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Abstract. Let f = (fn)n≥0 and g = (gn)n≥0 be two real-Hilbert-space-valued
martingales such that (gn)n≥0 is weakly dominated by (fn)n≥0. The paper
contains the proof of the inequality

‖g‖W (Ω) ≤ 6‖f‖L∞ ,

where W is the weak-L∞ space introduced by Bennett, DeVore and Sharpley.
As an application, a related estimate for Haar shift operators is established.

1. Introduction

Let (Ω,F ,P) be a non-atomic probability space, �ltered by (Fn)n≥0, a nonde-
creasing family of sub-σ-�elds of F . Suppose that f = (fn)n≥0 and g = (gn)n≥0 are
two adapted martingales taking values in some separable Hilbert space (H, | · |).
Let (dfn)n≥0, (dgn)n≥0 denote the di�erence sequences of f and g respectively,
given by

df0 = f0, and dfn = fn − fn−1 for n ≥ 1,

and similarly for (dgn)n≥0. Following Burkholder [3, 4, 5], we say that g is di�er-
entially subordinate to f , if for any nonnegative integer n we have

|dgn| ≤ |dfn|,
with probability 1. This domination principle implies many interesting estimates
between f and g, which can be further applied in numerous problems of harmonic
analysis (see [1, 8]). Furthermore, there is a technique developed by Burkholder,
which can be used in the search of the best constants in these estimates. This
approach led to the celebrated sharp strong-type inequality

(E|gn|p)1/p ≤ max{p− 1, (p− 1)−1}(E|fn|p)1/p, n = 0, 1, 2, . . . (1.1)

for 1 < p <∞ (see [3]). In the boundary case p = 1 the above moment inequality
does not hold with any �nite constant, but we have the corresponding weak-type
bound

P(|gn| ≥ 1) ≤ 2E|fn|, n = 0, 1, 2, . . . . (1.2)

in which the constant 2 is also optimal (see [3]). A similar phenomenon occurs
in the other boundary case, for p = ∞: the strong-type estimate fails to hold,
but one can establish a suitable weak-type counterpart. To describe this estimate
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precisely, we need to de�ne the weak-L∞ space W , which was originally intro-
duced by Bennett, DeVore and Sharpley in [2]. For a given random variable h,
let h∗ : (0, 1]→ [0,∞) stand for its decreasing rearrangement, de�ned by

h∗(t) = inf{λ ≥ 0 : P(|h| > λ) ≤ t}.
Then h∗∗, the maximal function of h∗, is given by the formula

h∗∗(t) =
1

t

∫ t

0

h∗(s) ds , t ∈ (0, 1].

There is an alternative de�nition of h∗∗, namely,

h∗∗(t) = sup

{
1

P(E)

∫
E

|h| dP : E ∈ F , P(E) = t

}
.

Now we can de�ne the weak-L∞ space W by

W (Ω) =

{
h : ‖h‖W (Ω) = sup

t∈(0,1]

(h∗∗(t)− h∗(t)) <∞

}
.

The above de�nitions extend easily to the case in which (Ω,F ,P) is replaced by
an arbitrary non-atomic measure space.
There are several reasons for which the weak-L∞ class is meaningful. One of

the crucial features comes from interpolation theory. Observe that the classical
de�nition of Lp,∞ does not allow for a convenient extension for p =∞ (it is cus-
tomary to de�ne L∞,∞ = L∞) and hence there is no Marcinkiewicz interpolation
theorem between L1 and L∞ for operators which are unbounded on L∞. The
space W resolves this issue. It strictly contains L∞ and enjoys the appropriate
interpolation property: if an operator A is bounded from L1 to L1,∞ and from
L∞ to W , then it has an extension which is bounded on Lp spaces, 1 < p < ∞.
Furthermore, there are close connections between W and the space BMO. For
more detailed discussion on W and its interplay with the interpolation theory,
see [2].
Equipped with the above de�nition, we return to the martingale setup and state

the appropriate weak-L∞ bound. It was proved in [10] that if g is di�erentially
subordinate to f , then we have

‖g‖W (Ω) ≤ 2‖f‖L∞
and the constant 2 cannot be improved.
Similarly, general martingale inequalities (i.e., strong- or weak-type) can be

studied when one imposes less restrictive types of subordination on the processes.
In this paper, we will be particularly interested in the so-called weak domination.
Following Kwapie« and Woyczy«ski [7], we say that g is weakly dominated by
f , if for any nonnegative integer n and any nonnegative number a we have the
estimate

E
[
(|dgn| − a)+|Fn−1

]
≤ E

[
(|dfn| − a)+|Fn−1

]
almost surely. By standard approximation, this is equivalent to saying that for
any n and any convex increasing function φ : [0,∞) → [0,∞) with φ(|dfn|) ∈
L1, we have the inequality E

[
φ(|dgn|)|Fn−1

]
≤ E

[
φ(|dfn|)|Fn−1

]
almost surely.
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We will give two simple and natural examples in which the weak domination
holds. First, observe that if g is di�erentially subordinate to f , then we have the
pointwise bound (|dgn| − a)+ ≤ (|dfn| − a)+ and hence the weak domination is
satis�ed. The second example concerns the so-called tangency relation. Namely,
two martingales f and g are said to be tangent, if for any n = 0, 1, 2, . . . the
conditional distributions of dfn and dgn with respect to Fn−1 coincide. Obviously,
if f and g are tangent, then g is weakly dominated by f and f is weakly dominated
by g.
Inequalities for weakly dominated martingales were studied by a number of

authors. It should be emphasized here that while Burkholder's technique is still
available in this context, it does not seem to lead to sharp estimates; the best one
can hope for are just `tight' inequalities involving constants not far from optimal.
Let us formulate here the results from [9]: for any n = 0, 1, 2, . . . we have

P(|gn| ≥ 1) ≤ 2
√

2E|fn|,
and, for 1 < p <∞,

(E|gn|p)1/p ≤ 3 max{p− 1, (p− 1)−1} (E|fn|p)1/p . (1.3)

As in the case of the di�erential subordination, we can ask about the weak-type
counterpart of (1.3) for p =∞. The following statement answers this question.

Theorem 1.1. If f , g are two real-Hilbert-space-valued martingales such that g
is weakly dominated by f , then we have

‖g‖W (Ω) ≤ 6‖f‖L∞ . (1.4)

This result will be established in the next section. Section 3 contains some
applications of (1.4) to Haar shift operators, important objects in harmonic anal-
ysis.

2. Proof of Theorem 1.1

For the sake of clarity, we split the contents of this section into two parts.

2.1. Special functions and their properties. Introduce the strip

S = {(x, y) ∈ H ×H : |x| ≤ 1}.
For any λ ≥ 0, we consider the functions Vλ and Uλ given on S by the formulas

Vλ(x, y) = (|y| − λ− 6)χ{|y|>λ}

and

Uλ(x, y)

=

{
0 if 3|x|+ |y| ≤ λ+ 3,
1
6
(|y| − λ− 3)2 + 4

3
(|y| − λ− 3)2χ{|y|≥λ+3} − 3

2
|x|2 if 3|x|+ |y| > λ+ 3.

In the two lemmas below, we study certain crucial properties of Uλ and Vλ.

Lemma 2.1. For any λ ≥ 0 we have the majorization Uλ ≥ Vλ.
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Proof. We consider three cases. If |y| ≤ λ, then 3|x|+ |y| ≤ λ+ 3, so Uλ(x, y) =
Vλ(x, y) = 0. If |y| > λ and 3|x| + |y| ≤ λ + 3, then we have Uλ(x, y) = 0 and
Vλ(x, y) = |y|−λ−6 ≤ −3, so the majorization is also satis�ed. Finally, if |y| > λ
and 3|x|+ |y| > λ+ 3, then

Uλ(x, y)− Vλ(x, y) ≥ 1

6
(|y| − λ− 3)2 − 3

2
|x|2 − (|y| − λ− 6)

=
1

6
[(|y| − λ− 6)2 + 9(1− |x|2)] ≥ 0.

The proof is complete. �

The second property is a certain concavity-type condition on Uλ. To formulate
it, we need to de�ne A, B : S → H by

A(x, y) =

{
0 if 3|x|+ |y| ≤ λ+ 3,

−3x if 3|x|+ |y| > λ+ 3

and

B(x, y) =

{
0 if 3|x|+ |y| ≤ λ+ 3,
1
3
(|y| − λ− 3)(1 + 8χ{|y|>λ+3})y

′ if 3|x|+ |y| > λ+ 3,

where y′ = y/|y| stands for the normalization of the vector y. Note that outside
the curve 3|x| + |y| = λ + 3, A and B coincide with the partial derivatives Ux,
Uy. Furthermore, for (x, y) ∈ S, let φx,y : [0,∞)→ [0,∞) be given as follows: if
3|x|+ |y| ≤ λ+ 3, set

φx,y(s) =

{
0 if s ≤ λ+ 3− |y|,
3
2
(s− λ− 3 + |y|)2 if s > λ+ 3− |y|.

On the other hand, if 3|x|+ |y| > λ+ 3, we put φx,y(s) = 3
2
s2. Note that for each

(x, y) ∈ S, φx,y is a nondecreasing convex function.

Lemma 2.2. For any (x, y) ∈ S and any h, k ∈ H such that |x+h| ≤ 1 we have

Uλ(x+h, y+ k) ≤ Uλ(x, y) +A(x, y) ·h+B(x, y) · k+φx,y(|k|)−φx,y(|h|). (2.1)
(Here the dot `·' denotes the scalar product in H.)

Proof. The veri�cation of (2.1) is quite elaborate and splits naturally into several
separate parts.

Case I: 3|x|+|y| ≤ λ+3 and 3|x+h|+|y+k| ≤ λ+3. Then the desired estimate
is equivalent to φx,y(|h|) ≤ φx,y(|k|). If |h| ≤ λ + 3 − |y|, then φx,y(|h|) = 0 and
the estimate holds; if |h| > λ+ 3− |y|, then

|k| = | − y + y + k| ≥ |y| − |y + k|
≥ |y|+ 3|x+ h| − λ− 3

≥ |y|+ 3|h| − 3|x| − λ− 3

≥ |h|+ 0 + λ+ 3− |y| − 3|x| ≥ |h|,

so the estimate φx,y(|h|) ≤ φx,y(|k|) is also true.
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Case II: 3|x|+ |y| ≤ λ+ 3 and |y + k| ≥ λ+ 3. Under these assumptions, the
inequality (2.1) becomes

3

2
(|y + k| − λ− 3)2 − φx,y(|k|) ≤

3

2
|x+ h|2 − φx,y(|h|).

But |k| ≥ |y+k|− |y| > λ+3−|y|, which implies that the left-hand side above is
nonpositive; thus it is enough to show that φx,y(|h|) ≤ 3

2
|x+ h|2. This is obvious

if |h| ≤ λ+3−|y|, since then φx,y(|h|) = 0. On the other hand, if |h| > λ+3−|y|,
then we may write

φx,y(|h|) =
3

2
(|h| − λ− 3 + |y|)2

≤ 3

2
(|x+ h|+ |x| − λ− 3 + |y|)2

=
3

2
|x+ h|2 +

3

2

(
|x| − λ− 3 + |y|

)(
|x|+ 2|x+ h| − λ− 3 + |y|

)
≤ 3

2
|x+ h|2,

where the last passage is due to the inequalities |x| − λ − 3 + |y| ≤ 0 (see the
assumptions of Case II) and |x|+ 2|x+ h| − λ− 3 + |y| ≥ |h| − λ− 3 + |y| ≥ 0.

Case III: 3|x|+ |y| ≤ λ+ 3 and |y + k| < λ+ 3 < 3|x+ h|+ |y + k|. For such
parameters, the assertion takes the form

1

6
(|y + k| − λ− 3)2 − 3

2
|x+ h|2 ≤ φx,y(|k|)− φx,y(|h|). (2.2)

If |h| ≤ λ+ 3−|y|, then φx,y(|h|) = 0, so φx,y(|k|)−φx,y(|h|) ≥ 0 and it is enough
to prove that

1

6
(|y + k| − λ− 3)2 − 3

2
|x+ h|2 ≤ 0. (2.3)

However, by the assumptions of the case we have −3|x+h| < |y+k|−λ− 3 < 0,
which implies 9|x+ h|2 > (|y + k| − λ− 3)2, an estimate equivalent to (2.3). On
the other hand, |h| > λ+3−|y|, then |h| > |x| (again, apply the �rst assumption
of the case) and hence, adding one dimension to H if necessary, there exists a

vector h̃ such that |h̃| = |h| and 3|x + h̃| + |y + k| = λ + 3: indeed, we have
3|x+h|+ |y+k| > λ+ 3 and, simultaneously, 3(|x|− |h|) + |y+k| < λ+ 3, which

implies the existence of the intermediate h̃. But then |x+ h| > |x+ h̃| and (2.2)
follows from Case I.

Case IV: 3|x|+ |y| > λ+ 3. Consider the auxiliary function ξ : H → R, given
by the formula

ξ(y) =

{
−1

3
|y|(λ+ 3) + 1

6
(λ+ 3)2 − 4

3
|y|2 if |y| < λ+ 3

−3|y|(λ+ 3) + 3
2
(λ+ 3)2 if |y| ≥ λ+ 3.

It is easy to check that ξ is concave and Uλ(x, y) = ξ(y)+ 3
2
|y|2− 3

2
|x|2. Therefore,

since A(x, y), B(x, y) are the partial derivatives of Uλ at the point (x, y), the
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right-hand side of (2.1) is not smaller than

ξ(y + k) +
3

2
|y + k|2 − 3

2
|x+ h|2.

It su�ces to show that the latter expression majorizes Uλ(x+ h, y + k). If 3|x+
h|+ |y+k| ≥ λ+3, then we actually have the equality. If 3|x+h|+ |y+k| < λ+3,
then in particular |y + k| < λ+ 3 and we must check that

0 ≤ −1

3
|y + k|(λ+ 3) +

1

6
(λ+ 3)2 +

1

6
|y + k|2 − 3

2
|x+ h|2,

that is (3|x+h|)2 ≤ (λ+ 3− |y+ k|)2. This follows directly from the assumption
3|x+ h|+ |y + k| < λ+ 3 under which we work. �

2.2. Proof of (1.4). The functions Uλ and Vλ introduced above will allow us to
prove the following auxiliary statement.

Lemma 2.3. Suppose that f , g are martingales such that g is weakly dominated
by f and f is bounded by 1. Then for any λ ≥ 0 we have

E
[
(|gn| − λ− 6)χ{|gn|>λ}

]
≤ 0, n = 0, 1, 2, . . . . (2.4)

Proof. If f is bounded by 1, then in particular it is bounded in L2 and hence,
by the L2 bound (1.3) formulated in the introductory section, g also has this
property. Consequently, we see that for each n the random variables gn, fn,
dgn and dfn are square-integrable; this boundedness property will be needed in a
moment to guarantee the integrability of a certain expression.
By Lemma 2.1, the estimate (2.4) will follow once we have proved the bound

EUλ(fn, gn) ≤ 0. To achieve this, �x a positive integer n and apply (2.1), with
x = fn−1, y = gn−1, h = dfn and k = dgn, to obtain

Uλ(fn, gn) ≤ Uλ(fn−1, gn−1) + A(fn−1, gn−1) · dfn +B(fn−1, gn−1) · dgn
− φfn−1,gn−1(|dfn|) + φfn−1,gn−1(|dgn|).

By the square-integrability of the variables gn, fn, dgn and dfn mentioned above,
both sides are integrable. Therefore, taking the conditional expectation with
respect to Fn−1 and using the weak domination condition, one gets

E(Uλ(fn, gn)|Fn−1) ≤ Uλ(fn−1, gn−1).

This implies EUλ(fn, gn) ≤ EUλ(f0, g0) ≤ 0, where the latter estimate follows
again from (2.1), this time applied to x = y = 0 and h = df0 = f0, k = dg0 = g0.
This gives the claim. �

We are ready to establish the assertion of Theorem 1.1.

Proof of (1.4). By homogeneity, we may assume that ‖f‖L∞ ≤ 1. Pick arbitrary
nonnegative integer n, t ∈ (0, 1] and recall the alternative de�nition of g∗∗n :

g∗∗n (t) = sup

{
1

P(E)
E
(
|gn|χE

)
: E ∈ F , P(E) = t

}
.
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In particular, it implies that

g∗∗n (t)− g∗n(t) = sup

{
1

P(E)
E
[

(|gn| − g∗n(t))χE
]

: P(E) = t

}
.

By the de�nition of the decreasing rearrangement, we have P(|gn| > λ) > t if
λ < g∗n(t) and P(|gn| > λ) ≤ t if λ > g∗n(t), which in particular implies

P(|gn| ≥ g∗n(t)) ≥ t ≥ P(|gn| > g∗n(t)).

Therefore, for any event E of probability t, we have

1

P(E)
E
[

(|gn| − g∗n(t))χE
]
≤ 1

P(|gn| > g∗n(t))
E
[
(|gn| − g∗n(t))χ{|gn|>g∗n(t)}

]
,

which, by (2.4) applied to λ = g∗n(t), does not exceed 6. Taking the supremum
over all E as above, we get the desired estimate. �

Remark 2.4. A closer look at the above proof shows that the weak domination can
be signi�cantly relaxed. Indeed, in the proof of (2.4) we exploit the requirement
E(φ(|dgn|)|Fn−1) ≤ E(φ(|dfn|)|Fn−1) only for the functions φx,y. If we want the
proof to work for general bounded f (not necessarily bounded by 1), we need to
take into account the scaled functions φx,y(·/a), a > 0, as well. Summarizing, the
inequality (1.4) remains valid if we assume that for any n ≥ 1 and any a ≥ 0,

E
[
(|dgn| − a)2

+|Fn−1

]
≤ E

[
(|dfn| − a)2

+|Fn−1

]
.

3. Estimates for Haar shift operators

The contribution of this section is to show how the inequalities for weakly
dominated martingales imply the corresponding results for Haar shift operators;
actually, as we shall see, the approach is very �exible and it allows a successful
treatment of much more general class of dyadic shift operators. Let us introduce
the necessary background and notation, to place these results into an appropriate
context. Assume that K : (−∞, 0) ∪ (0,∞) → R is an odd, twice di�erentiable
function (in the sense that K ′ is absolutely continuous) which satis�es the con-
ditions

lim
x→∞

K(x) = lim
x→∞

K ′(x) = 0 (3.1)

and

x3K ′′(x) ∈ L∞(R). (3.2)

Let TK be the associated one-dimensional singular integral operator, de�ned by

TKf(x) = p. v.

∫
R
f(x− y)K(y)dy.

For instance, for the choice K(x) = (πx)−1 we obtain the Hilbert transform, the
fundamental object in harmonic analysis.
As shown by Vagharshakyan [11], if K satis�es (3.1) and (3.2), then the op-

erator TK can be expressed as an average of appropriate one-dimensional dyadic
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shifts, whose de�nition we recall now. Let F−, F+, G and H : R → R be func-
tions supported on the unit interval [0, 1] and given by

F−(x) =


−
√

2 if 0 ≤ x < 1/4,

0 if 1/4 ≤ x < 3/4,√
2 if 3/4 ≤ x ≤ 1,

F+(x) =


0 if 0 ≤ x < 1/4,

−
√

2 if 1/4 ≤ x < 1/2,√
2 if 1/2 ≤ x < 3/4,

0 if 3/4 ≤ x ≤ 1,

G(x) =


−1 if 0 ≤ x < 1/4,

1 if 1/4 ≤ x < 3/4,

−1 if 3/4 ≤ x ≤ 1

and H(x) =


7 if 0 < x < 1/4,

−1 if 1/4 ≤ x < 1/2,

1 if 1/2 ≤ x < 3/4,

−7 if 3/4 ≤ x ≤ 1.

For any function f : R → R and any interval I = [a, b], the rescaled version
fI : R→ R is given by the formula

fI(x) =
1√
b− a

f

(
x− a
b− a

)
.

Next, for any β = {βl} ∈ {0, 1}Z and any r ∈ [1, 2), consider the dyadic grid

Dr,β =

{
r2n

(
[0, 1) + k +

∑
i<n

2i−nβi

)}
n∈Z,k∈Z

.

We equip {0, 1}Z with the uniform probability measure µ uniquely determined
by the requirement µ({β : (βi1 , βi2 , . . . , βin) = a}) = 2−n for any n, any sequence
i1 < i2 < . . . < in of integers and any a ∈ {0, 1}n.
The aforementioned result of Vagharshakyan asserts the following.

Theorem 3.1. Suppose that the kernel K satis�es (3.1) and (3.2). Then there
exists a coe�cient function γ : (0,∞)→ R satisfying

‖γ‖L∞ ≤ C‖x2K ′′(x)‖L∞
such that

K(x− y) =

∫
{0,1}Z

∫ 2

1

∑
I∈Dr,β

γ(|I|)HI(x)GI(y)
dr

r
dµ(β) (3.3)

for all x 6= y. Here C is some absolute constant and the series on the right is
absolutely convergent almost everywhere.

In other words, we see that the singular integral TK can be expressed as an
average of the Haar shift operators

Tr,βf =
∑
I∈Dr,β

γ(|I|)〈f,GI〉HI .

In particular, this justi�es the interest in various estimates for these objects. As
we will see now, such inequalities can be handled with the use of weakly dominated
martingales. Consider the probability space ([0, 1],B([0, 1]), |·|) equipped with the
�ltration (Fn)n≥0, where Fn is generated by Cn, the class of all dyadic subintervals
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of [0, 1] having measure 4−n. It is easy to show that the collection {F±I , GI : I ∈
Cn, n = 0, 1, 2, . . .} forms an orthonormal basis of the Hilbert space L2

0(Ω) of
mean-zero square integrable variables. Indeed, the orthonormality is evident,
and the fact that the collection spans the space follows from the well-known fact
that the classical Haar basis (hj)j≥1 enjoys this property (and the fact that each
Haar function hj can be expressed as a combination of GI , F

−
I and F+

I for some
interval I). Consequently, any f ∈ L2 can be uniquely represented as the series

f =

∫
I

f +
∑
n≥1

∑
I∈Cn−1

[
〈f, F−I 〉F

−
I + 〈f, F+

I 〉F
+
I + 〈f,GI〉GI

]
=
∑
n≥0

dfn.

The key observation is that the martingale (7‖γ‖L∞fn)n≥0 is weakly dominating
the martingale g given by

gn =
n∑
k=0

∑
I∈Cn−1

γ(I)〈f,GI〉HI , n = 0, 1, 2, . . . .

Indeed, �x an arbitrary convex and increasing function φ : [0,∞) → [0,∞).
For any n ≥ 1 and any interval I ∈ Cn−1 we have, by Jensen's inequality, the
orthogonality of F±I and GI and the estimate 7|G| ≥ |H|,

E
[
φ
(∣∣7‖γ‖∞dfn∣∣)|I] ≥ E

[
φ
(∣∣7‖γ‖∞〈f,GI〉GI

∣∣)|I]
≥ E

[
φ
(
|γ(I)〈f,GI〉HI |

)
|I
]
.

This shows that E(φ(7‖γ‖∞|dfn|)|Fn−1) ≥ E(φ(|dgn|)|Fn−1), which is the afore-
mentioned weak domination (formally, let us record here that dg0 = 0, so the
estimate holds also for the case n = 0). We can rescale the initial interval [0, 1] to
an arbitrary I ∈ Dr,β and hence any estimate for weakly dominated martingales
immediately yields the corresponding statement for the Haar shift operators. We
will illustrate this transference on the example of the estimate (1.4). One can ob-
tain other (e.g., moment or weak-type) estimates using the same argumentation;
we leave the details to the reader.

Theorem 3.2. For any Hilbert-space-valued function f we have the estimate

‖Tr,βf‖W (R) ≤ 42‖γ‖L∞‖f‖L∞ .

Proof. We may assume that ‖f‖L∞ ≤ 1. Let I be an arbitrary element of Dr,β

and let Tr,β,N be the truncated Haar shift operator given by

Tr,β,Nf =
∑

J∈Dr,β ,J⊆I,
|J |/|I|≥4−N

γ(|J |)〈f,GJ〉HJ .

By the above discussion, the inequality (2.4) yields∫
I

(
|Tr,β,Nf |
7‖γ‖L∞

− λ− 6

)
χ{|Tr,β,Nf |>7‖γ‖L∞λ}ds ≤ 0

for any �nite N . Now letting N →∞ and then |I| → ∞ gives∫
I

(
|Tr,βf |
7‖γ‖L∞

− λ− 6

)
χ{|Tr,βf |>7‖γ‖L∞λ}ds ≤ 0,
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by Fatou's lemma. It remains to repeat, word-by-word, the argumentation from
the end of the previous section to obtain the desired estimate. �

Remark 3.3. The above approach enables the study of much wider classes of
Haar shifts; we will brie�y discuss an example of such an extension. Let n be
an arbitrary integer and let G and H : [0, 1] → R be functions measurable with
respect to the σ-algebra A generated by the dyadic subintervals of [0, 1] having
measure 2−n (in the above considerations, we had n = 2). Assume in addition
that there is a constant a such that for any convex increasing function φ we have∫ 1

0
φ(|aG|)ds ≥

∫ 1

0
φ(|H|)ds. Replacing F± by an arbitrary collection of functions

which together with G form an orthonormal basis of L2([0, 1],A) and repeating
the above arguments, we obtain

‖Tr,βf‖W (R) ≤ 6|a|‖γ‖L∞‖f‖L∞ .

We omit further details in this direction.
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