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Abstract. Let X, Y be continuous-time martingales taking values in a sepa-

rable Hilbert space H.
(i) Assume that X, Y satisfy the condition [X, X]t ≥ [Y, Y ]t for all t ≥ 0.

We prove the sharp inequalities

sup
t
||Yt||p ≤ (p− 1)−1 sup

t
||Xt||p, 1 < p ≤ 2,

P(sup
t
|Yt| ≥ 1) ≤

2

Γ(p + 1)
sup

t
||Xt||pp, 1 ≤ p ≤ 2,

and for any K > 0 we determine the optimal constant L = L(K) depending

only on K such that

sup
t
||Yt||1 ≤ K sup

t
E|Xt| log |Xt|+ L(K).

(ii) Assume that X, Y satisfy the condition [X, X]∞−[X, X]t− ≥ [Y, Y ]∞−
[Y, Y ]t− for all t ≥ 0. We establish the sharp bounds

sup
t
||Yt||p ≤ (p− 1) sup

t
||Xt||p, 2 ≤ p <∞

and

P(sup
t
|Yt| ≥ 1) ≤

pp−1

2
sup

t
||Xt||pp, 2 ≤ p <∞.

This generalizes the previous results of Burkholder, Suh and the author,

who showed the above estimates under the more restrictive assumption of
differential subordination. The proof is based on Burkholder’s technique and

integration method.

1. Introduction

Let (Ω,F ,P) be a probability space, filtered by a nondecreasing family (Fn)n≥0

of sub-σ-fields of F . Let f = (fn), g = (gn) be adapted martingales taking values
in a separable Hilbert space H (which may and will be assumed to be equal to
`2), with a norm | · | and a scalar product denoted by ·. The difference sequences
df = (dfn), dg = (dgn) of f and g are given by the equalities

fn =
n∑
k=0

dfk, gn =
n∑
k=0

dgk, n = 0, 1, 2, . . . .

The following notion of differential subordination is due to Burkholder: we say
that g is differentially subordinate to f , if for any n we have |dgn| ≤ |dfn|. This
condition implies many interesting estimates which have numerous applications in
many areas of mathematics, see the surveys [5], [6] by Burkholder and references
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therein. Consult also Bañuelos and Wang [1], Wang [13], Bañuelos and Méndez-
Hernández [2], Geiss, Montgomery-Smith and Saksman [8], Suh [12] and the papers
[10], [11] by the author for some more recent results in this direction. To begin, let
us recall the following classical moment inequality, due to Burkholder [3]. We use
the notation ||f ||p = supn ||fn||p for 1 ≤ p ≤ ∞.

Theorem 1.1. If g is differentially subordinate to f , then for 1 < p <∞,

(1.1) ||g||p ≤ (p∗ − 1)||f ||p.

Here p∗ = max{p− 1, (p− 1)−1} and the constant is the best possible.

Moreover, we have the weak-type bounds, proved by Burkholder [3] for 1 ≤ p ≤ 2,
and Suh [12] for 2 ≤ p <∞. Let g∗ = supn |gn| denote the maximal function of g.

Theorem 1.2. Assume that g is differentially subordinate to f . Then

(1.2) P(g∗ ≥ 1) ≤ 2
Γ(p+ 1)

||f ||pp, 1 ≤ p ≤ 2,

and, if f and g are real-valued,

(1.3) P(g∗ ≥ 1) ≤ pp−1

2
||f ||pp, 2 ≤ p <∞.

Both inequalities are sharp.

In the case p = 1 the moment inequality does not hold with any finite constant.
The author established in [10] the following substitute.

Theorem 1.3. Assume that g is differentially subordinate to f . Then for K > 1,

(1.4) ||g||1 ≤ K sup
n

E|fn| log |fn|+ L(K),

where

(1.5) L(K) =

{
K2

2(K−1) exp(−K−1) if K < 2,

K exp(K−1 − 1) if K ≥ 2.

The constant is the best possible. Furthermore, for K ≤ 1 the inequality does not
hold in general with any universal L(K) <∞.

Let us now turn to the continuous-time setting. Assume that the probability
space is complete and is equipped with a filtration (Ft)t∈[0,∞) such that F0 contains
all the events of probability 0. Let X = (Xt)t≥0, Y = (Yt)t≥0 be H-valued martin-
gales, which have right-continuous trajectories with limits from the left. The gen-
eralization of the differential subordination is as follows (see [1] and [13]): Y is dif-
ferentially subordinate to X, if the process ([X,X]t− [Y, Y ]t)t≥0 is nonnegative and
nondecreasing as a function of t. Here [X,X] denotes the square bracket (quadratic
variation) of X: that is, if Xt = (X1

t , X
2
t , . . .) ∈ H, then [X,X] =

∑∞
k=1[Xk, Xk],

where [Xk, Xk] is the usual square bracket of a real-valued martingale Xk, see e.g.
Dellacherie and Meyer [7] for details. We use the notation ||X||p = supt ||Xt||p
and X∗ = supt |Xt|, analogous to the one in the discrete-time case. Furthermore,
throughout the paper, we set X0− = Y0− = 0 and [X,X]0− = [Y, Y ]0− = 0.

The inequalities (1.1), (1.2), (1.3) and (1.4) can be successfully extended to the
continuous-time setting (this will be clear from our results below, see also the papers
by Wang [13] and Suh [12] for the proofs of (1.1) and (1.3)). The motivation in
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the present paper comes from the interesting and challenging question raised in [5]:
Burkholder asked whether the moment inequality

(1.6) ||Y ||p ≤ (p∗ − 1)||X||p, 1 < p <∞
remains valid under a weaker assumption that the process ([X,X]t − [Y, Y ]t)t≥0 is
nonnegative (and not necessarily nondecreasing). We will prove that this is true for
p ≤ 2, and introduce a dual condition, weaker than the differential subordination,
which implies the validity of (1.6) for p ≥ 2. Furthermore, we will show that under
these relaxed conditions the corresponding weak-type and logarithmic bounds hold.

The main results of the paper are stated in the two theorems below.

Theorem 1.4. Suppose that X, Y are H-valued martingales such that

(1.7) [X,X]t ≥ [Y, Y ]t for any t ≥ 0.

Then

(1.8) ||Y ||p ≤ (p− 1)−1||X||p, 1 < p ≤ 2,

and

(1.9) P(Y ∗ ≥ 1) ≤ 2
Γ(p+ 1)

||X||pp, 1 ≤ p ≤ 2.

Furthermore, if K > 1, then

(1.10) ||Y ||1 ≤ K sup
t≥0

E|Xt| log |Xt|+ L(K),

where L(K) is given by (1.5). For K ≤ 1 the inequality does not hold in general
with any universal L(K) <∞. All the inequalities above are sharp.

Theorem 1.5. Suppose that X, Y are H-valued martingales such that

(1.11) [X,X]∞ − [X,X]t− ≥ [Y, Y ]∞ − [Y, Y ]t− for any t ≥ 0.

Then

(1.12) ||Y ||p ≤ (p− 1)||X||p, 2 ≤ p <∞,
and

(1.13) P(Y ∗ ≥ 1) ≤ pp−1

2
||X||pp, 2 ≤ p <∞.

The inequalities are sharp.

Obviously, the condition (1.11) is weaker than the differential subordination. It
concerns the quadratic variations of X and Y on the intervals [t,∞), t ≥ 0, and
hence it can be seen as a dual to (1.7), which compares the square brackets on the
intervals [0, t], t ≥ 0. It should also be stressed that Suh’s result (the weak-type
inequality for p ≥ 2) concerned only real-valued martingales. Our approach is not
only much simpler, but it also enables us to obtain the bound for processes taking
values in a Hilbert space.

A few words about our approach and the organization of the paper. The origi-
nal proofs of (1.1), (1.2), (1.3) and (1.4) are based on Burkholder’s method, which
reduces the problem of showing a given martingale inequality to the problem of
finding a certain biconcave function. This approach has also been been success-
ful in a number of other estimates, see [3], [4] for the detailed description of the
method and related remarks, and [13] for the extension of the technique to the
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continuous-time setting. Our approach is slightly different and exploits an integra-
tion argument developed by the author in [9]. In Section 2 we introduce two ,,basis”
functions which are used in two simple inequalities (2.7) and (2.8) for martingales
satisfying (1.7) or (1.11). Then we complicate these inequalities by integrating the
basis functions against various kernels; this yields the desired estimates. Section 3
contains the description of the integration argument, and in Section 4 we present
the detailed calculations leading to (1.8), (1.9), (1.10), (1.12) and (1.13).

2. Two basis functions

Let D1, D∞ be subsets of H×H× [0,∞), defined as follows:

D1 = {(x, y, s) : |x|+
√
|y|2 + s ≤ 1},

D∞ = {(x, y, t) :
√
|x|2 + t+ |y| ≤ 1}.

Consider u1 : H×H× [0,∞)→ R, given by

(2.1) u1(x, y, s) =

{
|y|2 − |x|2 + s if (x, y, s) ∈ D1,

1− 2|x| if (x, y, s) /∈ D1.

Furthermore, introduce the functions φ1, ψ1 : H×H× [0,∞)→ H by

(φ1(x, y, s), ψ1(x, y, s)) =

{
(−2x, 2y) if (x, y, s) ∈ D1,

(−2x′, 0) if (x, y, s) /∈ D1.

Here x′ = x/|x| if x 6= 0 and x′ = 0 if x = 0. The dual to u1 is the function
u∞ : H×H× [0,∞)→ R, defined by the formula

(2.2) u∞(x, y, t) =

{
0 if (x, y, t) ∈ D∞,
(|y| − 1)2 − |x|2 − t if (x, y, t) /∈ D∞.

In addition, let φ∞, ψ∞ : H×H× [0,∞)→ H be the functions given by

(φ∞(x, y, t), ψ∞(x, y, t)) =

{
(0, 0) if (x, y, t) ∈ D∞,
(−2x, 2y − 2y′) if (x, y, t) /∈ D∞.

The key property of the functions u1 and u∞ is described in the lemma below.

Lemma 2.1. Let x, y, h, k ∈ H and s, t ≥ 0.
(i) If s+ |h|2 − |k|2 ≥ 0, then

(2.3) u1(x+ h, y + k, s+ |h|2 − |k|2) ≤ u1(x, y, s) + φ1(x, y, s) · h+ ψ1(x, y, s) · k.
(ii) If t− |h|2 + |k|2 ≥ 0, then

(2.4) u∞(x+h, y+k, t−|h|2 + |k|2) ≤ u∞(x, y, t) +φ∞(x, y, t) ·h+ψ∞(x, y, t) ·k.

Proof. (i) We start from the observation that

(2.5) u1(x, y, s) ≤ 1− 2|x| for all (x, y, s) ∈ H ×H× [0,∞).

Indeed, both sides are equal on Dc
1, while on D1 we have u1(x, y, s)− (1− 2|x|) =

(
√
|y|2 + s)2 − (1− |x|)2 ≤ 0, by the definition of D1. Now if (x, y, s) /∈ D1, then

u1(x, y, s) + φ1(x, y, s) · h+ ψ1(x, y, s) · k = 1− 2|x| − 2x′ · h
≥ 1− 2|x+ h|
≥ u1(x+ h, y + k, s+ |h|2 − |k|2).
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Suppose then, that (x, y, s) lies in D1. If (x+ h, y + k, s+ |h|2 − |k|2) also belongs
to D1, then both sides of (2.3) are equal. If (x+ h, y + k, s+ |h|2 − |k|2) /∈ D1 and
|x+ h| ≤ 1, then (2.3) can be rewritten in the form

(1− |x+ h|)2 ≤ |y + k|2 + s+ |h|2 − |k|2,

which holds due to the definition of D1. Finally, if (x+h, y+k, s+ |h|2−|k|2) /∈ D1

and |x+ h| > 1, we have, using the bound |k|2 ≤ s+ |h|2,

u1(x, y, s) + φ1(x, y, s) · h+ ψ1(x, y, s) · k − u1(x+ h, y + k, s+ |h|2 − |k|2)

= |y|2 − |x|2 + s− 2x · h+ 2y · k − 1 + 2|x+ h|
≥ |y|2 − |x|2 + s− 2x · h− 2|y||k| − 1 + 2|x+ h|

≥ |y|2 − |x|2 + s− 2x · h− 2|y|
√
s+ |h|2 − 1 + 2|x+ h|

= (|y| −
√
s+ |h|2)2 − (|x+ h| − 1)2.

(2.6)

It suffices to note that |x|+ |y| ≤ |x|+
√
|y|2 + s ≤ 1, so

||x+ h| − 1| = |x+ h| − 1 ≤ |x|+ |h| − 1 ≤ −|y|+ |h| ≤
√
s+ |h|2 − |y|

and we are done.
(ii) This follows immediately from (i) and the identities

u∞(x, y, t) = u1(y, x, t) + |y|2 − |x|2 − t,
φ∞(x, y, t) = ψ1(y, x, t)− 2x,

ψ∞(x, y, t) = φ1(y, x, t) + 2y

valid for all x, y ∈ H and t ≥ 0. �

The lemma above leads to the following martingale inequalities. Let u0
1(x, y) =

u1(x, y, 0) and u0
∞(x, y) = u∞(x, y, 0).

Lemma 2.2. Suppose that X, Y are H-valued martingales.
(i) Suppose that (1.7) holds. Then for all t ≥ 0,

(2.7) Eu0
1(Xt, Yt) ≤ 0.

(ii) Suppose that (1.11) holds and ||X||2 <∞. Then

(2.8) Eu0
∞(X∞, Y∞) ≤ 0.

Proof. Using standard approximation (cf. [13]), it suffices to show the inequalities
for finite dimensional case: H = Rd for some positive integer d.

(i) Let t ≥ 0 be fixed. We will prove that

u1(Xt, Yt, [X,X]t − [Y, Y ]t) ≤ 0,

a stronger statement, since u1(x, y, s) ≥ u0
1(x, y) for any x, y ∈ H and s ≥ 0. Let

Zs = (Xs, Ys, [X,X]s− [Y, Y ]s) and consider a stopping time τ = inf{s : Zs /∈ D1}.
By (2.5),

Eu1(Zt)I{τ≤t} = E
[
I{τ≤t}E(u1(Zt)|Fτ )

]
≤ E

[
I{τ≤t}E(1− 2|Xt||Fτ )

]
≤ E((1− 2|Xτ |)I{τ≤t} = Eu1(Zτ∧t)I{τ≤t},

which gives

(2.9) Eu1(Zt) ≤ Eu1(Zτ∧t).
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Since u1 is of class C2 on D1 and the range of the process (Zτ∧s−)s≤t is contained
in D1, we may apply Itô’s formula to obtain

(2.10) u1(Zτ∧t) = I0 + I1 + I2/2 + I3 + I4 + I5,

where
I0 = u1(Z0),

I1 =
∫ τ∧t

0+

u1x(Zs−)dXs +
∫ τ∧t

0+

u1y(Zs−)dYs,

I2 =
∑
i,j≤d

∫ τ∧t

0+

u1xixj
(Zs−)d[Xic, Xjc]s− +

∑
i,j≤d

∫ τ∧t

0+

u1yiyj
(Zs−)d[Y ic, Y jc]s−

+ 2
∑
i,j≤d

∫ τ∧t

0+

u1xiyj
(Zs−)d[Xic, Y jc]s−,

I3 =
d∑
i=1

∫ τ∧t

0+

u1s(Zs−)d[Xic, Xic]s− −
d∑
i=1

∫ τ∧t

0+

u1s(Zs−)d[Y ic, Y ic]s−

I4 =
∑

0<s≤τ∧t

u1s(Zs−)(|∆Xs|2 − |∆Ys|2),

I5 =
∑

0<s≤τ∧t

[
u1(Zs)− u1(Zs−)− u1x(Zs−) ·∆Xs − u1y(Zs−) ·∆Ys

− u1s(Zs−)(|∆Xs|2 − |∆Ys|2)
]
.

As one easily verifies, I2/2 + I3 = 0; this is due to the fact that u1xixj
(Zs−) =

−u1yiyj
(Zs−) = −2 if i = j; u1xixj

(Zs−) = −u1yiyj
(Zs−) = 0 if i 6= j; u1xiyj

(Zs−) =
0 for all i, j; and u1s(Zs−) = 1. Furthermore, I4 +I5 ≤ 0, in view of (1.7) and (2.3).
By the properties of stochastic integrals, I1 has mean 0. Combine the above facts
about the terms Ik with (2.9) and (2.10) to get Eu1(Zt) ≤ Eu1(Z0). However, the
latter expression is nonpositive; this is due to u1(x, y, |x|2 − |y|2) = 0 for |x| ≤ 1/2,
and u1(x, y, |x|2 − |y|2) = 1− 2|x| ≤ 0 for remaining x.

(ii) By (1.7) and the condition ||X||2 <∞ we have that Y is also bounded in L2

and [X,X]∞, [Y, Y ]∞ are finite almost surely. We will show a stronger statement:
for any stopping time η,

(2.11) Eu∞(Xη, Yη, [X,X]∞ − [X,X]η − [Y, Y ]∞ + [Y, Y ]η) ≤ 0

(then the claim follows by taking η ≡ ∞). Let ξ = [X,X]∞ − [Y, Y ]∞,

(2.12) Zs = (Xs, Ys, [X,X]∞ − [X,X]s − [Y, Y ]∞ + [Y, Y ]s)s≥0

and τ = inf{s : Zs /∈ D∞}. By Doob’s optional sampling theorem,

Eu∞(Zη)I{τ≤η} = E
[
(|Yη|2 − [Y, Y ]η)− (|Xη|2 − [X,X]η)− 2|Yη|+ 1 + ξ

]
I{τ≤η}

≤ E
[
(|Yτ |2 − [Y, Y ]τ )− (|Xτ |2 − [X,X]τ )− 2|Yτ |+ 1 + ξ

]
I{τ≤η},

which gives Eu∞(Zη) ≤ Eu∞(Zτ∧η). Applying Itô’s formula for u∞(Zτ∧η), we get
the analogue of (2.10), with similar terms I0–I5 (simply replace u1 by u∞). We
have that I1 = I2 = I3 = 0 and I4 + I5 ≤ 0 due to (1.11) and (2.4); this implies
Eu∞(Zη) ≤ Eu∞(Z0). The proof is completed by the observation that u(Z0) ≤ 0
almost surely, which can be verified readily. �
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3. An integration method

In the proof of the announced inequalities we will use the following procedure.
Suppose that V : H × H → R is a given Borel function and assume that we are
interested in proving the estimate

(3.1) EV (Xt, Yt) ≤ 0, t ≥ 0

for a pair (X,Y ) of martingales satisfying the condition (1.7). Let k : [0,∞) →
[0,∞) be a Borel function such that

(3.2) E
∫ ∞

0

k(r)|u0
1(Xt/r, Yt/r)|dr <∞, t ≥ 0,

and take

U(x, y) =
∫ ∞

0

k(r)u0
1(x/r, y/r)dr.

If the kernel k is chosen in such a way that

(3.3) U(x, y) ≥ V (x, y) for all x, y ∈ H,

then (3.1) holds. Indeed, for any r > 0 and t ≥ 0 we have [X/r,X/r]t ≥ [Y/r, Y/r]t,
so Eu0

1(Xt/r, Yt/r) ≤ 0 by Lemma 2.2. Thus EV (Xt, Yt) ≤ EU(Xt, Yt) ≤ 0, by (3.3)
and Fubini’s theorem, permitted due to (3.2).

Similarly, suppose we are interested in the bound

EV (X∞, Y∞) ≤ 0,

for a pair (X,Y ) satisfying (1.11) and ||X||2 < ∞. Arguing as previously, we see
that it suffices to find a function k : [0,∞)→ [0,∞) which enjoys the condition

(3.4) E
∫ ∞

0

k(r)|u0
∞(X∞/r, Y∞/r)|dr <∞, t ≥ 0

and the majorization property (3.3), where U : H×H → R is given by

U(x, y) =
∫ ∞

0

k(r)u0
∞(x/r, y/r)dr.

This approach will be successful in proving (1.8), (1.9), (1.10) and (1.12). In the
case of (1.13) we will need a slight modification of this method. The details are
presented in the next section.

4. The proof of Theorem 1.4 and Theorem 1.5

We start from the observation that the constants appearing in (1.8), (1.9), (1.10),
(1.12) and (1.13) are optimal: indeed, they are already the best possible under the
differential subordination. Furthermore, the moment and weak-type inequalities
are trivial for p = 2, so in what follows, we assume that p 6= 2.

4.1. The proof of (1.8). Clearly, we may assume that ||X||p <∞, since otherwise
there is nothing to prove. We will be done if we show that E|Yt|p ≤ (p−1)−pE|Xt|p
for any t ≥ 0. Let Vp, Up : H×H → R be given by

Vp(x, y) = |y|p − (p− 1)−p|x|p,

Up(x, y) = αp

∫ ∞
0

rp−1u0
1(x/r, y/r)dr,
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where αp = p3−p(p− 1)(2− p)/2. A direct computation gives

Up(x, y) = p2−p((p− 1)|y| − |x|)(|x|+ |y|)p−1.

Now we show (3.2) and (3.3). The second estimate was shown by Burkholder, see
page 17 in [4]. To establish (3.2), note that by Burkholder-Davis-Gundy inequality,
for some constant cp > 0, ||Yt||p ≤ cp||[Y, Y ]1/2t ||p ≤ cp||[X,X]1/2t ||p ≤ c2p||Xt||p, so
Y is bounded in Lp. Since

(4.1) |u0
1(x, y)| ≤

{
|x|2 + |y|2 if |x|+ |y| ≤ 1,
1 + 2|x| if |x|+ |y| > 1,

we obtain

E
∫ ∞

0

rp−1|u1(Xt/r, Yt/r)|dr ≤ J1 + J2 + J3,

where
J1 = p−1E(|Xt|+ |Yt|)p,
J2 = 2(p− 1)−1E|Xt|(|Xt|+ |Yt|)p−1,

J3 = (2− p)−1E(|Xt|2 + |Yt|2)(|Xt|+ |Yt|)p−2.

It is straightforward to verify that J1, J2, J3 are finite, and (3.2) follows. This
completes the proof of (1.8).

4.2. The proof of (1.9). This is a bit more technical. We start with the following
auxiliary fact. Let

(4.2) A(r) = er
∫ ∞
r

e−uupdu, r ≥ 0.

Lemma 4.1. (i) For r ≥ 0 we have

(4.3)
∫ ∞
r

e−uupdu− (r + 1)pe−r − Γ(p+ 1)
2

e−r ≤ 0.

(ii) If |x|+ |y| > 1, then

(4.4) |y|(|x|+ |y| − 1)p + (1− |y|)A(|x|+ |y| − 1) ≤ Γ(p+ 1)
2

I{|y|<1} + |x|p.

Proof. (i) Denote the left-hand side by F (r). We have

F ′(r) = e−r
(

(r + 1)p − rp − p(r + 1)p−1 +
Γ(p+ 1)

2

)
= e−rG(r) ≥ 0,

since G(0) = 1− p− Γ(p+ 1)/2 ≥ 0 and

G′(r) = p((r + 1)p−1 − rp−1 − (p− 1)(r + 1)p−2) ≥ 0,

in virtue of the concavity of the function r 7→ rp−1. Hence F (r) ≤ lims→∞ F (s) = 0.
(ii) A standard analysis shows that for fixed |x|, the left-hand side, as a function

of |y|, is nonincreasing. Therefore it suffices to verify the inequality (4.4) for |y| = 1
and |y| = max{1− |x|, 0}. If |y| = 1, both sides are equal. If |x| ≤ 1, then

H(1− |x|) = Γ(p+ 1)|x| ≤ Γ(p+ 1)
2

(1 + |x|2) ≤ Γ(p+ 1)
2

+ |x|p.

Finally, for |x| > 1 the inequality reduces to (4.3). �
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We turn to the proof of (1.9). We may assume that ||X||p <∞, which, by (1.8),
gives ||Y ||p < ∞ and hence the pointwise limits X∞, Y∞ exist almost surely. It
suffices to show that

(4.5) P(|Y∞| ≥ 1) ≤ 2
Γ(p+ 1)

||X∞||pp.

Indeed, let ε > 0 and consider a stopping time τ = inf{t : |Yt| ≥ 1− ε}. Apply the
above estimate to the martingale pair (Xτ∧t/(1 − ε), Yτ∧t/(1 − ε))t≥0 (for which
(1.7) is still valid). Since {Y ∗ ≥ 1} ⊆ {|Yτ | ≥ 1− ε}, we get

(4.6) P(Y ∗ ≥ 1) ≤ P(|Yτ | ≥ 1− ε) ≤ 2
Γ(p+ 1)(1− ε)p

||X∞||pp

and letting ε→ 0 yields (1.9).
To prove (4.5), introduce Vp,∞, Up,∞ : H×H → R by the formulas

Vp,∞(x, y) = I{|y|≥1} −
2

Γ(p+ 1)
|x|p,

Up,∞(x, y) =
∫ ∞

0

k(r)u0
1(x/r, y/r)dr,

where

k(r) = I[1,∞)(r) ·
p(p− 1)(2− p)

Γ(p+ 1)
r2er−1

∫ ∞
r−1

e−uup−3du.

It can be verified that if |x|+ |y| ≤ 1, then

Up,∞(x, y) = |y|2 − |x|2,
and if |x|+ |y| > 1, then

Up,∞(x, y) =1− 2
Γ(p+ 1)

[
|y|(|x|+ |y| − 1)p + (1− |y|)A(|x|+ |y| − 1)

]
,

where A is given by (4.2). Now the condition (3.2) can be easily verified using (4.1).
To prove (3.3), note that if |x|+ |y| ≤ 1, then

Up,∞(x, y) ≥ −|x|2 ≥ −|x|p ≥ − 2
Γ(p+ 1)

|x|p = Vp,∞(x, y),

while for |x|+ |y| > 1, the majorization reduces to (4.4). This completes the proof.

4.3. The proof of (1.10). We will prove that E|Yt| ≤ KE|Xt| log |Xt|+ L(K) for
all t ≥ 0. Clearly, we may consider only those martingales X, which satisfy the
condition supt E|Xt| log |Xt| <∞. Let Vlog, Ulog : H×H → R be given by

Vlog(x, y) = |y| −K|x| log |x| − L(K),

Ulog(x, y) = α

∫ ∞
1

u0
1(x/r, y/r)dr

=

{
α(|y|2 − |x|2) if |x|+ |y| ≤ 1,
α(2|y| − 2|x| log(|x|+ |y|)− 1) if |x|+ |y| > 1,

where α > 0 will be chosen later. The condition (3.2) is verified easily using (4.1)
and the observation that for some positive constants c, d,

||Yt||1 ≤ c||[Y, Y ]1/2t ||1 ≤ c||[X,X]1/2t ||1 ≤ c2E|Xt| log |Xt|+ d <∞.
The inequality (3.3), for a proper choice of α, was shown in Lemma 3.3 in [10].
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4.4. The proof of (1.12). As previously, we restrict ourselves to the case ||X||p <
∞ and the inequality takes the form E|Y∞|p ≤ (p − 1)pE|X∞|p. Consider the
functions Vp, Up : H×H → R given by

Vp(x, y) = |y|p − (p− 1)p|x|p,

Up(x, y) = αp

∫ ∞
0

rp−1u0
∞(x/r, y/r)dr,

where αp = p3−p(p− 1)p(p− 2)/2. It can be verified that

Up(x, y) = p2−p(p− 1)p−1(|y| − (p− 1)−1|x|)(|x|+ |y|)p−1.

The inequality (3.2) can be proved in the same manner as in the case 1 < p ≤ 2;
the majorization (3.3) was established by Burkholder in [4].

4.5. The proof of (1.13). We assume that ||X||p <∞. We cannot proceed as in
the proof of (1.9): the inequality P(|Y∞| ≥ 1) ≤ pp−1

2 E|X∞|p, the analogue of (4.5),
is of no value to us. The problem is that if τ is a stopping time, then (Xτ∧t, Yτ∧t)
may no longer satisfy (1.11). To overcome this difficulty, we consider a stopping
time τ = inf{t : |Yt| ≥ 1} and show that

P(|Yτ | ≥ 1) ≤ pp−1

2
||X∞||pp.

This yields the claim: see the argumentation leading to (4.6) above. Introduce
Vp,∞ : H×H → R and Up,∞ : H×H× [0,∞)→ R by

Vp,∞(x, y) = I{|y|≥1} −
pp−1

2
|x|p,

Up,∞(x, y, t) = αp

∫ 1−p−1

0

rp−1u∞(x/r, y/r, t/r2)dr,

where αp = pp(p− 1)2−p(p− 2)/4. A little calculation shows that

Up,∞(x, y, t) =
1
2

(
p

p− 1

)p−1

(|y| − (p− 1)
√
|x|2 + t)(

√
|x|2 + t+ |y|)p−1,

if
√
|x|2 + t+ |y| ≤ 1− p−1, while for remaining (x, y, t),

Up,∞(x, y, t) =
p2

4

[
|y|2 − |x|2 − t− 2(p− 2)|y|

p
+

(p− 1)2(p− 2)
p3

]
.

It is easy to check the analogue of (3.2), that is,

E
∫ 1−p−1

0

rp−1|u∞(Xt/r, Yt/r, ([X,X]∞− [X,X]t− [Y, Y ]∞+ [Y, Y ]t)/r2)|dr <∞.

Use (2.11) with η = τ to get EUp,∞(Zτ ) ≤ 0, where Z is given by (2.12). We have

E(|Xτ |2 − [X,X]τ + [X,X]∞)I{τ<∞} = E|X∞|2I{τ<∞} and [Y, Y ]∞ ≥ [Y, Y ]τ .

Therefore, since |Yτ | ≥ 1 on {τ <∞}, we obtain

EUp,∞(Zτ )I{τ<∞} ≥
p2

4
E
[
|Yτ |2 − |X∞|2 −

2(p− 2)|Yτ |
p

+
(p− 1)2(p− 2)

p3

]
I{τ<∞}

= EUp,∞(X∞, Yτ , 0)I{τ<∞}.
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Combining this with EUp,∞(Zτ )I{τ=∞} = EUp,∞(X∞, Y∞, 0)I{τ=∞}, we obtain
EUp,∞(X∞, Yτ , 0) ≤ EUp,∞(Zτ ) ≤ 0 and the proof will be complete if we show that
Up,∞(x, y, 0) ≥ Vp,∞(x, y). To this end, note that the function F given by

F (s) =
1
2

(
p

p− 1

)p−1

(1− ps) +
pp−1

2
sp, s ∈ [0, 1],

is nonnegative: indeed, it is convex and satisfies F ((p− 1)−1) = F ′((p− 1)−1) = 0.
This gives the majorization for |x| + |y| ≤ 1 − p−1, since then it is equivalent to
F (|x|/(|x|+ |y|)) ≥ 0. The next step is to show that Up,∞(x, y, 0) ≥ Vp,∞(x, y) for
|y| ≥ 1. For fixed x, the function y 7→ Up,∞(x, y, 0) increases as |y| increases, so it
suffices to establish the bound for |y| = 1. After some manipulations, it reads

(4.7) (p|x|)p − 1 ≥ p

2
((p|x|)2 − 1),

and follows from the mean value property of the convex function t 7→ tp/2. It
remains to show the majorization for |x|+ |y| ≥ 1 and |y| < 1: it takes the form

p2

4

[
|y|2 − |x|2 − 2(p− 2)|y|

p
+

(p− 1)2(p− 2)
p3

]
≥ −p

p−1|x|p

2
.

But this bound is valid for all x, y ∈ H. Indeed, observe that as a function of |y|,
the left-hand side attains its minimum for |y| = 1− 2/p, and one easily checks that
the inequality again reduces to (4.7). This completes the proof.
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[1] R. Bañuelos and G. Wang, Sharp inequalities for martingales with applications to the
Beurling-Ahlfors and Riesz transformations, Duke Math. J. 80 (1995), 575–600.
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