
No. 11] Proc. Japan Acad., 88, Ser. A (2012) 1

Weak Φ-inequalities for the Haar system and differentially subordinated

martingales

By Adam Osȩkowski

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

Abstract: For a wide class of Young functions Φ : [0,∞)→ [0,∞), we determine the best
constant CΦ such that the following holds. If (hk)k≥0 is the Haar system on [0, 1], then for any
vectors ak from a separable Hilbert space H and εk ∈ {−1, 1}, k = 0, 1, 2, . . ., we have∣∣∣∣∣

{
x ∈ [0, 1] :

∣∣∣∣∣
n∑
k=0

εkakhk(x)

∣∣∣∣∣ ≥ 1

}∣∣∣∣∣ ≤ CΦ

∫ 1

0

Φ

(∣∣∣∣∣
n∑
k=0

akhk(x)

∣∣∣∣∣
)

dx, n = 0, 1, 2, . . . .

This is generalized to the sharp weak-Φ inequality

P
(

sup
t≥0
|Yt| ≥ 1

)
≤ CΦ sup

t≥0
EΦ(|Xt|),

where X, Y stand for H-valued martingales such that Y is differentially subordinate to X. These
statements complement and generalize the results of Burkholder, Suh, the author and others.
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1. Introduction Our motivation comes
from a very basic question about (hk)k≥0, the Haar
system on [0, 1]. A classical result of Marcinkiewicz
[8] (see also Paley [13]) states that if 1 < p < ∞,
then there is a universal finite constant cp such that
(1.1)

c−1
p
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∣∣∣∣∣
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∣∣∣∣∣
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∣∣∣∣∣
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∣∣∣∣∣
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∣∣∣∣∣
∣∣∣∣∣
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for any n and any ak ∈ R, εk ∈ {−1, 1}, k =
0, 1, 2, . . ., n. In other words, this means that the
Haar system is an unconditional basis of Lp([0, 1]),
1 < p <∞. This result was extended by Burkholder
[4] to the martingale setting. Let (Ω,F ,P) be a
probability space, filtered by (Fk)k≥0, a nondecreas-
ing family of sub-σ-fields of F . Assume that f =
(fk)k≥0 is a real-valued martingale with the differ-
ence sequence (dfk)k≥0 given by df0 = f0 and dfk =
fk − fk−1 for k ≥ 1. Let g be a transform of f by
a real predictable sequence v = (vk)k≥0 bounded in
absolute value by 1: that is, dgk = vkdfk for all k ≥ 0
and by predictability we mean that each term vk is
measurable with respect to F(k−1)∨0. Then for 1 <
p <∞ there is an absolute constant c′p for which
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(1.2) sup
n≥0
||gn||p ≤ c′p sup

n≥0
||fn||p.

Let cp(1.1), c′p(1.2) denote the optimal constants in
(1.1) and (1.2), respectively. The Haar system is
a martingale difference sequence with respect to its
natural filtration (on the probability space being the
Lebesgue’s unit interval) and hence so is (akhk)k≥0,
for given fixed real numbers a0, a1, a2, . . .. There-
fore, cp(1.1) ≤ c′p(1.2) for all 1 < p <∞. In fact, by
the results of Burkholder [4] and Maurey [9], these
constants coincide: cp(1.1) = c′p(1.2) for all 1 <

p < ∞. The precise value of cp(1.1) was identi-
fied by Burkholder in [4]: cp(1.1) = p∗ − 1 (where
p∗ = max{p, p/(p − 1)}) for 1 < p < ∞. Further-
more, the constant does not change if we allow the
martingales and the coefficients ak to take values in
a separable Hilbert space H. In fact, (1.2) can be
studied under the less restrictive assumption of dif-
ferential subordination in the continuous-time set-
ting. Suppose that (Ω,F ,P) is complete and equip
it with a right-continuous filtration (Ft)t≥0 such that
F0 contains all the events of probability 0. Let X,
Y be two adapted cadlag martingales taking values
in H which, as we may and do assume from now
on, is equal to `2. Following Wang [16], we say that
Y is differentially subordinate to X, if the process



2 A. Osȩkowski [Vol. 88(A),

([X,X]t− [Y, Y ]t)t≥0 is nondecreasing and nonnega-
tive as a function of t. Here [X,Y ] =

∑∞
j=0[Xj , Y j ],

whereXj , Y j stand for the j-th coordinates of X and
Y , respectively, and [Xj , Y j ] is the quadratic covari-
ance process of Xj and Y j (see e.g. Dellacherie and
Meyer [6]). If we treat the discrete-time martingales
f = (fk)∞k=0, g = (gk)∞k=0 as continuous-time pro-
cesses (via Xt = fbtc and Yt = gbtc for t ≥ 0), then
the above condition reads

|dgk| ≤ |dfk| for k ≥ 0,

which is the original definition of the differential sub-
ordination due to Burkholder [4]. This domination is
satisfied in the setting of martingale transforms stud-
ied above; thus the following result, proved by Wang
[16] (see also the earlier paper [5] by Burkholder),
extends (1.1) and (1.2): for 1 < p <∞,

(1.3) sup
t≥0
||Yt||p ≤ (p∗ − 1) sup

t≥0
||Xt||p,

and the constant p∗ − 1 is the best possible. This
result have found many applications, in particular to
the study of the Lp-boundedness of wide classes of
Fourier multipliers (cf. [1], [2] and [7]). See also [10]
and [11] for related extensions of (1.3).

For p = 1 the inequalities (1.1), (1.2) and (1.3)
do not hold with any finite constant, but one can
show an appropriate weak-type (1, 1) bound. In fact
a much more general weak Φ-estimate is valid. Sup-
pose that Φ : [0,∞) → [0,∞) is an increasing con-
vex function such that Φ is twice differentiable on
(0,∞), Φ′ is concave and Φ(0) = Φ′(0+) = 0. Then,
as shown by Burkholder [4] and Wang [16], if Y is
differentially subordinate to X, then

P(sup
t≥0
|Yt| ≥ 1) ≤2

(∫ ∞
0

Φ(t)e−tdt
)−1

sup
t≥0

EΦ(|Xt|)

and the inequality is sharp. In particular, if we take
Φ(t) = tp, 1 ≤ p ≤ 2, then we obtain a weak-type
(p, p) estimate with the best constant 2/Γ(p+ 1). A
natural problem arises: what happens for other func-
tions Φ, say, for which Φ′ is convex? This question
turns out to be much more difficult. A partial an-
swer to it was given by Suh [15], as many as twenty
years after Burkholder’s paper [4]. She showed that
if Φ(t) = tp, p > 2, then the best constant CΦ in

(1.4) P(sup
t≥0
|Yt| ≥ 1) ≤ CΦ sup

t≥0
EΦ(|Xt|)

for real-valued X, Y is equal to pp−1/2. The purpose
of this note is to extend this inequality to a much

wider class of functions. Denote by C the class of all
strictly convex functions Φ : [0,∞) → [0,∞) which
are C2 and satisfy

(a) Φ(0) = limx↓0 Φ′(x)/x = 0,

(b)
∣∣∣∫ 1

0
log Φ′(s)ds

∣∣∣ <∞,

(c) Φ′′(x)x ≥ Φ′(x) for x > 0

(for example, Φ(t) = tp, p > 2; or Φ(t) = et
p − 1,

p > 2; see Section 4). Our result can be formulated
as follows.

Theorem 1.1. Let Φ ∈ C. Assume that X, Y
are Hilbert-space-valued martingales such that Y is
differentially subordinate to X. Then

(1.5) P
(

sup
t≥0
|Yt| ≥ 1

)
≤ (2bΦ′(b))−1 sup

t≥0
EΦ(|Xt|),

where b is the unique solution to the equation∫ b

0

Φ′′(s)s
Φ′(s)

ds = 1− b.

The inequality is sharp even in the setting of the
Haar system. Precisely, for any C < (2bΦ′(b))−1

there is an integer n and the numbers a0, a1, . . .,
an ∈ R, ε1, ε2, . . ., εn ∈ {−1, 1} for which∣∣∣∣∣

{
x ∈ [0, 1] :

n∑
k=0

εkakhk(x) ≥ 1

}∣∣∣∣∣
> CΦ

∫ 1

0

(∣∣∣∣∣
n∑
k=0

akhk(x)

∣∣∣∣∣
)

dx.

(1.6)

Let us stress here that on the left-hand side of
(1.6), we have the one-sided estimate, i.e., the series∑n
k=0 εkakhk is not in absolute values.

While Suh’s proof is very technical and involves
the analysis of complicated differential equations, our
approach is much simpler, works in the vector case
and yields much more general statement. It rests on
the properties of an appropriate special function and
uses the so-called integration method (see e.g. [12]).

The remainder of this note is split into three
parts. In the next section we present the proof of
(1.5), and in Section 3 we deal with the sharpness
of this estimate for the Haar system. The final part
contains some examples. Throughout Sections 2 and
3, we assume that Φ is a fixed element of C.

2. Proof of (1.5). We start with the follo-
wing straightforward fact.

Lemma 2.1. There exist α, β > 0 such that

(2.1) Φ(x) ≥ αx2 − β for x > 0.
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Proof. We may restrict ourselves to x > 1, re-
placing β with max{α, β}, if necessary. By (c), the
function x 7→ Φ′(x)/x is nondecreasing on (0,∞), so
Φ′(x) ≥ Φ′(1)x for x ≥ 1 and thus

Φ(x) = Φ(1) +
∫ x

1

Φ′(s)ds ≥ Φ(1) +
Φ′(1)(x2 − 1)

2
.

This yields (2.1).
Introduce the function γ : [0,∞)→ [0,∞) by

γ(x) =
∫ x

0

Φ′′(s)s− Φ′(s)
Φ′(s)

ds.

The finiteness of γ follows from (b) and the integra-
tion by parts; this also shows that limx→0 γ(x) = 0.
Furthermore, by (c), γ is nondecreasing and hence
there is a unique b ∈ (0, 1/2] satisfying γ(b)+2b = 1.
Define a function a : (0,∞)→ R by the formula

a(γ(x) + x) = (γ(x) + x)2 · Φ′′(x)x− Φ′(x)
2x3Φ′′(x)

· Φ′(x).

Let us gather some properties of these objects.
Lemma 2.2. For any x > 0 we have

(2.2)
∫ γ(x)+x

0

a(r)
r2

dr =
Φ′(x)

2x
,

(2.3)
∫ γ(x)+x

0

a(r)
r

dr =
Φ′(x)γ(x)

2x

and

(2.4)
∫ γ(x)+x

0

a(r)dr =
Φ′(x)(γ(x)2 + x2)

2x
− Φ(x).

Proof. By the definition of γ, we have

(2.5) γ′(x) + 1 = Φ′′(x)x/Φ′(x), x > 0.

To show (2.2), we make the substitution r = γ(s)+s

and use (2.5) to obtain the equivalent identity∫ x

0

Φ′′(s)s− Φ′(s)
2s2

ds =
Φ′(x)

2x
,

which holds true, because of the condition (a). To
check (2.3) and (2.4), note that the expressions on
the left and on the right tend to 0 as x→ 0. Thus it
suffices to verify whether the corresponding deriva-
tives are equal. A direct differentiation of both sides
of (2.3) leads to the equality

a(γ(x) + x)(γ′(x) + 1)
γ(x) + x

=
(Φ′′(x)x− Φ′(x))γ(x)

2x2

+
Φ′(x)γ′(x)

2x
.

Plugging the formula for the function a and using
(2.5) we obtain, after some straightforward calcula-
tions, that both sides above are equal to

(γ(x) + x)(Φ′′(x)x− Φ′(x))/(2x2).

For the equation (2.4) the verification is similar; we
leave the details to the reader.

The next step is to define an auxiliary special
function u : H×H → R. It is given by

u(x, y) =

{
(|y| − 1)2 − |x|2 if |x|+ |y| ≥ 1,
0 if |x|+ |y| < 1.

The key property of this object is stated in Lemma
2.3 below. Note that if X is square-integrable and
Y is differentially subordinate to X, then, by (1.3),
Y also belongs to L2. Consequently, the pointwise
limits X∞ = limt→∞Xt, Y∞ = limt→∞ Yt exist al-
most surely.

Lemma 2.3. Assume that X, Y are martin-
gales such that Y is differentially subordinate to X

and X ∈ L2. Then Eu(X∞, Y∞) ≤ 0.
For the proof, see Lemma 2.2 in [12].
We move to the central object of this note. In-

troduce the special function U : H×H → R by

U(x, y) =
∫ 1−b

0

a(r)u(x/r, y/r)dr.

It is easy to check that

U(x, y) = (|y|2 − |x|2)
∫ (1−b)∧(|x|+|y|)

0

a(r)
r2

dr

− 2|y|
∫ (1−b)∧(|x|+|y|)

0

a(r)
r

dr

+
∫ (1−b)∧(|x|+|y|)

0

a(r)dr.

Let us show the crucial property of U .
Lemma 2.4. For any x, y ∈ H we have

(2.6) U(x, y) ≥ 2Φ′(b)b 1{|y|≥1} − Φ(|x|).

Proof. Since U depends on x and y through
their norms, it suffices to show the majorization for
H = R and x, y ≥ 0. We will first deal with the case
x+ y ≤ 1− b. Fix u ∈ (0, b] and let

F (s) = U(u− s, γ(u) + s), G(s) = −Φ(u− s)

for s ∈ [−γ(u), u]. Clearly, F is linear and G is
concave. Furthermore, F ′(0) is given by

2(γ(u) + u)
∫ γ(u)+u

0

a(r)
r2

dr − 2
∫ γ(u)+u

0

a(r)
r

dr,
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which, by (2.2) and (2.3), equals Φ′(u) = G′(0).
Similarly, (2.2)-(2.4) imply that F (0) = G(0). In
consequence, we have F (s) ≥ G(s) for all s and hence
the substitution x = u − s, y = γ(u) + s gives (2.6)
on the set {(x, y) : x+ y ≤ 1− b}.

Now, suppose that x + y > 1 − b. Then the
majorization takes the form

(y2 − x2)
∫ 1−b

0

a(r)
r2

dr − 2y
∫ 1−b

0

a(r)
r

dr

+
∫ 1−b

0

a(r)dr − 2Φ′(b)b 1{y≥1} + Φ(x) ≥ 0.

(2.7)

In fact, this bound holds true for all x, y ≥ 0. In-
deed, for a fixed x, the left-hand side is a convex
function of y, which attains its minimum at

y0 =
∫ 1−b

0

a(r)
r

dr

(∫ 1−b

0

a(r)
r2

dr

)−1

= γ(b) < 1

(to see the second equality, apply (2.2) and (2.3) with
x = b). In consequence, it suffices to verify (2.7) for
y = γ(b) and y = 1 only. If the first possibility oc-
curs, then both sides are equal for x = b (by virtue
of (2.2), (2.3) and (2.4)). Moreover, if we differenti-
ate the left hand side of (2.7) over x, we obtain the
expression

(2.8) 2x

(
−
∫ 1−b

0

a(t)
t2

dt+
Φ′(x)

2x

)
.

By (2.2), this is zero for x = b, and since x 7→
Φ′(x)/x is nondecreasing (see (c)), we deduce that
(2.8) is nonpositive for x ≤ b and nonnegative for
x ≥ b. This gives (2.7) for x ≥ 0 and y = γ(b).
When y = 1, we argue similarly: both sides of (2.7)
are equal for x = b, and the partial derivative with
respect to x (which is again given by (2.8)) has the
appropriate behavior. This completes the proof.

We are ready to establish our main inequality.
Proof of (1.5). We start with some reductions.

First, we may assume that supt≥0 EΦ(|Xt|) < ∞,
since otherwise there is nothing to prove. By (2.1),
this assumption gives that X is bounded in L2 and
hence, by Burkholder’s inequality (1.3), so is Y . The
second observation is that it suffices to show that

(2.9) 2bΦ′(b)P(|Y∞| ≥ 1) ≤ EΦ(|X∞|).

To see this, let us introduce the stopping time
τ = inf{t ≥ 0 : |Yt| ≥ 1} (with the usual con-
vention inf ∅ = ∞) and the stopped martingales
Xτ = (Xτ∧t)t≥0, Y τ = (Yτ∧t)t≥0. Obviously, Y τ

is differentially subordinate to Xτ , EΦ(|Xτ
∞|) ≤

EΦ(|X∞|) = supt≥0 EΦ(|Xt|) and

{sup
t≥0
|Yt| ≥ 1} = {Yτ ≥ 1} = {Y τ∞ ≥ 1}.

Therefore, if we succeed in proving (2.9), we will ap-
ply it to the pair Xτ , Y τ and obtain the stronger
bound (1.5).

Thus, all we need is to establish (2.9). Note that
the auxiliary function u satisfies

u(x, y) ≤ (|y| − 1)2 + |x|2 ≤ |x|2 + |y|2 + 1

for all x, y ∈ H, and hence

E
∫ 1−b

0

a(r)|u(X∞/r, Y∞/r)|dr

≤ E
∫ 1−b

0

a(r)
r2

(|X∞|2 + |Y∞|2 + r2)dr <∞.

Therefore, we are permitted to apply Fubini’s theo-
rem and obtain, by Lemma 2.3,

EU(X∞, Y∞) =
∫ ∞

0

a(r)Eu(X∞/r, Y∞/r)dr ≤ 0,

because for any r ≥ 0, the martingale Y/r is differ-
entially subordinate to X/r. It remains to use (2.6)
to obtain (2.9).

3. Sharpness. Let CΦ be the least number,
depending only on Φ, such that for all n, all real
numbers a0, a1, . . ., an and any sequence ε0, ε1, . . .,
εn of signs we have∣∣∣∣∣
{
x :

n∑
k=0

εkakhk(x) ≥ 1

}∣∣∣∣∣ ≤CΦ

∫ 1

0

Φ

(∣∣∣∣∣
n∑
k=0

akhk

∣∣∣∣∣
)
.

It follows from the results of Maurey [9] or
Burkholder (see Section 10 in [4]), that CΦ coincides
with the optimal constant C ′Φ in the estimate

P(sup
n≥0

gn ≥ 1) ≤ C ′Φ sup
n≥0

EΦ(|fn|),

valid for all real martingales f and their transforms g
by predictable sequences bounded in absolute value
by 1. Passing to the continuous-time setting and
using some standard approximation, we see that C ′Φ
is precisely the best constant in the inequality

P(sup
t≥0

Yt ≥ 1) ≤ C ′Φ sup
t≥0

EΦ(|Xt|),

in which X is a real martingale and Y is the
stochastic integral, with respect to X, of a certain
predictable process H = (Ht)t≥0 taking values in
[−1, 1]. For the precise justification of this step, see



No. 11] Inequalities for the Haar system and martingales 5

Bichteler [3]. Summarizing, the optimality of CΦ will
follow if we construct a pair (X,Y ) as above, for
which the ratio P(supt≥0 Yt ≥ 1)/ supt≥0 EΦ(|Xt|) is
arbitrarily close to (2bΦ′(b))−1.

Fix ε ∈ (0, 1 − b). Let B = (Bt)t≥0 be a
standard, one-dimensional Brownian motion starting
from 0 and let β = (βt)t≥0 be given by

βt = ε−
∫ t

0

sgnBs dBs, t ≥ 0

(here sgnx = 1 if x > 0 and sgnx = −1 if x ≤ 0). By
Itô-Tanaka’s formula (see e.g. Revuz and Yor [14]),
we have βt = ε+Lt−|Bt|, where L = (Lt)t≥0 denotes
the local time of B at 0. In consequence, we see that
the maximum process (sups≤t βs)t≥0 increases on the
set {t : Bt = 0}. Next, introduce the stopping time
σ = inf{t : βt = 1− b or βt = γ(Bt)}. Furthermore,
if βσ = γ(Bσ), we put τ = σ; if βσ = 1− b, then, as
we have already observed above, we have Bσ = 0 and
in this case we let τ = inf{t ≥ σ : Bt ∈ {−b− ε, b}}.
It is easy to see that τ is exponentially integrable,
since τ ≤ inf{t : |Bt| ≥ b+ ε}.

Define the martingales X, Y by Xt = Bτ∧t and
Yt =

∫ t
0
HsdXs, where H is a predictable process

given by

Hs =

{
−sgnBs if s ≤ σ,
−1 if s > σ.

To gather some intuition about the behavior of the
pair (X, ε + Y ), let us make the following observa-
tions. The pair starts from the point (0, ε) and takes
values in the set {(x, y) : y ≥ γ(|x|)}; when it is
in the first quadrant, it moves along a line segment
of slope −1 until it reaches the y-axis or the curve
{(x, y) : y = γ(x)}; if it belongs to the second quad-
rant, it moves along the line segment of slope 1 until
it reaches the y-axis or the curve y = γ(−x); when
it is on the y-axis and Y < 1 − b, then it makes
“an infinitely small martingale move” along the line
segment of slope 1. Finally, if the pair ever reaches
the point (0, 1 − b), then it starts moving along the
line segment of slope −1, until it reaches the point
(b, γ(b)) or (−b− ε, 1 + ε).

To compute the lower bound for the ratio
P(supt≥0 |Yt| ≥ 1)/ supt≥0 EΦ(|Xt|), we will again
use the special functions u and U . Fix r ∈ (0, 1− b)
and introduce the stopping time η = inf{t ≥ 0 : ε+
Yt ≥ r}. Of course, we have

u(Xτ∧η/r, (ε+ Yτ∧η)/r) = u(X0/r, (ε+ Y0)/r),

since both sides are 0 if ε ≤ r, and η ≡ 0 if ε >
r. In addition, the above analysis of (X,Y ) shows
that for t ∈ (η, τ ], the rescaled pair (Xt/r, (ε+Yt)/r)
belongs to the set {(x, y) : y ≥ 0, |x|+y ≥ 1}. Howe-
ver, u coincides on this set with the smooth function
(x, y) 7→ (y− 1)2−x2. Thus we are allowed to apply
Itô’s formula to u(Xt/r, (ε+ Yt)/r) and obtain

(3.1) u(Xτ/r, (ε+ Yτ )/r) = u(0, ε/r) + I1 + I2,

where

I1 = −
∫ τ

τ∧η

2Xs

r2
dXs +

∫ τ

τ∧η
2
(
ε+ Ys
r
− 1
)

dYs
r
,

I2 = − 1
r2

∫ τ

η

d[X,X]s +
1
r2

∫ τ

η

d[Y, Y ]s = 0.

Since X and Y are bounded and τ is exponentially
integrable, we have EI1 = 0, by the properties of
stochastic integrals. Therefore, taking expectation
of both sides of (3.1), we see that

Eu(Xτ/r, (ε+ Yτ )/r) = u(0, ε/r) ≥ 0.

Consequently, by Fubini’s theorem (which is applica-
ble - repeat the reasoning from the previous section),

0 ≤ EU(Xτ , ε+ Yτ )

= U(−b− ε, 1 + ε)P(ε+ Yτ = 1 + ε)

+ EU(Xτ , ε+ Yτ )1{ε+Yτ<1+ε}.

However, on {ε+Yτ < 1+ε} = {Yτ < 1} we have ε+
Yτ = γ(|Xτ |) and hence U(Xτ , ε + Yτ ) = −Φ(|Xτ |).
Thus, the preceding inequality implies

P(Yτ = 1) · (U(−b− ε, 1 + ε) + Φ(b+ ε)) ≥ EΦ(|Xτ |)

and, in consequence,

P(supt≥0 Yt ≥ 1)
supt≥0 EΦ(|Xt|)

≥ 1
U(−b− ε, 1 + ε) + Φ(b+ ε)

.

It remains to let ε → 0: then the right-hand side
converges to (2bΦ′(b))−1. This proves the desired
sharpness.

4. Examples. Finally, we present three
families of functions Φ from C, for which the corre-
sponding weak-type constants CΦ have a nice form.

4.1. Suh’s estimate. We start with the
choice Φ(t) = tp, p > 2. It is straightforward to
check that Φ belongs to the class C. Furthermore,
all the parameters can be easily computed. Namely,
we have γ(x) = (p−2)x, b = 1/p and hence the weak
(p, p) constant equals

CΦ = (2bΦ′(b))−1 =
pp−1

2
.
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4.2. An exponential bound. Now take
Φ(t) = et

p − 1, p > 2. Then

Φ′(t) = ptp−1et
p

, Φ′′(t) = ptp−2et
p

(p− 1 + ptp),

so it is evident that (a), (b) and (c) hold true. Next,
we derive that

γ(x) = (p− 2)x+
p

p+ 1
xp+1, x ≥ 0.

In consequence, the best weak-Φ constant equals

CΦ = (2pbpeb
p

)−1,

where b is the unique solution to the equation

pb+
p

p+ 1
bp+1 = 1.

4.3. Another exponential bound. Our fi-
nal example is the following. Pick p > 2 and let Φ
be given by

Φ(t) =
∫ t

0

sp−1esds, t ≥ 0.

We have

Φ′(t) = tp−1et, Φ′′(t) = tp−2et(p− 1 + t),

so Φ belongs to the class C. We compute that

γ(x) = (p− 2)x+
x2

2
, x ≥ 0,

and hence the parameter b is the solution to

b2

2
+ pb = 1,

i.e., it is given by

b =
√
p2 + 2− p.

Thus, the best weak-Φ constant equals

CΦ =
1
2

(√
p2 + 2 + p

2

)p
exp

(
p−

√
p2 + 2

)
.
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[ 11 ] A. Osȩkowski, Sharp moment inequalities for
differentially subordinated martingales, Studia
Math. 201 (2010), 103–131.
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