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Abstract. The paper is devoted to the study of the weak norms of the clas-

sical operators in the vector-valued setting.
(i) Let S, H denote the involution operator and the Hilbert transform on

Lp(T, `2C), respectively. Then for 1 ≤ p ≤ 2 and any f ,

||Sf ||p,∞ ≤
 

1

π

Z ∞
−∞

˛̨
2
π

log |t|
˛̨p

t2 + 1
dt

!−1/p

||f ||p,

||Hf ||p,∞ ≤
 

1

π

Z ∞
−∞

˛̨
2
π

log |t|
˛̨p

t2 + 1
dt

!−1/p

||f ||p.

Both inequalities are sharp.

(ii) Let P+ and P− stand for the Riesz projection and the co-analytic

projection on Lp(T, `2C), respectively. Then for 1 ≤ p ≤ 2 and any f ,

||P+f ||p,∞ ≤ ||f ||p,
||P−f ||p,∞ ≤ ||f ||p,

Both inequalities are sharp.
(iii) We establish the sharp versions of the estimates above in the nonperi-

odic case.

The results are new even if the operators act on complex-valued functions.
The proof rests on the construction of an appropriate plurisubharmonic func-

tion and probabilistic techniques.

1. Introduction

Let f(ζ) =
∑
n∈Z f̂(n)ζn be a complex-valued integrable function on the unit

circle T = {ζ ∈ C : |ζ| = 1}. Here and in what follows, f̂(n) = 1
2π

∫ π
−π f(eiθ)e−inθdθ

denotes the n-th Fourier coefficient of f . For p ≥ 1, the space Hp(T,C), a closed
subspace of Lp(T,C), consists of those f , which satisfy f̂(n) = 0 for n < 0. As
usual, Hp(T,C) may be identified with the space of analytic functions on the unit
disc D, and

||f ||Hp(T,C) = sup
0<r<1

(
1

2π

∫ π

−π
|f(reiθ)|pdθ

)1/p

.
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The Riesz projection (or analytic projection) P+ : Lp(T,C) → Hp(T,C), is the
operator given by

P+f(ζ) = f+(ζ) =
∑
n≥0

f̂(n)ζn.

We will also use a co-analytic projection P− = I − P+ and the involution operator
S = P+ − P−, which can be written in the form

P−f(ζ) = f−(ζ) =
∑
n<0

f̂(n)ζn, Sf(ζ) =
∑
n∈Z

σ(n)f̂(n)ζn,

with σ(n) = 1 for n ≥ 0 and σ(n) = −1 otherwise. These are closely related to
another classical operator, the Hilbert transform (conjugate function) on T, which
is defined by

Hf(ζ) = −i
∑
n∈Z

sgn(n)f̂(n)ζn, ζ ∈ T.

Here sgn(n) = σ(n) for n 6= 0 and sgn(0) = 0, so that Sf = iHf + f̂(0). We have
the following representation of H via singular integrals:

Hf(eiθ) =
1

2π
p.v.

∫ π

−π
f(eit)cot

θ − t
2

dt.(1.1)

Now, for 1 ≤ p < ∞ and any operator T on Lp(T,C), define its strong and weak
p-th norm by

||T ||Lp(T,C)→Lp(T,C) = sup{||Tf ||p : ||f ||p ≤ 1}
and

||T ||Lp(T,C)→Lp,∞(T,C) = sup
{
||Tf ||p,∞ : ||f ||p ≤ 1

}
,

respectively. Here

||Tf ||p,∞ = sup
{
λ
(
|{θ ∈ [−π, π] : |Tf(eiθ)| ≥ λ}|/(2π)

)1/p : λ > 0
}
.

A classical theorem of M. Riesz states that the operator P+ (equivalently, H or
S) is bounded on Lp(T,C) for 1 < p < ∞. The question about the precise value
of the norms of these operators has gathered some interest in the literature. For
p = 2k, k = 1, 2, . . ., the exact values of the norms of S and H were determined by
Gohberg and Krupnik [5]. Using the remarkable identity f2 + (Sf)2 = 2S(fSf),
they showed that

||H||Lp(T,C)→Lp(T,C) = ||S||Lp(T,C)→Lp(T,C) = cot(π/(2p)).

For the remaining values of 1 < p < ∞, the norms of the operator S and H
acting on real Lp spaces were found by Pichorides [10] and, independently, by Cole
(unpublished work, see Gamelin [4]):

||S||Lp(T,R)→Lp(T,C) = ||H||Lp(T,R)→Lp(T,C) = cot(π/(2p∗)),

where p∗ = max{p, p/(p − 1)}. These norms do not change while passing to the
complex Lp spaces (see e.g. Pe lczyński [9]):

||S||Lp(T,C)→Lp(T,C) = ||H||Lp(T,C)→Lp(T,C) = cot(π/(2p∗)), 1 < p <∞.

Concerning Riesz and co-analytic projections, Hollenbeck and Verbitsky [6] proved
that

||P±||Lp(T,C)→Lp(T,C) = csc(π/p), 1 < p <∞.
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Now let us turn to the weak-type estimates. As shown by Davis [1],

||S||L1(T,R)→L1,∞(T,C) = ||H||L1(T,R)→L1,∞(T,C) = K1 =
1 + 1

32 + 1
52 + 1

72 + . . .

1− 1
32 + 1

52 − 1
72 + . . .

.

For 1 < p ≤ 2, it follows from the results of Janakiraman [7] and the author [8]
(also see Section 3 below) that

(1.2) ||S||Lp(T,R)→Lp,∞(T,C) = ||H||Lp(T,R)→Lp,∞(T,C) = Kp,

where

(1.3) Kp =

(
1
π

∫ ∞
−∞

∣∣ 2
π log |t|

∣∣p
t2 + 1

dt

)−1/p

.

For p > 2, the question about the precise value of the weak p-th norm of S or H
(on the real or complex Lp space) is open, to the best of the author’s knowledge.

For the Riesz and co-analytic projections, the following can be extracted from
the results of Tomaszewski [12]: for 1 ≤ p ≤ 2,

||P+||Lp(T,R)→Lp,∞(T,C) ≥ ||P−||Lp(T,R)→Lp,∞(T,C) =
( √

π

2p+1

pΓ(p/2)
Γ((p+ 1)/2)

)1/p

.

For p > 2, the weak p-th norm of P±, on the real or complex Lp space, is not
known.

A related problem, to be solved in the present paper, is the question about
the precise values of the weak p-th norms of S, H and P± on complex Lp spaces,
that is, ||S||Lp(T,C)→Lp,∞(T,C), ||H||Lp(T,C)→Lp,∞(T,C) and ||P±||Lp(T,C)→Lp,∞(T,C), for
1 ≤ p ≤ 2. In fact, we will study these operators in a more general, Hilbert space-
valued setting. Let

Lp(T, `2C) =

{
f : T→ `2C : ||f ||p =

(
1

2π

∫ π

−π
|f(eiθ)|pdθ

)1/p

<∞

}
denote the corresponding Lp space for `2C-valued functions on the unit circle. It is
easy to see that P±, S, H can be extended to the operators on Lp(T, `2C), either
by defining them coordinatewise, or simply by noting that the previous definitions
make sense in this new setting.

Now we turn to the results of the present paper. The first of them can be stated
as follows.

Theorem 1.1. Let 1 ≤ p ≤ 2. Then

(1.4) ||S||Lp(T,`2C)→Lp,∞(T,`2C) = ||H||Lp(T,`2C)→Lp,∞(T,`2C) = Kp,

where Kp is given by (1.3).

Comparing this to (1.2), we see that the weak norms of S and H do not change
while passing from the real to the complex Lp spaces.

Our second result concerns Riesz and co-analytic projection.

Theorem 1.2. Let 1 ≤ p ≤ 2. Then

||P±||Lp(T,`2C)→Lp,∞(T,`2C) = ||P±||Lp(T,C)→Lp,∞(T,C) = ||P+||Lp(T,R)→Lp,∞(T,C) = 1.
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Therefore the passage from real to complex Lp spaces does not affect the weak
norm of P+; on the other hand, the norm of P− does change.

Using standard arguments of Zygmund [13] and Davis [1], the results above can
be transferred to the nonperiodic case, that is, to the case when the operators act on
Lp(R, `2C). Let us briefly introduce the necessary notation. The analytic projection
on the real line, P+ = PR

+, is given by

PR
+f(x) = F−1(1[0,∞)Ff)(x), x ∈ R,

where Ff and F−1f are the direct and inverse Fourier transforms of f . Further-
more, P− = PR

−, the co-analytic projection on R, is given by PR
− = I − PR

+. The
Hilbert transform H = HR and the involution operator S = SR are defined by
HR = −iSR = −i(PR

+ −PR
−). The operator HR admits the following representation

by singular integrals:

(1.5) HRf(x) =
1
π

p.v.
∫

R

f(t)
x− t

dx.

The weak p-th norms are defined analogously to the periodic setting. We will
establish the following fact.

Theorem 1.3. Let 1 ≤ p ≤ 2 and f ∈ Lp(R, `2C). Then

(1.6) ||HR||Lp(R,`2C)→Lp,∞(R,`2C) = ||SR||Lp(R,`2C)→Lp,∞(R,`2C) = Kp

and

(1.7) ||P±||Lp(R,`2C)→Lp,∞(R,`2C) = 1.

A few words about the proof. To describe our approach, let us first recall the
method used by Hollenbeck and Verbitsky in [6]. In order to establish the inequality

(1.8) ||P±f ||Lp(T,C) ≤ csc(π/p)||f ||Lp(T,C), 1 < p ≤ 2,

they invented a plurisubharmonic function U on C2 satisfying U(0, 0) = 0 and

U(w, z) ≤ cscp(π/p)|w + z|p −max(|w|p, |z|p) for all (w, z) ∈ C2.

The existence of such a function yields (1.8): it suffices to take w = P+f , z = P−f
in the preceding inequality, integrate both sides over T and use the sub-mean-value
property for the subharmonic function U(P+f, P−f) (in fact, one obtains then the
stronger estimate ||max{|P+f |, |P−f |}||Lp(T,C) ≤ csc(π/p)||f ||Lp(T,C)).

In the proof of Theorems 1.1 and 1.2 we proceed similarly and try to construct
an appropriate plurisubharmonic function. We slightly change the language and
establish the announced results using probabilistic tools. This approach has the
following additional advantage: by a stopping time argument, we do not have
to construct the special functions U on the whole `2C × `2C, but only on certain
subdomains of this product. For example, in the proof of the weak-type inequality
for Hilbert transform, it suffices to invent the function U on

(1.9) E = {(w, z) ∈ `2C × `2C : |w − z| ≤ 1}.
The remainder of the paper is organized as follows. We introduce the necessary

probabilistic background in the next section. Then, in Section 3, we study the norm
for the involution operator and Hilbert transform, while Section 4 is devoted to the
result for the Riesz projection. The final section, Section 5, contains the proof of
Theorem 1.3.



BEST CONSTANTS 5

2. Main Lemma

Let (Ω,F ,P) be a complete probability space, filtered by a nondecreasing family
(Ft)t≥0 of sub-σ-fields of F . In addition, assume that F0 contains all the events
of probability 0. Let Z be a continuous-path adapted martingale, taking values
in `2C; the standard norm and scalar product in this Hilbert space is denoted by
| · | and ·, respectively. The conjugation operation is given by z = (z1, z2, . . .) for
z = (z1, z2, . . .) ∈ `2C. We say that a martingale Z is conformal (or analytic), if for
any j, ` we have [Zj , Z`] = 0. Here Zj , Z` denote the j-th and the `-th coordinate
of the process Z, respectively, and

[Zj , Z`] = [ReZj ,ReZ`]− [ImZj , ImZ`] + i([ReZj , ImZ`] + [ImZj ,ReZ`]),

where, for real (Ft)-martingales M and N , the symbol [M,N ] stands for their
quadratic covariance process (see e.g. Dellacherie and Meyer [2]). We will also use
the notation [M,N ]ts = [M,N ]t − [M,N ]s for any s ≤ t. We define the maximal
function of Z by Z∗ = sups≥0 |Zs|; we will also use the truncated maximal functions,
given by Z∗t = sup0≤s≤t |Zs| for t ≥ 0. The p-th norm of a martingale Z is defined
by ||Z||p = supt≥0 ||Zt||p, 1 ≤ p <∞.

Our main tool is described in the following lemma.

Theorem 2.1. Let D be a fixed subdomain of `2C× `2C and suppose that U : D → R
is a continuous and plurisubharmonic function. Let (W,Z) be a bounded analytic
martingale taking values in `2C × `2C, such that (W0, Z0) ∈ D, and let η = ηD =
inf{t > 0 : (Wt, Zt) /∈ D} be the exit time of (W,Z) from D. Then for any t ≥ 0
we have

EU(Wη∧t, Zη∧t) ≥ EU(W0, Z0).

Proof. By the boundedness of (W,Z), continuity of U and Lebesgue’s dominated
convergence theorem, it suffices to prove the theorem for W and Z taking values
in a finite-dimensional subspace of `2C; say, W, Z ∈ Cm for some positive integer m.
Let g be a C∞ nonnegative function on Cm × Cm, supported on the ball of center
0 and radius 1, satisfying

∫
Cm×Cm g = 1. For a fixed ε > 0, let Dε = {z ∈ D :

dist(z, ∂D) > ε} and consider the stopping time

τε = inf{t : (Wt, Zt) /∈ Dε}.

For δ < ε, define Û = Û δ : (Dδ ∩ Cm)× (Dδ ∩ Cm)→ R by the convolution

Û(w, z) =
∫

Cm×Cm

U(w − uδ, z − vδ)g(u, v)dudv,

with the convention U(w, z) = U((w, 0, 0, . . .), (z, 0, 0, . . .)) for w, z ∈ Cm. It follows
directly from the definition that Û is plurisubharmonic (since U has this property).
Furthermore, Û is of class C∞. Applying Itô’s formula and using the fact that
(W,Z) is analytic, we get

(2.1) Û(Wτε∧t, Zτε∧t) = I0 + I1 + I2/2,



6 ADAM OSȨKOWSKI

where
I0 = Û(W0, Z0),

I1 =
m∑
j=1

[∫ τε∧t

0+

Ûwj (Ws, Zs)dWs +
∫ τε∧t

0+

Ûzj (Ws, Zs)dZs

+
∫ τε∧t

0+

Ûwj (Ws, Zs)dW s +
∫ τε∧t

0+

Ûzj (Ws, Zs)dZs

]
,

I2 =
∑
j,`≤m

[∫ τε∧t

0+

Ûwjw`
(Ws, Zs)d[W j ,W `]s +

∫ τε∧t

0+

Ûwjz`
(Ws, Zs)d[W j , Z`]s

+
∫ τε∧t

0+

Ûzjw`
(Ws, Zs)d[Zj ,W `]s +

∫ τε∧t

0+

Ûzjz`
(Ws, Zs)d[Zj , Z`]s

]
.

Note that EI1 = 0 by the properties of stochastic integrals. To deal with the term
I2, observe that for any h, k ∈ Cm we have, by plurisubharmonicity of Û ,∑

j,`≤m

(
Ûwjw`

(w, z)hjh` + Ûwjz`
(w, z)hjk`

+ Ûzjw`
(w, z)kjh` + Ûzjz`

(w, z)kjk`
)
≥ 0.

(2.2)

Fix s < s1 ≤ t and for each n, let (Tnr )1≤r≤rn be a nondecreasing sequence
of finite stopping times with Tn1 = s and Tnrn

= s1, satisfying the condition
limn→∞max1≤r≤rn

|Tnr+1 − Tnr | = 0. Apply (2.2) to w = Wτε∧s, z = Zτε∧s,
h = Wτε∧Tn

r+1
− Wτε∧Tn

r
and k = Zτε∧Tn

r+1
− Zτε∧Tn

r
for each r = 1, 2, . . . , rn.

Summing over r and letting n→∞ gives∑
j,`≤m

[
Ûwjw`

(Wτε∧s, Zτε∧s)[W
j ,W `]τε∧s1

τε∧s + Ûwjz`
(Wτε∧s, Zτε∧s)[W

j , Z`]τε∧s1
τε∧s

+ Ûzjw`
(Wτε∧s, Zτε∧s)[Z

j ,W `]τε∧s1
τε∧s + Ûzjz`

(Wτε∧s, Zτε∧s)[Z
j , Z`]τε∧s1

τε∧s

]
≥ 0.

This yields I2 ≥ 0: simply approximate the integrals by discrete sums. Thus,
combining the above facts with (2.1) gives EÛ(Wτε∧t, Zτε∧t) ≥ EÛ(W0, Z0). Take
δ → 0, and then ε→ 0 to obtain

EU(Wη∧t, Zη∧t) ≥ EU(W0, Z0),

by the continuity of U , continuity of the paths of W and Z, and Lebesgue’s domi-
nated convergence theorem. �

We conclude this section by recalling a well-known fact from complex analysis
(see e.g. Theorem 4.13 in [11]). Note that for w, z ∈ `2C we have w ·z =

∑∞
j=1 wjzj .

Theorem 2.2. Let m ≥ 1 be a fixed integer. Suppose D is a given subdomain of
C and let D′ = {(w, z) ∈ `2C × `2C : w · z ∈ D}. Then if φ : D → R is subharmonic,
then U : D′ → R given by U(w, z) = φ(w · z) is plurisubharmonic.

3. Weak-type estimates for Hilbert transform and involution
operator

Throughout this section, p is a fixed number lying in the interval [1, 2]. We start
by introducing a certain special function Vp, invented by Janakiraman in [7]. Let
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H = {(x, y) : y ≥ 0} be the upper half-space in R2, S = {(x, y) ∈ R2 : |y| ≤ 1}
denote the horizontal strip in R2 and set S+ = {(x, y) : x ≥ 0, y ∈ [0, 1)}. Define,
for α ∈ R and β > 0,

(3.1) Vp(α, β) =
1
π

∫ ∞
−∞

β
∣∣ 2
π log |t|

∣∣p
(α− t)2 + β2

dt.

Then Vp is a harmonic function on H which vanishes as β →∞ and satisfies

(3.2) lim
(α,β)→(t,0)

Vp(α, β) =
∣∣∣∣ 2π log |t|

∣∣∣∣p .
Consider a conformal map φ(z) = i exp(πz/2), which maps S onto H, and introduce
Vp : S → R by

Vp(x, y) =

{
|x|p if |y| = 1,
Vp(φ(x, y)) if |y| < 1.

We see that Vp is harmonic in the interior of S, since it is a real part of a certain
holomorphic function:

(3.3) Vp = ReGp.

In addition, in view of (3.2), Vp is a continuous function on the whole strip S. It is
not difficult to see that Vp satisfies the condition

(3.4) Vp(x, y) = Vp(x,−y) = Vp(−x, y) for all (x, y) ∈ S.
Indeed, this is equivalent to

Vp(α, β) = Vp(−α, β) = Vp
(

α

α2 + β2
,

β

α2 + β2

)
,

which can be verified by substitution t := −t and t := 1/t in (3.1).
We will need the following further properties of Vp. Recall that

Kp =

(
1
π

∫ ∞
−∞

∣∣ 2
π log |t|

∣∣p
t2 + 1

dt

)1/p

.

Lemma 3.1. (i) We have Vp(x, 0) ≥ Vp(0, 0) = K−pp for all x ∈ R.
(ii) For any (x, y) ∈ S+, we have Vpxxx(x, y) ≤ 0.
(iii) For any x, y ∈ R we have |x|p ≤ Vp(x, y) ≤ K−pp 1{|y|<1} + |x|p.
(iv) For any (x, y) ∈ S+, we have yVpx(x, y) + xVpy(x, y) ≥ 0.
(v) There are a0, a1, a2, . . . ∈ C such that the holomorphic function Gp given by

(3.3) satisfies Gp(z) =
∑∞
n=0 anz

2n for all z ∈ S.

Proof. (i) After a change of variables,

Vp(x, 0) =
1
π

∫ ∞
−∞

∣∣ 2
π log |u|+ x

∣∣p
u2 + 1

du,

which implies, by Fubini’s theorem, that

Vpxx(x, 0) =
p(p− 1)

π

∫ ∞
−∞

∣∣ 2
π log |u|+ x

∣∣p−2

u2 + 1
du ≥ 0,

so, by (3.4), Vp(x, 0) ≥ Vp(0, 0) = Vp(0, 1) = K−pp .
(ii) See Lemma 7.4 in [8].
(iii) See Lemma 2.1 in [7].
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(iv) We start from the observation that

(3.5) Vpxy ≥ 0 on S+.

Indeed, by (3.4), we have Vpy(x, 0) = 0 for any x ∈ R; this implies Vpxy(x, 0) = 0
for all x. Furthermore, note that by (ii) and the fact that Vp is harmonic, we have
Vpxyy = −Vpxxx ≥ 0 on S; hence (3.5) follows.

Fix x ≥ 0 and let F (y) = yVpx(x, y)+xVpy(x, y), y ∈ [0, 1). We see that F (0) = 0,
and hence it suffices to prove that F is nondecreasing. Using the harmonicity of
Vp, we get

F ′(y) = yVpxy(x, y) + Vpx(x, y) + xVpyy(x, y)

= yVpxy(x, y) + (Vpx(x, y)− xVpxx(x, y)) ≥ 0,

in virtue of (3.5) and (ii).
(v) By (3.4), the odd order partial derivatives of Vp vanish and hence so do

those of ImGp, by Cauchy-Riemann equations. This implies G(2n+1)
p (0) = 0, as

desired. �

Consider the parabolic region D = {z ∈ C : |2Imz1/2| ≤ 1}.

Lemma 3.2. The function z 7→ Vp(2z1/2), z ∈ D, is harmonic.

Proof. First notice that the function is well defined: in view of (3.4) it does not
matter which square root of z we take. The assertion is an immediate consequence
of Lemma 3.1 (v). Indeed, the function z 7→ Gp(2z1/2) is holomorphic, and hence
its real part is harmonic. �

Now we are ready to introduce the main special function. Let E be given by
(1.9) and let V C

p : E → R be defined by the formula V C
p (w, z) = Vp(2(w · z)1/2).

Note that the definition makes sense: we have the following fact.

Lemma 3.3. For any w, z ∈ `2C we have

(3.6) 2|Re(w · z)1/2| ≤ |w + z| and 2|Im(w · z)1/2| ≤ |w − z|.

Proof. It suffices to establish the first estimate; the second one follows after substi-
tution −z in the place of z. By continuity, we may and do assume that there is a
positive integer m such that wj 6= 0 for all j = 1, 2, . . . , m, and wj = zj = 0 for
j > m. We have

|w + z|2 =
m∑
j=1

[
|wj |2 +

|wjzj |2

|wj |2
+ 2Re(wjzj)

]

≥
m∑
j=1

[2|wjzj |+ 2Re(wjzj)] =
m∑
j=1

(2|Re(wjzj)1/2|)2

(3.7)

and it remains to prove that

m∑
j=1

|Re(wjzj)1/2|2 ≥ |Re(w · z)1/2|2 =

∣∣∣∣∣∣Re

(
m∑
j=1

wjzj

)1/2
∣∣∣∣∣∣
2

.

By induction, it suffices to establish this bound for m = 2. The substitution
(w1z1)1/2 = x1 + iy1 and (w2z2)1/2 = x2 + iy2, for x1, y1, x2, y2 ∈ R, transforms
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the inequality into

x2
1 + y2

1 ≥
x2

1 − y2
1 + x2

2 − y2
2 +

√
(x2

1 − y2
1 + x2

2 − y2
2)2 + 4(x1y1 + x2y2)2

2
.

This can be simplified to (x1y2 − x2y1)2 ≥ 0. The proof is complete. �

Lemma 3.4. For any w, z ∈ `2C such that |w − z| ≤ 1, we have

(3.8) 1−Kp
pV

C
p (w, z) ≥ 1{|w−z|≥1} −Kp

p |w + z|p.

Proof. The inequality is equivalent to

(3.9) Vp(2(w · z)1/2) ≤ K−pp 1{|w−z|<1} + |w + z|p.

By (3.6), if |w− z| < 1, then 2|Im(w · z)1/2| is also smaller than 1; in consequence,
by the part (iii) of Lemma 3.1 and (3.6),

Vp(2(w · z)1/2) ≤ K−pp + (2|Re(w · z)1/2|)p ≤ K−pp + |w + z|p.
Suppose then, that w, z satisfy |w−z| = 1 and fix s ≥ 0. By the part (iv) of Lemma
3.1, the function Fs : [

√
(s2 − 1)+, s] → R, given by Fs(x) = Vp(x,

√
x2 + 1− s2),

is nondecreasing: indeed,

F ′s(x) = Vpx(x,
√
x2 + 1− s2) +

x√
x2 + 1− s2

Vpy(x,
√
x2 + 1− s2) ≥ 0.

Therefore, by (3.6),
|w + z|p = Vp(|w + z|, |w − z|) = F|w+z|(|w + z|)

≥ F|w+z|(2|Re(w · z)1/2|) = Vp(2(w · z)1/2),

where the latter equation is due to the definition of F|w+z| and the identity

(2|Re(w · z)1/2|)2 + |w − z|2 − |w + z|2 = (2|Im(w · z)1/2|)2. �

Now we are ready to establish the probabilistic version of Theorem 1.1.

Theorem 3.5. Let (W,Z) be an analytic martingale taking values in `2C × `2C,
satisfying Z0 = aW 0 for some a ≥ 0. Then

(3.10) P((W − Z)∗ ≥ 1) ≤ Kp
p ||W + Z||pp, 1 ≤ p ≤ 2,

and the constant Kp
p is the best possible.

Proof. It suffices to prove that

(3.11) P(|Wt − Zt| ≥ 1 for some t) ≤ Kp
p ||W + Z||pp.

Indeed, fix ε ∈ (0, 1) and consider the pair (Wt/(1− ε), Zt/(1− ε)). Since

{|W − Z|∗ ≥ 1} ⊆ {|Wt − Zt| ≥ 1− ε for some t},
the inequality (3.11), applied to this new pair, yields

P(|W − Z|∗ ≥ 1) ≤
Kp||W + Z||pp

(1− ε)p

and the claim follows, since ε was arbitrary.
For L > 0, let

DL = {(w, z) ∈ `2C × `2C : |w − z| < 1 and |w + z| ≤ L}
and consider a stopping time τL = inf{t ≥ 0 : (Wt, Zt) /∈ DL}. Clearly, DL ⊂ E
(with E given by (1.9)). By Theorem 2.2 and Lemma 3.2, we have that the function
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U = −1+Kp
pV

C
p , restricted to DL, is plurisubharmonic. Apply Theorem 2.1 to this

function and the bounded analytic martingale (WτL∧t1{τL>0}, ZτL∧t1{τL>0})t≥0.
We get that for any t ≥ 0,

E[1−Kp
pV

C
p (WτL∧t, ZτL∧t)]1{τL>0} ≤ E[1−Kp

pV
C
p (W0, Z0)]1{τL>0} ≤ 0,

since Z0 = aW 0 and V C
p (w, aw) ≥ K−pp for any w ∈ `2C (by part (i) of Lemma 3.1).

Using (3.8), we obtain

(3.12) P(|WτL∧t − ZτL∧t| ≥ 1, τL > 0) ≤ Kp
pE|Wτ∧t + Zτ∧t|p1{τL>0}.

Furthermore, since Z0 = aW 0 for a ≥ 0, we have, by Czebyshev’s inequality,

P(|WτL∧t − ZτL∧t| ≥ 1, τL = 0) ≤ |1− a|pE|W0|p1{τL=0}

≤ |1 + a|pE|W0|p1{τL=0}

≤ Kp
pE|WτL∧t + ZτL∧t|p1{τL=0}.

Adding this to (3.12), we get

P(|WτL∧t − ZτL∧t| ≥ 1) ≤ Kp
pE|Wτ∧t + Zτ∧t|p ≤ Kp

p ||W + Z||pp,

where the latter estimate follows from Doob’s optional sampling theorem. Letting
L→∞ and then t→∞, we get (3.11).

The sharpness of the estimate will be clear from the proof of Theorem 1.1, to be
presented below. �

Proof of Theorem 1.1. First we will prove that

(3.13) ||H||Lp(T,`2C)→Lp,∞(T,`2C) ≤ Kp.

To do this, it suffices to show that for any trigonometric polynomial f(ζ) =∑`
n=−k f̂(n)ζn, ζ = eiθ ∈ T, we have

(3.14)
1

2π
|{θ ∈ [−π, π] : |Hf(eiθ)| ≥ 1}| ≤ Kp

p ||f ||pp.

Note that

(3.15) f+(ζ) =
∑̀
n=0

f̂(n)ζn, f−(ζ) =
−1∑

n=−k

f̂(n)ζ−n

are analytic trigonometric polynomials on T, and hence they can be extended to
polynomials defined on C. Let B = (Bt)t≥0 be a standard two-dimensional Brow-
nian motion (i.e., starting from 0 ∈ C), τ = inf{t ≥ 0 : |Bt| = 1} and set

Wt = f+(Bτ∧t)−
1
2
f̂(0), Zt = f−(Bτ∧t) +

1
2
f̂(0) for t ≥ 0.

Since f+ and f− are analytic, the process (W,Z) is a conformal martingale. We
have Wt − Zt = iHf(Bτ∧t), Wt + Zt = f(Bτ∧t),

1
2π
|{θ ∈ [0, 2π) : |Hf(θ)| ≥ 1}| = P(|Wτ − Zτ | ≥ 1) ≤ P((W − Z)∗ ≥ 1)

and ||W +Z||p = ||f ||Lp(T,`2C). Finally, note that W0 = Z0. Thus it suffices to apply
(3.10) to get (3.14). The inequality ||S||Lp(T,`2C)→Lp,∞(T,`2C) ≤ Kp is proved exactly
in the same manner, using (3.10) with the conformal martingale

(Wt, Zt) = (f+(Bτ∧t), f−(Bτ∧t)), t ≥ 0.
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To get the reverse inequality for the norms of S and H, we observe that the
constant Kp is the lower bound for these norms even if the operators are restricted
to real-valued f . To see this, consider a function F : D→ S, given by

(3.16) F (z) = (2/π) log[(iz − 1)/(z − i)]− i.

Clearly, F is analytic on D, which implies ImF = HReF . In addition, it can be
easily verified that

ReF (eiθ) =
2
π

log
∣∣∣∣1 + sin θ

cos θ

∣∣∣∣ and ImF (eiθ) = 1{|θ|≤π/2} − 1{|θ|>π/2}

for θ ∈ [−π, π]. Consequently, we have ||ImF ||p,∞ = 1 and

(3.17) ||ReF ||p =
(

1
2π

∫ π

−π

∣∣∣∣ 2π log
∣∣∣∣1 + sin θ

cos θ

∣∣∣∣∣∣∣∣p dθ
)1/p

= K−1
p ,

where the latter equality follows from the substitution t = (1 + sin θ)/ cos θ. �

4. Weak-type estimates for Riesz and co-analytic projections

The proof of the weak-type inequality for Riesz and co-analytic projections fol-
lows the same pattern as the one presented in the previous section. Let 1 ≤ p ≤ 2
be fixed, set

E = {(w, z) ∈ `2C × `2C : |w| ≤ 1}
and consider Up : E → R given by

Up(w, z) = pRe(w · z).

Lemma 4.1. For any w, z ∈ `2C satisfying |w| ≤ 1 we have

(4.1) Up(w, z) ≤ |w + z|p − 1{|w|=1}.

Proof. By continuity, we may and do assume that w 6= 0. The claim follows from
the chain of inequalities

|w + z|p = |w|p
∣∣∣∣ w|w| +

z

|w|

∣∣∣∣p ≥ |w|2(1 + 2Re
w · z
|w|2

+
|z|2

|w|2

)p/2
≥ |w|2

(
1 + 2Re

w · z
|w|2

+
|w · z|2

|w|4

)p/2
= |w|2

∣∣∣∣1 +
w · z
|w|2

∣∣∣∣p
≥ |w|2

∣∣∣∣1 + Re
w · z
|w|2

∣∣∣∣p ≥ |w|2(1 + pRe
w · z
|w|2

)
= |w|2 + pRe(w · z). �

Theorem 4.2. Let (W,Z) be an analytic martingale taking values in `2C × `2C,
satisfying W0 = 0 or Z0 = 0. Then

(4.2) P(W ∗ ≥ 1) ≤ ||W + Z||p, 1 ≤ p ≤ 2,

and the constant 1 is the best possible, even if W and Z are assumed to take values
in one-dimensional subspace of `2C.

Proof. The proof is similar to that of Theorem 3.5. Given L > 0, let

EL = {(w, z) ∈ `2C × `2C : |w| ≤ 1, |z| ≤ L}
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and consider a stopping time τL = inf{t : (W,Z) /∈ EL}. Clearly, the function
Up is plurisubharmonic, so by Theorem 2.1, applied to the conformal martingale
(Wt1{τL>0}, Zt1{τL>0}) and combining this with Czebyshev’s inequality yields

EUp(WτL∧t, ZτL∧t) ≥ EUp(W0, Z0) ≥ 0,

since Z0 = 0 and Up(w, 0) = 0 for any w. Now use the majorization (4.1) and let
L→∞, t→∞ to obtain

P(|Wt| ≥ 1 for some t) ≤ ||W + Z||p,

which gives (4.2). The sharpness of the estimate is clear: take W to be a standard
two-dimensional Brownian motion stopped at the unit circle T and Z ≡ 0 to obtain
that both sides are equal to 1. �

Proof of Theorem 1.2. We proceed as in the proof of Theorem 1.1 and show that
for any trigonometric polynomial f(ζ) =

∑`
n=−k f̂(n)ζn we have

(4.3) |{θ ∈ [−π, π] : |P+f(eiθ)| ≥ 1}|/(2π) ≤ ||f ||pp,

(4.4) |{θ ∈ [−π, π] : |P−f(eiθ)| ≥ 1}|/(2π) ≤ ||f ||pp.

These estimates follow from (4.2) applied to the conformal martingales (Wt, Zt)t≥0 =
(f+(Bτ∧t), f−(Bτ∧t))t≥0 and (Wt, Zt)t≥0 = (f−(Bτ∧t), f+(Bτ∧t))t≥0, respectively.
Here, as above, f+ and f− are given by (3.15), B is a standard two-dimensional
Brownian motion and τ is the exit time of B from the unit disc.

As in the probabilistic setting, the sharpness of the estimate is trivial: take
f(ζ) = ζ to obtain equality in (4.3), and f(ζ) = ζ−1 to get equality in (4.4). �

5. The weak norms in the nonperiodic case

In this section we will apply the results above in order to derive the corresponding
norms in the nonperiodic case. It will be convenient to split the proof into two parts.

Upper bounds for the norms. To deduce the estimates

||HR||Lp(R,`2C)→Lp,∞(R,`2C) = ||SR||Lp(R,`2C)→Lp,∞(R,`2C) ≤ Kp

and
||P±||Lp(R,`2C)→Lp,∞(R,`2C) ≤ 1,

from their counterparts in the periodic setting, we use a standard argument known
as ”blowing up the circle”, which is due to Zygmund ([13], Chapter XVI, Theorem
3.8). For the reader’s convenience, we sketch the proof of the weak type estimate
for the Hilbert transform. Let f = (f1, f2, . . .) and let uj =Ref j , vj =Imf j ,
j = 1, 2, . . .. Introduce the functions gn = (g1

n, g
2
n, . . .), hn = (h1

n, h
2
n, . . .) by

gjn(x) =
1

2πn

∫ πn

−πn
uj(t) cot

x− t
2n

dt,

hjn(x) =
1

2πn

∫ πn

−πn
vj(t) cot

x− t
2n

dt,

for j, n ≥ 1. As shown by Zygmund [13], for any fixed j we have gjn → HRuj and
hjn → HRvj a.e. as n→∞. On the other hand, the function x 7→ gjn(nx)+ ihjn(nx)
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is precisely the periodic Hilbert transform of the function x 7→ f j(nx), |x| ≤ π (see
(1.1)). Therefore, by Theorem 1.1, for any ε > 0,

|{x ∈ [−πn, πn] : |gn(x) + ihn(x)| ≥ 1− ε}|
= n

∣∣{|x| ∈ [−π, π] : |HTf(nx)| ≥ 1− ε}
∣∣

≤
nKp

p

(1− ε)p

∫ π

−π
|f(nx)|pdx =

Kp
p

(1− ε)p

∫ πn

−πn
|f(x)|pdx ≤

Kp
p

(1− ε)p
||f ||pp.

Now let n→∞ to obtain

|{x ∈ R : |HRf(x)| ≥ 1}| ≤
Kp
p

(1− ε)p
||f ||pp,

and since ε > 0 was arbitrary, we obtain ||HR||Lp(R,`2C)→Lp,∞(R,`2C) ≤ Kp.
Lower bounds for the norms. We will use Davis’ argument from [1]. Consider

a function K(z) = (1 + z)2/4z, which maps the half disc D ∩ H onto H, and the
boundary of D ∩ H onto R. Let L be the inverse of K. Then L maps [0, 1] onto
the half circle {eiθ : 0 ≤ θ ≤ π}, and R \ [0, 1] onto (−1, 1). Let dn be the density
of Ln([0, 1]) on T with respect to the normalized Lebesgue’s measure, i.e. for any
−π < α < β < π,∫ β

α

dn(eiθ)
dθ
2π

=
∣∣{r ∈ [0, 1] : Ln(r) ∈ {eiθ : α < θ < β}

}∣∣ .
Then (see Lemma 3 in [1]) dn → 1 uniformly on T.

Recall the map F be given by (3.16) and set Mn = F (Ln(z)) and mn(r) =
ReMn(r) for z ∈ H and r ∈ R. It can be easily verified that Mn maps R\ [0, 1] onto
{ai : a ∈ (−1, 1)}, which implies that mn(r) = 0 for r /∈ [0, 1] and, in consequence,

||mn||pp =
∫

[0,1]

|mn(r)|pdr =
∫ π

−π
|ReF (eiθ)|pdn(eiθ)

dθ
2π

→
∫ π

−π
|ReF (eiθ)|p dθ

2π
= K−pp ,

in view of (3.17). It remains to observe that SRmn = HRmn =ImMn and Mn maps
[0, 1] onto the boundary of S, so

||SRmn||p,∞ = ||HRmn||p,∞ ≥ |{r ∈ R : |HRmn(r)| ≥ 1}| ≥ |[0, 1]| = 1,

which completes the proof of (1.6). To deal with the Riesz projection, let hn(s) =
Ln(s) for s ∈ R and n = 1, 2, . . .. One easily derives that

(5.1) h(s) =

{
s

(s+
√
s2−s)2 if s ∈ (1,∞),
s

(s−
√
s2−s)2 if s ∈ (−∞, 0).

Since Ln is analytic, we have PR
+hn = hn. In addition,

||hn||pp =
∫

[0,1]

|hn(s)|pds+
∫

R\[0,1]

|hn(s)|pds n→∞−−−−→ 1,

because, by (5.1), the second integral converges to 0. Finally,

|{s ∈ R : |hn(s)| ≥ 1}| ≥ |[0, 1]| = 1.

Thus ||P+||Lp(R,`2C)→Lp,∞(R,`2C) ≥ 1. The bound for P− is proved in the same manner,
using the functions hn.
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