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Abstract. For any 1 ≤ p < ∞, we determine the optimal constant Cp such
that the following holds. If (hk)k≥0 is the Haar system, then for any vectors

ak from a separable Hilbert space H and θk ∈ {0, 1}, k = 0, 1, 2, . . ., we have∣∣∣∣∣
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This is generalized to the weak-type inequality

||g||p,∞ ≤ Cp||f ||p
where f is an H-valued martingale and g is its transform by a predictable

sequence taking values in [0, 1]. We extend this further to the estimate

||Y ||p,∞ ≤ Cp||X||p,
valid for any two H-valued continuous-time martingales X, Y , such that

([Y,X − Y ]t) is nondecreasing and nonnegative as a function of t.

1. Introduction

Let 1 < p <∞ and let (hk)k≥0 be the Haar system in Lp. In his classical result,
Marcinkiewicz [9] proved that there is a universal finite constant cp such that
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for any n and any ak ∈ R, εk ∈ {−1, 1}, k = 0, 1, 2, . . ., n. This result was extended
by Burkholder [1] to the martingale setting. Let (Ω,F ,P) be a probability space,
filtered by (Fk)k≥0, a nondecreasing family of sub-σ-fields of F . Let f = (fk)k≥0

be a real-valued martingale with the difference sequence (dfk)k≥0 given by df0 = f0

and dfk = fk − fk−1 for k ≥ 1. Let g be a transform of f by a real predictable
sequence v = (vk)k≥0 bounded in absolute value by 1: that is, dgk = vkdfk for all
k ≥ 0 and by predictability we mean that each term vk is measurable with respect
to F(k−1)∨0. Then (cf. [1]) for 1 < p <∞ there is an absolute constant c′p for which

(1.2) ||g||p ≤ c′p||f ||p.
Here we have used the notation ||f ||p = supn ||fn||p. Let cp(1.1), c′p(1.2) denote the
optimal constants in (1.1) and (1.2), respectively. The Haar system is a martingale
difference sequence with respect to its natural filtration (on the probability space
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being the Lebesgue’s unit interval) and hence so is (akhk)k≥0, for given fixed real
numbers a0, a1, a2, . . .. Therefore, cp(1.1) ≤ c′p(1.2) for all 1 < p < ∞. It
follows from the results of Burkholder [2] and Maurey [10] that in fact the constants
coincide: cp(1.1) = c′p(1.2) for all 1 < p < ∞. The question about the precise
value of cp(1.1) was answered by Burkholder in [3]: cp(1.1) = p∗ − 1 (where p∗ =
max{p, p/(p−1)}) for 1 < p <∞. Furthermore, the constant does not change if we
allow the martingales and the terms ak to take values in a separable Hilbert space
H. This determines the complex unconditional basis constant of the Haar system:

sup
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 = p∗ − 1, 1 < p <∞,

where the supremum is taken over all n, all sequences ε0, ε1, ε2, . . . of signs and all
complex numbers a0, a1, a2, . . . satisfying ||

∑n
k=0 akhk||p = 1 (cf. [5]).

For p = 1 the inequalities (1.1) and (1.2) do not hold with any finite constant,
but one can establish a corresponding weak type estimate. Burkholder [3] proved
the following sharp bound, for a wider range of parameters: if 1 ≤ p ≤ 2, then

(1.3) ||g||p,∞ ≤
(

2

Γ(p+ 1)

)1/p

||f ||p,

where ||g||p,∞ = supλ>0 λ(P(supn |gn| ≥ λ))1/p. For p > 2, Suh [12] showed that

(1.4) ||g||p,∞ ≤
(
pp−1/2

)1/p ||f ||p.
Both (1.3), (1.4) remain sharp for the Haar system, even for H-valued coefficients.
In fact, all the martingale inequalities above are valid under less restrictive assump-
tion of differential subordination, and can be extended to the continuous-time set-
ting. Suppose that (Ω,F ,P) is complete and equip it with a right-continuous filtra-
tion (Ft)t≥0. Let X, Y be two adapted cadlag martingales taking values in H; with
no loss of generality we assume, from now on, that H = `2. Following [13], we say
that Y is differentially subordinate to X, if the process ([X,X]t− [Y, Y ]t)t≥0 is non-
decreasing and nonnegative as a function of t. Here [X,Y ] =

∑∞
j=0[Xj , Y j ], where

Xj , Y j stand for the j-th coordinates of X and Y , respectively, and [Xj , Y j ] is the
quadratic covariance process of Xj and Y j (see e.g. Dellacherie and Meyer [7]). If
we treat the discrete-time martingales f = (fk)∞k=0, g = (gk)∞k=0 as continuous-time
processes (by Xt = fbtc and Yt = gbtc for t ≥ 0), then the above condition reads

|dgk| ≤ |dfk| for k ≥ 0,

which is the original definition of the differential subordination due to Burkholder
[3]. Clearly, this condition is satisfied by the martingale transforms studied above.
Thus the following theorem (cf. [12], [13]) generalizes the previous inequalities
(1.2), (1.3) and (1.4). We use the notation ||X||p = supt ||Xt||p and ||X||p,∞ =

supλ>0 λ(P(supt |Xt| ≥ λ))1/p, analogous to that of the discrete-time setting.

Theorem 1.1. If Y is differentially subordinate to X, then

(1.5) ||Y ||p ≤ cp||X||p, 1 < p <∞,

||Y ||p,∞ ≤
(

2

Γ(p+ 1)

)1/p

||X||p, 1 ≤ p ≤ 2,
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||Y ||p,∞ ≤
(
pp−1

2

)1/p

||X||p, 2 ≤ p <∞

and the inequalities are sharp.

Let us now turn to the non-symmetric case, a setting we will be particularly
interested in. An alternative way of defining the unconditional basis constant is

sup
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where the supremum is taken over all n, all subsets J ⊆ {0, 1, 2, . . . , n} and all
complex numbers a0, a1, a2, . . . , an satisfying ||

∑n
k=0 akhk||p = 1 (see e.g. [8]).

This leads to another natural transformation of Haar series: to throw out some of its
terms, instead of changing their signs. In other words, it suggests to consider in (1.1)
the case when each εk takes values in {0, 1}. Under this non-symmetric assumption,
Choi [6] found the best constant c′′p in (1.1) for real coefficients a0, a1, a2, . . .. He
also showed if a martingale f is real and each vk takes values in [0, 1], then (1.2)
holds with the same constant c′′p . Since the description of the constant is quite
complicated, we do not present it here and refer the interested reader to [6].

There is a natural question about the best constants in the corresponding weak
type estimates for the Haar system and the extension of these bounds to continuous-
time martingales. We will study this problem in the general case when the coeffi-
cients a0, a1, a2, . . . as well as the processes take values in a Hilbert space H. The
role of ”non-symmetric differential subordination” is played by the condition

(1.6) ([X,Y ]t − [Y, Y ]t) is nonnegative and nondecreasing as a function of t.

This generalizes non-symmetric martingale transforms: assume that f is a mar-
tingale and g is its transform by a predictable sequence v. If we treat these as
continuous-time processes, we see that the condition (1.6) reads (vk − v2

k)df2
k ≥ 0

for all k, and hence it is satisfied if the variables vk take values in [0, 1].
We turn to the formulation of our main result. Let

Cp =

1 if 1 ≤ p ≤ 2,

1
2

[
(2c+p−1)p−1

c+1

]1/p
if p > 2,

where c = c(p) > 1 is the unique positive number satisfying

(1.7) cp−1 = 2c+ 1.

Theorem 1.2. Let X, Y be two Hilbert-space valued martingales satisfying (1.6).
Then for any 1 ≤ p <∞ we have

(1.8) ||Y ||p,∞ ≤ Cp||X||p
and the constant Cp is the best possible. It is already the best possible in the following
one-sided bound for the Haar system:

(1.9)
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for all n, ak ∈ R and θk ∈ {0, 1}, k = 0, 1, 2, . . . , n.
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A few words about the proof and the organization of the paper. Our approach
is based on Burkholder’s technique, which exploits special functions which have
certain convex-type properties. To be more precise, the inequality (1.8) reduces to
EVp(Xt, Yt) ≤ 0 for some appropriate function Vp : H×H → R and all t ≥ 0. The
key to study this inequality is to find a majorant Up of Vp such that (Up(Xt, Yt))t≥0

is an (Ft)-supermartingale satisfying Up(X0, Y0) ≤ 0. This is the way we prove
Theorem 1.2 for 1 ≤ p ≤ 2; see Section 2 below. For p > 2 our argument turns out
to be substantially different and uses an ”integration trick” developed by the author
in [11]. First we show that EU∞(Xt, Yt) ≤ 0 for some simple U∞ : H×H → R and
all t ≥ 0, and then complicate the function by integrating it against certain positive
kernel, thus obtaining the appropriate majorant; see Section 3. The final part of
the paper contains the proof of a technical fact needed in the earlier considerations.

2. The case 1 ≤ p ≤ 2

The main object in this section is the function Up : H×H → R given by

Up(x, y) =

{
py · (y − x) if |x|+ |2y − x| < 2,

p− p|x| if |x|+ |2y − x| ≥ 2.

Here and below, the dot · denotes the scalar product in H and |x| stands for the
norm of x ∈ H. Let Vp : H×H → R be defined by

Vp(x, y) = 1{|y|≥1} − |x|p.
We have the following majorization.

Lemma 2.1. For all x, y ∈ H we have

(2.1) Up(x, y) ≥ Vp(x, y).

Proof. If |x|+ |2y − x| < 2, then |y| ≤ |x/2|+ |y − x/2| < 1 and, consequently,

1{|y|≥1} − |x|p = −|x|p ≤ −p|x|
2

4
≤ p|y|(|y| − |x|) ≤ py · (y − x).

On the other hand, if |x| + |2y − x| ≥ 2, then (2.1) follows immediately from the
estimate p−ps ≥ 1−sp, valid for all s ≥ 0, by virtue of the mean-value theorem. �

Lemma 2.2. Suppose that martingales X, Y satisfy the condition (1.6). Then for
any t ≥ 0 we have

(2.2) EUp(Xt, Yt) ≤ 0.

Proof. Let U : H×H → R be given by

U(x, y) =

{
|y|2 − |x|2 if |x|+ |y| < 1,

1− 2|x| if |x|+ |y| ≥ 1.

This is Burkholder’s special function corresponding to the weak-type inequality
(1.3) for p = 1 (cf. [3]). As shown by Wang (see the proof of Theorem 3 in [13]), if
ζ = (ζt) is differentially subordinate to ξ = (ξt), then for any t ≥ 0 we have

EU(ζt, ξt) ≤ 0.

We apply this to the martingales ξ = X/2 and ζ = −X/2 + Y ; the differential
subordination follows from the identity

[X/2, X/2]t − [−X/2 + Y,−X/2 + Y ]t = [X,Y ]t − [Y, Y ]t.
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The proof is completed by noting that Up(x, y) = pU(x/2,−x/2+y) for all x, y. �

Now we turn to the proof of Theorem 1.2 in the case 1 ≤ p ≤ 2.

Proof of Theorem 1.2. Obviously, the constant Cp = 1 is the best possible in (1.9):
take a0 = θ0 = 1 and ak = θk = 0 for k ≥ 1. Therefore all we need is to establish
the estimate (1.8). Note that we may assume that X is bounded in Lp, otherwise
there is nothing to prove. By homogeneity, we will be done if we show that

(2.3) P(Y ∗ ≥ 1) ≤ ||X||pp,

where Y ∗ = supt≥0 |Yt| is the maximal function of Y . Observe that by virtue of
(2.1) and (2.2) we have

(2.4) P(|Yt| ≥ 1) ≤ E|Xt|p for t ≥ 0.

Now take ε ∈ (0, 1) and introduce the stopping time τ = inf{s ≥ 0 : |Ys| ≥ 1− ε}.
We have that

{Y ∗ ≥ 1} ⊂ {|Yt| ≥ 1− ε for some t} = {|Yτ∧t| ≥ 1− ε for some t}.

Since the family ({|Yτ∧s| ≥ 1− ε})s is nondecreasing and

{|Yτ∧t| ≥ 1− ε for some t} =
⋃
t≥0

{|Yτ∧t| ≥ 1− ε},

we get P(Y ∗ ≥ 1) ≤ limt→∞ P(Yτ∧t ≥ 1 − ε). Now it is easy to see that the pair
(Xτ∧t/(1− ε)), (Yτ∧t/(1− ε)) satisfies (1.6). Applying (2.4) to this pair gives

lim
t→∞

P(Yτ∧t ≥ 1− ε) ≤ (1− ε)−pE|Xτ∧t|p ≤ (1− ε)−p||X||pp.

Thus (2.3) follows, since ε was arbitrary. �

3. The case p > 2

This is more involved. Define an auxiliary function U∞ : H×H → R by

U∞(x, y) =

{
0 if |x|+ |2y − x| < 1,

(|2y − x| − 1)2 − |x|2 if |x|+ |2y − x| ≥ 1.

Later on, we will need the following properties of this function.

Lemma 3.1. (i) There is an absolute constant A > 0 such that for all x, y ∈ H,

(3.1) U∞(x, y) ≤ A(|x|2 + |y|2 + 1).

(ii) For all x, y ∈ H we have

(3.2) U∞(x, y) ≤ (|2y − x| − 1)2 − |x|2.

(iii) If x, y, h, k ∈ H satisfy

(3.3) |x|+ |2y − x| ≤ 1, |x+ h|+ |2(y + k)− (x+ h)| ≥ 1

and

(3.4) |2k − h| ≤ |h|,

then U∞(x+ h, y + k) ≤ 0.
(iv) If x, y ∈ H satisfy x · y − |y|2 ≥ 0, then U∞(x, y) ≤ 0.
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Proof. (i), (ii) Evident from the very definition of U∞.
(iii) The desired inequality can be written in the form

−|x+ h| ≤ |2(y + k)− (x+ h)| − 1 ≤ |x+ h|.

The left inequality is precisely the second condition in (3.3). To get the right one,
note that by a triangle inequality, (3.3) and (3.4),

|2(y+k)−(x+h)|−1 ≤ |2y−x|+|2k−h|−1 ≤ |2y−x|−1+|h| ≤ −|x|+|h| ≤ |x+h|.

(iv) The estimate is trivial if |x| + |2y − x| ≤ 1. If the reverse holds, note that
x · y − |y|2 ≥ 0 is equivalent to |x|2 ≥ |2y − x|2 and hence

U∞(x, y) = (|2y − x|+ |x| − 1)(|2y − x| − |x| − 1) ≤ 0. �

The next result is a dual version of Lemma 2.2.

Lemma 3.2. Suppose that martingales X, Y are bounded in L2 and satisfy the
condition (1.6). Then for any t ≥ 0,

(3.5) EU∞(Xt, Yt) ≤ 0.

Proof. First note that by (3.1), the random variable U∞(Xt, Yt) is integrable. Let
τ = inf{s ≥ 0 : |Xs|+ |2Ys−Xs| > 1}. We will show the following three statements:

(3.6) EU∞(Xt, Yt)1{|X0|+|2Y0−X0|>1} ≤ EU∞(X0, Y0)1{|X0|+|2Y0−X0|>1},

(3.7) U∞(Xt, Yt) = U∞(X0, Y0) = 0 on {|X0|+ |2Y0 −X0| ≤ 1, τ > t}

and

(3.8) EU∞(Xt, Yt)1{|X0|+|2Y0−X0|≤1, τ≤t} ≤ EU∞(X0, Y0)1{|X0|+|2Y0−X0|≤1, τ≤t}.

These three facts yield the claim: indeed, they give EU(Xt, Yt) ≤ EU(X0, Y0) and
it suffices to note that U(X0, Y0) ≤ 0, in view of (1.6) and part (iv) of Lemma 3.1.

To prove (3.6), use (3.2) to get

E
[
U∞(Xt, Yt)|F0

]
≤ 4E

[
Yt · (Yt −Xt)|F0

]
− 2E(|2Yt −Xt||F0) + 1.

Clearly, E(|2Yt −Xt||F0) ≥ |2Y0 −X0|. Moreover, by (1.6), we have that

E
[
Yt(Yt−Xt)−Y0(Y0−X0)|F0

]
= −E

[
([X,Y ]t− [Y, Y ]t)− ([X,Y ]0− [Y, Y ]0)|F0

]
is nonpositive. Consequently, on the set {|X0|+ |2Y0 −X0| > 1},

E
[
U∞(Xt, Yt)|F0

]
≤ 4Y0 · (Y0 −X0)− 2|2Y0 −X0|+ 1 = U∞(X0, Y0)

and (3.6) follows. The condition (3.7) is obvious, by the definition of U∞ and τ .
To get (3.8), we proceed as previously: by (3.2) and (1.6) we have, on the set
{|X0|+ |2Y0 −X0| ≤ 1, τ ≤ t},

E
[
U∞(Xt, Yt)|Fτ

]
= 4E

[
Yt · (Yt −Xt)|Fτ

]
− 2E(|2Yt −Xt||Fτ ) + 1

≤ 4Yτ · (Yτ −Xτ )− 2|2Yτ −Xτ |+ 1

= U∞(Xτ , Yτ ).

Now use part (iii) of Lemma 3.1 with x = Xτ−, y = Yτ−, h = ∆Xτ and k = ∆Yτ :
the condition (3.3) follows from the definition of τ , while (3.4) is a consequence of
(1.6). Thus, U∞(Xτ , Yτ ) ≤ 0 = U∞(X0, Y0) and the proof is complete. �
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We are ready to introduce the special function Up : H×H → R, corresponding
to the weak type estimate for p > 2. Recall c = c(p) given by (1.7) and let

(3.9) b = b(p) =
2(p− 1)

2c+ p− 1
.

Set

(3.10) Up(x, y) =

∫ b

0

tp−1U∞(x/t, y/t)dt.

Some lengthy, but straightforward calculations give that

Up(x, y) =
2

p(p− 1)(p− 2)
(|x|+ |2y − x|)p−1

(
|2y − x| − (p− 1)|x|

)
if |x|+ |2y − x| ≤ b, and

Up(x, y) = bp−2

[
|2y − x|2 − |x|2

p− 2
− 2b|2y − x|

p− 1
+
b2

p

]
for |x|+ |2y − x| > b. We will also need the function Vp : H×H → R, given by

Vp(x, y) = αp(C
−p
p 1{|y|≥1} − |x|p),

where

(3.11) αp =
2(p− 1)p−2

p(p− 2)
.

We have the following majorization.

Lemma 3.3. For all x, y ∈ H, we have

(3.12) Up(x, y) ≥ Vp(x, y).

The justification of this estimate is quite involved, so for the sake of clarity we
postpone it to Section 4 and proceed with the proof of Theorem 1.2.

Proof of (1.8). We may assume that X is bounded in Lp. Then so is Y : since
−X/2 +Y is differentially subordinate to X/2 (see the proof of Lemma 2.2 above),
the inequality (1.5) implies

||Y ||p ≤ || −X/2 + Y ||p + ||X/2||p ≤ p∗||X/2||p <∞.

As in the case 1 ≤ p ≤ 2, we reduce the desired estimate to

P(|Yt| ≥ 1) ≤ Cpp |Xt|p, t ≥ 0.

By (3.12), this will be done if we show that EUp(Xt, Yt) ≤ 0. This follows immedi-
ately from (3.5), the definition of Up and Fubini’s theorem. To see that the latter
is applicable, note that by (3.1),

E|Up(Xt, Yt)| ≤ AE
[
bp−2(|Xt|2 + |Yt|2)

p− 2
+
bp

p

]
<∞,

since X, Y are bounded in Lp. �

We turn to the sharpness of (1.9), which is the most technical element of the pa-
per. We will need the following fact, which relates the validity of a given inequality
for the Haar system to a certain boundary value problem (for similar results, see
e.g. Section 11 in [3] or Section 7 in [4]).
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Lemma 3.4. Let V : R × R → R be a given Borel function, locally bounded from
below. Assume that

(3.13)

∫ 1

0

V

(
n∑
k=0

akhk(r),

n∑
k=0

akθkhk(r)

)
dr ≤ 0

for all n and all ak ∈ R, θk ∈ {0, 1}, k = 0, 1, 2, . . . , n. Then there is a function
W : R× R→ R satisfying the following properties.

(a) We have W (x, x) ≤ 0 for any x ∈ R.
(b) For all x, y ∈ R we have W (x, y) ≥ V (x, y).
(c) The function W is concave along any line of slope 0 or 1.

Proof. Define W : R× R→ (−∞,∞] by

(3.14) W (x, y) = sup

{∫ 1

0

V

(
x+

n∑
k=1

akhk(r), y +

n∑
k=1

akθkhk(r)

)
dr

}
where the supremum is taken over all n and all ak ∈ R, θk ∈ {0, 1}, k = 1, 2, . . . , n.
Then the property (a) is a consequence of (3.13), while (b) follows from the def-
inition of W by considering the sequence a1 = a2 = . . . = 0. To get (c), we use
Burkholder’s ”splicing” argument: take any line L of slope 1 and any point (x, y)
lying on it. Take d > 0, an integer N , sequences a+

1 , a
+
2 , . . . , a

+
N , a−1 , a−2 , . . ., a−N

of real numbers and θ+
1 , θ+

2 , . . ., θ+
N , θ−1 , θ−2 , . . ., θ−N with θ±k ∈ {0, 1}. Let

Z±x,y(r) =

(
x± d+

N∑
k=1

a±k hk(r), y ± d+

N∑
k=1

a±k θ
±
k hk(r)

)
.

and splice the functions Z+ and Z− are together in the following way:

Zx,y(r) =

{
Z−x,y(2r) if 0 ≤ r ≤ 1/2,

Z+
x,y(2r − 1) if 1/2 < r ≤ 1.

Then it is easily seen that

Zx,y(r) =

(
x+

2N∑
k=1

akhk(r), y +

2N∑
k=1

akθkhk(r)

)
,

where for any 1 ≤ k ≤ 2N , there is ` ≤ N such that (ak, θk) = (a′`, θ
′
`) or (ak, θk) =

(a′′` , θ
′′
` ). Thus

W (x, y) ≥
∫ 1

0

V (Zx,y(r))dr =

∫ 1/2

0

V (Z−x,y(2r))dr +

∫ 1

1/2

V (Z+
x,y(2r − 1))dr

and taking supremum over all N , a±k and θ±k as above yields

W (x, y) ≥ (W (x− d, y − d) +W (x+ d, y + d))/2.

Since x, y, and d were arbitrary, W is midpoint concave along L. Analogous ar-
guments lead to the midpoint concavity along the lines of slope 0. This yields the
finiteness of W : indeed, for any x, y ∈ R we have, by (a) and (b),

0 ≥W (y, y) ≥ 1

2
W (x, y) +

1

2
W (2y − x, y) ≥ 1

2
W (x, y) +

1

2
V (2y − x, y),

so W (x, y) ≤ −V (2y−x, y). Finally, W is locally bounded from below, in virtue of
(b) and the fact that V also has this property. This, combined with the midpoint
concavity of W along the lines of slope 0 or 1, yields (c). �
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We are ready to study (1.9). Let p > 2, 0 < γp < Cp and assume that

(3.15)

∣∣∣∣∣
{
r ∈ [0, 1] :

n∑
k=0

akθkhk(r) ≥ 1

}∣∣∣∣∣ ≤ γpp
∫ 1

0

∣∣∣∣∣
n∑
k=0

akhk(r)

∣∣∣∣∣
p

dr,

for all n and all ak ∈ R, θk ∈ {0, 1}, k = 0, 1, 2, . . . , n. Take βp ∈ (γp, Cp) and

V βp
p (x, y) = 1{y≥1} − βpp |x|p.

Let Wp be given by (3.14), with V = V
βp
p . For clarity, we split the remaining part

of the proof into a few steps. Recall b and c, given by (3.9) and (1.7), respectively.
Step 1. The starting point is the equation

(3.16) Wp(0, y) = 0 for sufficiently small y > 0.

To see this, note first that if y < 1, then, by (b), Wp(0, y) ≥ 0. On the other hand,
let y be a positive number satisfying βp(1 − y) ≥ γp. Take an integer n, numbers
a1, a2, . . . , an belonging to R and θ1, θ2, . . . , θn belonging to {0, 1}. We have∣∣∣∣∣

{
r ∈ [0, 1] : y +

n∑
k=1

akθkhk(r) ≥ 1

}∣∣∣∣∣− βpp
∫ 1

0

∣∣∣∣∣
n∑
k=1

akhk(r)

∣∣∣∣∣
p

dr

=

∣∣∣∣∣
{
r ∈ [0, 1] :

n∑
k=1

ak
1− y

θkhk(r) ≥ 1

}∣∣∣∣∣− βpp(1− y)p
∫ 1

0

∣∣∣∣∣
n∑
k=1

ak
1− y

hk(r)

∣∣∣∣∣
p

dr

≤

∣∣∣∣∣
{
r ∈ [0, 1] :

n∑
k=1

ak
1− y

θkhk(r) ≥ 1

}∣∣∣∣∣− γpp
∫ 1

0

∣∣∣∣∣
n∑
k=1

ak
1− y

hk(r)

∣∣∣∣∣
p

dr ≤ 0,

where the latter estimate follows from (3.15). Since n and the numbers ak and θk
were arbitrary, this gives Wp(0, y) ≤ 0 and we are done.

Step 2. Note that the points

P1 =
(
1− b/2, 1

)
, P2 =

(
0, b/2

)
, P3 =

(
− b/(p− 1), b(p− 3)/(2(p− 1))

)
lie, in this order, on a certain line of slope 1. Moreover, by (b),

Wp (P1) ≥ 1− βpp
(

1− b

2

)p
= 1− βppcp

(
b

p− 1

)p
and

Wp (P3) ≥ −βpp
(

b

p− 1

)p
.

Thus, combining this with (c),

Wp(P2) ≥ |P3 − P2|
|P3 − P1|

Wp(P1) +
|P2 − P1|
|P3 − P1|

Wp(P3)

≥ 1

c+ 1
− c

c+ 1
βpp

(
b

p− 1

)p
(1 + cp−1).

(3.17)

Step 3. Fix positive numbers y and δ. Using (c) and then (b), we get

Wp(0, y) ≥ δ(p− 1)

δ(p− 1) + 2
Wp

(
2y

p− 1
, y

)
+

2

δ(p− 1) + 2
Wp(−δy, y)

≥ − δ(p− 1)

δ(p− 1) + 2
βpp

(
2y

p− 1

)p
+

2

δ(p− 1) + 2
Wp(−δy, y).
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Similarly, we get

Wp(−δy, y) ≥ −δ(p− 1)

2(1 + δ)
βpp

(
2y(1 + δ)

p− 1

)p
+

2(1 + δ)− δ(p− 1)

2(1 + δ)
Wp(0, y(1 + δ))

and plugging this into the preceding estimate gives

(3.18) Wp(0, y) ≥ A(δ)βppy
p +B(δ)Wp(0, y(1 + δ)),

where

A(δ) = −
(

2

p− 1

)p
δ(p− 1)

δ(p− 1) + 2
(1 + (1 + δ)p−1)

and

B(δ) =
2(1 + δ)− δ(p− 1)

(1 + δ)(δ(p− 1) + 2)
.

One easily verifies that we have the following asymptotics:

(3.19) lim
δ→0

A(δ)

δ
= −2

(
2

p− 1

)p−1

,

(3.20) lim
δ→0

B(δ)(1 + δ)p−1 − 1

δ2
= 0.

By induction, (3.18) leads to

(3.21) Wp(0, y) ≥ βppypA(δ)
[B(δ)(1 + δ)p]N − 1

B(δ)(1 + δ)p − 1
+B(δ)NWp(0, y(1 + δ)N )

for any positive integer N .
Step 4. This is the final part. Take δ = N−1/2, y = b(1 + δ)−N/2, divide both

sides of (3.21) by yp−1 and let N →∞. We obtain the estimate

(3.22) 0 ≥ −bβpp
(

2

p− 1

)p−1

+

(
2

b

)p−1

Wp

(
0,
b

2

)
.

To see this, note that δ → 0, y → 0 as N → ∞ and therefore, by (3.16), the left-
hand side of (3.21), divided by yp−1, converges to 0. To deal with the right-hand
side, observe that, by (3.19) and (3.20),

lim
δ→0

A(δ)

B(δ)(1 + δ)p − 1
= lim
δ→0

A(δ)

δB(δ)(1 + δ)p−1
= −2

(
2

p− 1

)p−1

.

Furthermore, again by (3.20), we have

y
(
[B(δ)(1 + δ)p]N − 1

)
=
b

2
[B(δ)(1 + δ)p−1]1/δ

2

→ b

2

and, similarly,

B(δ)N

yp−1
=

(
2

b

)p−1

(B(δ)(1 + δ)p−1)1/δ2 →
(

2

b

)p−1

.

The above three limits yield (3.22). Combining this estimate with (3.17) gives

βpp

[
b

(
2

p− 1

)p−1

+

(
2

b

)p−1
c

c+ 1

(
b

p− 1

)p
(1 + cp−1)

]
≥
(

2

b

)p−1
1

c+ 1
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After some cancellations and manipulations, it can be written in the form

βpp ≥
(p− 1)p

bp(c+ 1)

[
p− 1 +

c

c+ 1
(1 + cp−1)

]−1

= Cpp ,

where the equality follows from (1.7). This contradicts the initial assumption βp ∈
(γp, Cp) and completes the proof.

4. Proof of Lemma 3.3

We start with a reduction step: it suffices to establish the majorization in the
real case and for x, y satisfying 0 ≤ x ≤ 2y. To see this, let us (for a moment)
write UHp , V

H
p instead of Up, Vp, to indicate the Hilbert space we are working with.

For x, y ∈ H, take x′ = |x| and y′ = |x/2| + |x/2 − y|. Then 0 ≤ x′ ≤ 2y′,
2y′ − x′ = |2y − x| and y′ ≥ |y|, so

UHp (x, y)− V Hp (x, y) ≥ UR
p (x′, y′)− V R

p (x′, y′).

This justifies the reduction. We consider the cases y ≤ b/2, y ∈ (b/2, 1) and y ≥ 1
separately in the three lemmas below.

Lemma 4.1. We have

(4.1)
2

p(p− 1)(p− 2)
(2y)p−1

(
2y − px

)
≥ −2(p− 1)p−2

p(p− 2)
xp.

This yields the majorization (3.12) for y ≤ b/2.

Proof. The estimate is clear for x = 0. If x > 0 and we divide both sides by xp,
the inequality takes the form F0(2y/x) ≥ 0, where

F0(s) :=
2

p(p− 1)(p− 2)
sp−1(s− p) +

2(p− 1)p−2

p(p− 2)

for s > 0. It suffices to note that F0 is convex and F0(p− 1) = F ′0(p− 1) = 0. �

Lemma 4.2. (i) For all s ≥ 0,

(4.2) bp−2

(
− s

p− 2
+

b2

p(p− 1)2

)
+

2(p− 1)p−2

p(p− 2)
sp/2 ≥ 0.

(ii) We have

(4.3) bp−2

[
4y2 − 4xy

p− 2
− 2b(2y − x)

p− 1
+
b2

p

]
+

2(p− 1)p−2

p(p− 2)
xp ≥ 0.

This yields the majorization (3.12) for y ∈ (b/2, 1).

Proof. (i) Denote the left-hand side of (4.2) by F1(s). It is evident that the function
F1 is convex on R. In addition, it is straightforward to check that

(4.4) F1(b2/(p− 1)2) = F ′1(b2/(p− 1)2) = 0.

The claim follows.
(ii) The partial derivative of the left-hand side of (4.3) with respect to y equals

4bp−2

p− 2

(
2y − x− b(p− 2)

p− 1

)
.

Thus it suffices to verify the estimate for 2y = x+ b(p− 2)/(p− 1). Plug this into
(4.3) to get the inequality F1(x2) ≥ 0, which has been already proved in (i). �
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Lemma 4.3. If y ≥ 1, then

(4.5) bp−2

[
4y2 − 4xy

p− 2
− 2b(2y − x)

p− 1
+
b2

p

]
− 2(p− 1)p−2

p(p− 2)

(
1

Cpp
− xp

)
≥ 0.

This yields the majorization (3.12) for y ≥ 1.

Proof. We divide the proof into three parts.
Step 1. A reduction. Denoting the left hand side of (4.5) by F2(x, y), we derive

that its partial derivative with respect to y is given by

F2y(x, y) =
4bp−2

p− 2

(
2y − x− b(p− 2)

p− 1

)
.

In consequence, it suffices to establish the estimate on the line segment

H1 =

{
(x, y) : y = 1, x ≥ 0, 2y − x− b(p− 2)

p− 1
≥ 0

}
and the halfline

H2 =

{
(x, y) : y > 1, 2y − x− b(p− 2)

p− 1
= 0

}
.

Step 2. The segment H1. It is obvious that x 7→ F2(x, 1) is convex on the interval
[0, 2− b(p− 2)/(p− 1)]. After some lengthy, but easy calculations we verify that

1− b

2
< 2− b(p− 2)

p− 1
, and F2

(
1− b

2
, 1

)
= F ′2

(
1− b

2
, 1

)
= 0,

which yields the estimate on H1.
Step 3. The halfline H2. Plugging 2y = x + b(p − 2)/(p − 1) to the estimate

transforms it into

(4.6) bp−2

(
− x2

p− 2
+

b2

p(p− 1)2

)
+

2(p− 1)p−2

p(p− 2)
xp ≥ 2(p− 1)p−2

p(p− 2)Cpp
.

The left-hand side is equal to F1(x2), where F1 was defined in the proof of Lemma
4.2. Note that we have

x ≥ 2− b(p− 2)

p− 1
≥ b

p− 1
,

the latter being equivalent to b ≤ 2, which is obvious. Thus, by the convexity
of F1 and (4.4), we get that the left-hand side of (4.6) attains its minimum at
x = 2−b(p−2)/(p−1). However, then the estimate reads F2(2−b(p−2)/(p−1)) ≥ 0,
and we have already showed this in the preceding step. The proof is complete. �
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Paris.
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