1 + I2 + I3, where

I1 = (|y|2 − |x|2)
∫ |x|+|y|
a

(γ + (1− γ)r)p−3dr = (|y|2 − |x|2)(f1(|x|+ |y|)− f1(a)),

I2 = −2|y|
∫ |x|+|y|
a

(γ + (1− γ)r)p−3rdr = −2|y|(f2(|x|+ |y|)− f2(a)),

I3 =
∫ |x|+|y|
a

(γ + (1− γ)r)p−3r2dr = f3(|x|+ |y|)− f3(a).

Here, using integration by parts,

f1(s) =
(γ + (1− γ)s)p−2

(p− 2)(1− γ)
,

f2(s) =
(γ + (1− γ)s)p−2s

(p− 2)(1− γ)
− (γ + (1− γ)s)p−1

(p− 1)(p− 2)(1− γ)2
,

f3(s) =
(γ + (1− γ)s)p−2s2

(p− 2)(1− γ)
− (γ + (1− γ)s)p−1 · 2s

(p− 1)(p− 2)(1− γ)2
+

2(γ + (1− γ)s)p

p(p− 1)(p− 2)(1− γ)3
.

After some calculations, we get that

(|y|2 − |x|2)f1(|x|+ |y|)− 2|y|f2(|x|+ |y|) + f3(|x|+ |y|)

is equal to the right hand side of (2.14) and

(|y|2 − |x|2)f1(a)− 2|y|f2(a) + f3(a) = Rp,γ(x, y).

This proves the validity of (2.14). To check the last formula, we use the above
computation and see that

Up,γ(x, y) = (|y|2 − |x|2)f1(b)− 2|y|f2(b) + f3(b)

− ((|y|2 − |x|2)f1(a)− 2|y|f2(a) + f3(a)) +Rp,γ(x, y)

= (|y|2 − |x|2)f1(b)− 2|y|f2(b) + f3(b).

It can be verified readily that the latter expression is precisely the right-hand side
of (2.15).
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4.2. Proof of Lemma 2.5. Of course, we may assume that H = R and it suffices
to prove the estimate for x, y ≥ 0. If x+ y ≥ b, the bound takes the form

p2

4

[(
(1− γ)y − 1 + γ +

2
p

)2

− (1− γ)2x2 +
p− 2
p3

]
≥ 1{y≥1} −

pp−1(1− γ)p

2
xp,

which is true for all nonnegative x, y. Indeed, the left hand side, as a function of
y, is decreasing on [0, 1− 2(p(1− γ))−1) and increasing on (1− 2(p(1− γ))−1,∞),
so it suffices to check the inequality for y = 2(p(1− γ))−1 and y = 1. In both cases
the estimate is equivalent to

(p2(1− γ)2x2)p/2 − 1 ≥ p

2
(
p2(1− γ)2x2 − 1

)
,

which follows from the mean value property. If a ≤ x + y < b, then (2.16) can be
rewritten in the form F ((1− γ)x, γ + (1− γ)y) ≥ 0, where

F (r, s) = (s− (p− 1)r)(r + s)p−1 + (p− 1)p−1rp.

However, F (r, s) ≥ 0 for all r, s ≥ 0: indeed, we have F (r, (p− 2)r) = 0 and, by a
standard analysis, F (r, ·) is decreasing on [0, (p−2)r) and increasing on ((p−2)r,∞)
for any fixed r. Finally, if x+ y < a, then the left hand side of (2.16) increases as
y increases, so it suffices to prove the bound for y = 0. This is equivalent to(

(1− γ)2x2(p− 2)2
)p/2 − (γ2)p/2 ≥ p

2
(γ2)p/2−1

(
(1− γ)2x2(p− 2)2 − γ2

)
,

which, as previously, is a consequence of the mean value property.

4.3. Proof of Lemma 3.3. The claim follows from (P1’) and (P2’). Indeed,

Wp(a/2, a/2, t)≤
1
2
Wp(0, a, 2t)+

1
2
Wp(a, 0, 0)=

1
2
Wp(0, a, 2t)+

1
2

(
γ

(1− γ)(p− 2)

)p
and

Wp(0, b, 1/2) ≤ 1
2
Wp(b− 1, 2b− 1, 0) +

1
2
Wp(1− b, 1, 1) = (1− b)p = (p(1− γ))−p.

To check the third estimate, let κ = y + γ/(1− γ) and note that

Wp(0, y, t) ≤
(p− 1)δ

(p− 1)δ + 1
Wp

(
κ

p− 1
, y − κ

p− 1
, 0
)

+
1

(p− 1)δ + 1
Wp

(
− κδ, y + κδ, ((p− 1)δ + 1)t

)
=

(p− 1)δ
(p− 1)δ + 1

·
(

κ

p− 1

)p
+

1
(p− 1)δ + 1

Wp

(
− κδ, y + κδ, ((p− 1)δ + 1)t

)
.
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Similarly,

Wp

(
− κδ, y + κδ, ((p− 1)δ + 1)t

)
≤ (p− 1)δ ·Wp

(
− κ

p− 1
, y − κ

p− 1
+ 2κδ, 0

)
+ (1− (p− 1)δ) ·Wp

(
0, y + 2κδ, tλ−1

p,δ

)
= (p− 1)δ

(
κ

p− 1

)p
+ (1− (p− 1)δ)Wp

(
0, y + 2κδ, tλ−1

p,δ

)
.

Combining these two estimates gives the desired bound.

References

[1] D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494–1504.

[2] D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale
difference sequences are unconditional, Ann. Probab. 9 (1981), 997–1011.

[3] D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms,

Ann. Probab. 12 (1984), 647–702.
[4] D. L. Burkholder, Martingales and Fourier analysis in Banach spaces, Probability and anal-

ysis (Varrenna, 1985), Lecture Notes in Math. 1206, Springer, Berlin (1986), 61–108.

[5] D. L. Burkholder, Explorations in martingale theory and its applications, Ecole d’Eté de
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[8] B. Maurey, Systéme de Haar, Seminaire Maurey-Schwartz (1974–1975), École Polytechnique,
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