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Abstract. The paper contains the study of weak-type constants of Fourier

multipliers resulting from modulation of the jumps of Lévy processes. We
exhibit a large class of functions m : Rd → C, for which the corresponding

multipliers Tm satisfy the estimates

||Tmf ||Lp,∞(Rd) ≤
[

1

2
Γ

(
2p− 1

p− 1

)](p−1)/p

||f ||Lp(Rd)

for 1 < p < 2, and

||Tmf ||Lp,∞(Rd) ≤
[
pp−1

2

]1/p
||f ||Lp(Rd)

for 2 ≤ p < ∞. The proof rests on a novel duality method and a new sharp

inequality for differentially subordinated martingales. We also provide lower
bounds for the weak-type constants by constructing appropriate examples for

the Beurling-Ahlfors operator on C.

1. Introduction

The martingale theory plays a fundamental role in obtaining the Lp bounds for
many important singular integrals and Fourier multipliers, and the purpose of this
paper is to explore further this connection. We shall introduce a new method which
will allow us to deduce sharp weak type (p, p) inequalities for a large class of Fourier
multipliers from an appropriate bound for differentially subordinated martingales.

A celebrated theorem of Burkholder [7] states that if X, Y are Hilbert-space-
valued martingales such that Y is differentially subordinate to X (see the next
section for the necessary definitions), then we have the sharp estimate

(1.1) ||Y ||p ≤ (p∗ − 1)||X||p, 1 < p <∞,

where p∗ = max{p, p/(p− 1)}. The inequality breaks down for p = 1, but we have
the corresponding weak-type bound [7]:

(1.2) P(sup
t≥0
|Yt| ≥ 1) ≤ 2

Γ(p+ 1)
||X||pp, 1 ≤ p ≤ 2,
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and the constant is the best possible. The optimal constant in the case 2 < p <∞
was determined by Suh in [16]: we have

(1.3) P(sup
t≥0
|Yt| ≥ 1) ≤ pp−1

2
||X||pp.

The moment inequality (1.1) can be used to obtain tight Lp bounds for a wide
class of Fourier multipliers. Recall that for any bounded function m : Rd → C, there
is a unique bounded linear operator Tm on L2(Rd), called the Fourier multiplier with
the symbol m, which is given by the following relation between Fourier transforms:

T̂mf = mf̂.

The norm of Tm on L2(Rd) is equal to ||m||L∞(Rd) and it has been long of interest to
study those m, for which the corresponding Fourier multiplier extends to a bounded
linear operator on Lp(Rd), 1 < p < ∞. One of the fundamental examples of such
multipliers is the collection of Riesz transforms R1, R2, . . ., Rd in Rd, which corre-
spond to the symbols iξ1/|ξ|, iξ2/|ξ|, . . ., iξd/|ξ|, respectively. Using (1.1), Bañuelos
and Wang [6] showed the following bound for the vector R = (R1, R2, . . . , Rd):

||Rf ||Lp(Rd;Rd) ≤ 2(p∗ − 1)||f ||Lp(Rd), 1 < p <∞.

See also Iwaniec and Martin [12] for related results, obtained by a purely analytic
approach.

In the present paper we shall consider the following class of symbols, studied
by Bañuelos and Bogdan [2] and Bañuelos, Bielaszewski and Bogdan [3]. Let ν
be a Lévy measure on Rd: that is, a nonnegative Borel measure on Rd such that
ν({0}) = 0 and ∫

Rd
min{|x|2, 1}ν(dx) <∞.

Assume further that µ is a finite Borel measure on the unit sphere S of Rd and fix
two Borel functions φ on Rd and ψ on S which take values in the unit ball of C.
We define the associated multiplier m = mφ,ψ,µ,ν on Rd by

(1.4) m(ξ) =
1
2

∫
S〈ξ, θ〉

2ψ(θ)µ(dθ) +
∫
Rd [1− cos〈ξ, x〉]φ(x)ν(dx)

1
2

∫
S〈ξ, θ〉2µ(dθ) +

∫
Rd [1− cos〈ξ, x〉]ν(dx)

if the denominator is not 0, and m(ξ) = 0 otherwise. Here 〈·, ·〉 stands for the
scalar product in Rd. As proved in [2] and [3] (see also Section 3 below), the Fourier
multipliers corresponding to these symbols can be given a martingale representation
by the use of appropriate transformations of jumps of Lévy processes. Combining
this representation with Burkholder’s inequality (1.1), Bañuelos, Bielaszewski and
Bogdan established the following Lp estimate.

Theorem 1.1. Let 1 < p < ∞ and let m = mφ,ψ,µ,ν be given by (1.4). Then for
any f ∈ Lp(Rd) we have

(1.5) ||Tmf ||Lp(Rd) ≤ (p∗ − 1)||f ||Lp(Rd).

See also [5] for related lower bounds. In particular, this theorem yields interesting
estimates for the Beurling-Ahlfors transform BA on C. Recall that this operator is
given by the singular integral

BA f(z) = −p.v.
1

π

∫
C

f(w)

(z − w)2
dw, z ∈ C,
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where the integration is with respect to the Lebesgue’s measure on the complex
plane. Alternatively, BA can be defined as the Fourier multiplier with the symbol
m(ξ) = (ξ/|ξ|)2, ξ ∈ C \ {0} (with the standard identification C ' R2). This
operator plays a fundamental role in the study of quasiconformal mappings, partial
differential equations and complex analysis; its importance lies in the fact that it
changes the complex derivative ∂̄ into ∂. Formally,

(1.6) BA(∂̄f) = ∂f

for every f in the Sobolev space W 1,2(C,C). There is an important question about
the precise value of the norm of BA acting on Lp(C), 1 < p <∞; a celebrated and
long-standing hypothesis of Iwaniec [10] states that ||BA||Lp(C)→Lp(C) = p∗ − 1.
While the lower bound p∗ − 1 was shown by Lehto [13], the question about the
upper bound remains open. The estimate (1.5) yields ||BA||Lp(C)→Lp(C) ≤ 2(p∗ −
1) (see Section 4 below). This can be further improved; the best result so far
is the inequality ||BA||Lp(C)→Lp(C) ≤ 1.575(p∗ − 1), obtained by Bañuelos and
Janakiraman [4] by the use of a refined version of (1.1).

There is a natural question whether the interplay between the martingale theory
and Fourier multipliers, which has been so fruitful in the case of Lp bounds, carries
over to the weak-type (p, p) estimates. The objective of this paper is to propose
an approach which will yield the affirmative answer to this question. It should
be stressed here that the repetition of the arguments leading to the Lp-estimates
and replacing (1.1) by (1.2) or (1.3) in the middle does not produce the weak-type
bounds. Roughly speaking, the problem lies in the fact that the representation of a
given Fourier multiplier in terms of Lévy processes involves the use of an appropriate
conditional expectation; this operation is a contraction on Lp, but no longer on
Lp,∞. Thus a refinement of the method is needed, and we have invented a duality
argument to handle this problem. Of course, since Lp ⊂ Lp,∞, we immediately
obtain the rough bound for 1 < p <∞:

(1.7) ||Tm||Lp(Rd)→Lp,∞(Rd) ≤ ||Tm||Lp(Rd)→Lp(Rd) ≤ p∗ − 1.

We shall establish the following significant improvement of this estimate. Introduce
the constants

Kp =


[

1
2Γ
(

2p−1
p−1

)](p−1)/p

if 1 < p < 2,

pp−1/2 if p ≥ 2.

Theorem 1.2. Assume that 1 < p <∞ and m is given by (1.4), with ν, µ, φ and
ψ satisfying the above assumptions. Then for any f ∈ Lp(Rd) we have

(1.8) |{x ∈ Rd : |Tmf(x)| ≥ 1}| ≤ Kp||f ||pLp(Rd)
,

that is, ||Tm||Lp(Rd)→Lp,∞(Rd) ≤ K
1/p
p .

It is not difficult to prove that Kp < (p − 1)−1 for 1 < p < 2, so (1.8) is better
than (1.7); however, it is very likely that this bound can be further improved.
On the other hand, we strongly believe that for p ≥ 2 the constant Kp is the
best possible. To justify this conjecture, note that Kp coincides with the optimal
constant from (1.3) and hence the bound (1.8) seems to be the farthest point where
the martingale methods can take us. Unfortunately, we have only managed to find
examples showing that the weak-type constant Kp is not smaller than pp−1/2p+1.
Nevertheless, these examples are very interesting on their own, for they exhibit
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further close connections between martingale transforms and the Beurling-Ahlfors
operator. See Section 4 below for details.

We have organized the remainder of this paper as follows. In the next section we
study an inequality for differentially subordinated martingales, which constitutes
the foundation for our further considerations. In Section 3 we combine this estimate
with the representation of Fourier multipliers (1.4) in terms of Lévy processes, and
provide the proof of Theorem 1.2. This section contains also a version of Theorem
1.2 for vector-valued multipliers. Finally, in Section 4 we apply our results to the
study of the weak type constants of the Beurling-Ahlfors transform and provide
examples which yield the corresponding lower bounds.

2. A martingale inequality

The key ingredient of the proof of the announced estimate (1.8) is an appropriate
inequality for differentially subordinated martingales. We begin with introducing
the necessary probabilistic background and notation. Assume that (Ω,F ,P) is
a complete probability space, equipped with (Ft)t≥0, a nondecreasing family of
sub-σ-fields of F , such that F0 contains all the events of probability 0. Let X,
Y be two adapted martingales taking values in a certain separable Hilbert space
(H, | · |); with no loss of generality, we may put H = `2. As usual, we assume that
the processes have right-continuous trajectories with the limits from the left. The
symbol [X,Y ] will stand for the quadratic covariance process of X and Y . See e.g.
Dellacherie and Meyer [9] for details in the case when the processes are real-valued,
and extend the definition to the vector setting by [X,Y ] =

∑∞
k=0[Xk, Y k], where

Xk, Y k are the k-th coordinates of X, Y , respectively. Following Bañuelos and
Wang [6] and Wang [17], we say that Y is differentially subordinate to X, if the
process ([X,X]t − [Y, Y ]t)t≥0 is nonnegative and nondecreasing as a function of t.

Now we are ready to formulate our main probabilistic result, a dual estimate to
(1.2) and (1.3). For 1 < q <∞, let

Cq =

{
21−qq/(q − 1) if 1 < q ≤ 2,

Γ(q + 1)/2 if q > 2.

We use the notation ||X||p = supt≥0 ||Xt||p, 1 ≤ p ≤ ∞.

Theorem 2.1. Assume that X, Y are H-valued martingales such that Y is differ-
entially subordinate to X. Then for any 1 < q <∞,

(2.1) ||Y ||qq ≤ Cq||X||1||X||q−1
∞ .

For each q, the constant Cq is the best possible.

The proof rests on Burkholder’s method: we shall deduce the inequality (2.1)
from the existence of a family {Vq}q∈(1,∞) of certain special functions defined on
the set S = {(x, y) ∈ H ×H : |x| ≤ 1}. In order to simplify the technicalities, we
shall combine the technique with an “ integration argument ”, invented in [14] (see
also [15]): first we introduce two simple functions v1, v∞ : H ×H → R, for which
the calculations are relatively easy; then define Vq by integrating these two objects
against appropriate nonnegative kernels. Let

v1(x, y) =

{
|y|2 − |x|2 if |x|+ |y| ≤ 1,

1− 2|x| if |x|+ |y| > 1
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and

v∞(x, y) =

{
0 if |x|+ |y| ≤ 1,

(|y| − 1)2 − |x|2 if |x|+ |y| > 1.

We have the following fact (see Lemma 2.2 in [15] for a slightly stronger statement
in which the differential subordination is replaced by a less restrictive assumption).

Lemma 2.2. For all H-valued martingales X, Y such that Y is differentially sub-
ordinate to X we have

Ev1(Xt, Yt) ≤ 0 for all t ≥ 0.

If in addition X satisfies ||X||2 <∞, then

Ev∞(Xt, Yt) ≤ 0 for all t ≥ 0.

Recall that S = {(x, y) ∈ H×H : |x| ≤ 1}. For 1 < q < 2, define Vq : S → R by

Vq(x, y) =
q(2− q)

2

∫ 1/2

0

rq−1v1(x/r, y/r)dr +
q

2q−1
(|y|2 − |x|2).

A little calculation shows that if |x|+ |y| ≤ 1/2, then

Vq(x, y) =
1

q − 1
(|x|+ |y|)q−1(−|x|+ (q − 1)|y|),

while for |x|+ |y| > 1/2,

Vq(x, y) =
q(2− q)

2

[
1

q2q
− |x|

(q − 1)2q−2

]
+

q

2q−1
(|y|2 − |x|2).

If q = 2, then we set Vq(x, y) = |y|2 − |x|2. Finally, when 2 < q < ∞, define
Vq : S → R by

Vq(x, y) =

∫ ∞
1

kq(r)v∞(x/r, y/r)dr +
Γ(q + 1)

2
(|y|2 − |x|2),

where, for r > 1,

kq(r) =
q(q − 1)r2

2

[
er
∫ ∞
r

e−s(s− 1)q−2ds− (r − 1)q−2

]
.

After some lengthy, but straightforward computations, we check that Vq(x, y) equals{
Γ(q + 1)(|y|2 − |x|2)/2 if |x|+ |y| ≤ 1,

(|x|+ |y| − 1)q + q(1− |x|)
∫∞
|x|+|y| e

|x|+|y|−s(s− 1)q−1ds− Cq if |x|+ |y| > 1.

We shall need the following majorization property.

Lemma 2.3. For any 1 < q <∞ we have

(2.2) Vq(x, y) ≥ |y|q − Cq|x| for all (x, y) ∈ S.

Proof. We may assume that q 6= 2, since for q = 2 the bound reduces to a trivial
estimate |y|2 − |x|2 ≥ |y|2 − 1. Obviously, it suffices to prove the majorization
for H = R. Furthermore, since Vq satisfies the symmetry condition Vq(x, y) =
Vq(−x, y) = Vq(x,−y) for all (x, y) ∈ S, we may restrict ourselves to x, y ≥ 0. The
next observation is that Vq is linear along the line segments of slope −1 contained
in S+ = [0, 1] × [0,∞), while the right-hand side of (2.2) is convex along these
segments. Consequently, it suffices to verify the majorization at the boundary of
the strip S+. The final reduction is that Vq is concave along the segment [0, 1]×{0};
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thus we will be done if we show (2.2) for x ∈ {0, 1} and y ≥ 0. Let us consider the
cases 1 < q < 2 and 2 < q <∞ separately.

The case 1 < q < 2. If x = 0 and y ≤ 1/2, then both sides of (2.2) are equal.
If x = 0 and y > 1/2, or x = 1, then (2.2) can be transformed into the equivalent
estimate

2− q
2q+1

+
q

2q−1
y2 ≥ yq,

or

(y2)q/2 − (2−2)q/2 ≤ q

2
(2−2)q/2−1(y2 − 2−2),

which follows immediately from the mean value property.

The case 2 < q < ∞. Both sides of (2.2) are equal when x = 1. If x = 0 and
|y| ≤ 1, we have

(2.3) Vq(x, y)− |y|q + Cq|x| = |y|2
(

Γ(q + 1)

2
− |y|q−2

)
≥ 0.

Finally, if x = 0 and y > 1, the majorization can be rewritten in the form

κ(y) := (y − 1)qe−y + q

∫ ∞
y

e−s(s− 1)q−1ds− yqe−y − Γ(q + 1)

2
e−y ≥ 0.

We see that

κ′(y)ey = yq − (y − 1)q − qyq−1 +
Γ(q + 1)

2
→ −∞ as y →∞,

and

(κ′(y)ey)′ = q
(
yq−1 − (y − 1)q−1 − (q − 1)yq−2

)
≤ 0,

by the mean value property. Thus there is y0 ≥ 1 such that κ is increasing on [1, y0]
and decreasing on [y0,∞). Since κ→ 0 as y →∞ and κ(1) ≥ 0, as we have already
checked in (2.3), the majorization follows. �

Now we are ready to establish Theorem 2.1.

Proof of (2.1). It suffices to show that ||Y ||qq ≤ Cq||X||1 for any X, Y as in the
statement satisfying the additional condition ||X||∞ ≤ 1. Suppose first that 1 <
q < 2 and fix t ≥ 0. We have E|Yt|2 ≤ E|Xt|2 ≤ 1, by Burkholder’s inequality (1.1)
for p = 2 and the boundedness of X. Therefore, Lemma 2.2 and Fubini’s theorem
imply

(2.4) EVq(Xt, Yt) ≤
q(2− q)

2

∫ 1/2

0

rq−1Ev1(Xt/r, Yt/r)dr ≤ 0.

To see that Fubini’s theorem is applicable, note that |v1(x, y)| ≤ c(|x|+ |y|+ 1) for
all x, y ∈ H and some absolute constant c; thus

E
∫ 1/2

0

rq−1|v1(Xt/r, Yt/r)|dr ≤ c̃E(|Xt|+ |Yt|+ 1) <∞,

where c̃ is another universal constant. Combining (2.4) with (2.2) yields E|Yt|q ≤
CqE|Xt| and it suffices to let t→∞ to get the claim. The case 2 ≤ q <∞ is dealt
with in a similar manner; the only thing which must be checked is that the kernel
kq is nonnegative. But this is evident: for r > 1,

er
∫ ∞
r

e−s(s− 1)q−2ds ≥ er
∫ ∞
r

e−s(r − 1)q−2ds = (r − 1)q−2.
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This completes the proof. �

Remark 2.4. It is well known that in general Burkholder’s function (that is, the
special function leading to a given martingale inequality) is not unique, see e.g.
[8]. Sometimes it is of interest to determine the optimal (that is, the least) of
the possible ones, at least for H = R. Though we shall not need this, we would
like to mention here that Vq is optimal in the real case when 2 ≤ q < ∞. When
1 < q < 2, the optimal function is given by the following formula. First define
vq : [0, 1]× [0,∞)→ R by

vq(x, y) =

{
(−x+ (q − 1)y)(x+ y)q−1/(q − 1) + qx/(q − 1) if x+ y ≤ 1,

(x+ y)q − qxe−x−y
∫ x+y

1
essq−1ds if x+ y > 1.

Then the optimal V q : [−1, 1]× R→ R is given by

V q(x, y) = vq
(
1−

∣∣2|x| − 1
∣∣, 2|y|)/2q − Cq|x|.

We omit the further details.

Sharpness of (2.1), 1 < q ≤ 2. If q = 2, the sharpness is trivial: simply take X =
Y ≡ 1. Suppose then, that q < 2. Let N ≥ 1 be a fixed integer and put δ =
(4N)−1. Consider a sequence ξ0, ξ1, . . . , ξ2N of independent random variables with
the following distributions: ξ0 ≡ δ,

P(ξn = δ) = 1− P(ξn = −nδ) =
n

n+ 1
, n = 1, 2, . . . , 2N − 1,

and P(ξ2N = −1/2) = P(ξ2N = 1/2) = 1/2. Introduce the stopping time

τ = inf{n ≤ 2N : ξ0 + ξ1 + ξ2 + . . .+ ξn ∈ {0, 1}}.

Define the processes X, Y by

Xt = ξ0 + ξ1 + . . .+ ξτ∧btc and Yt = ξ0 − ξ1 + ξ2 − ξ3 + . . .+ (−1)btcξτ∧btc,

for t ≥ 0. Since the variables ξk are centered (for k > 0), both X and Y are
martingales. We have that ||X||∞ = 1, since X takes values in [0, 1] and P(X2N =
1) > 0. Moreover, Y is differentially subordinate to X: we have [X,X]t = [Y, Y ]t
for all t ≥ 0. Next, ||Y ||qq = E|Y2N |q and the distribution of |Y2N | is given as follows.
We have |Y2N | ∈ {2δ, 4δ, . . . , 1/2} and, for k = 1, 2, . . . , N − 1,

P(|Y2N | = 2kδ) = P(τ = 2k − 1 or τ = 2k)

= P(ξ1 > 0, ξ2 > 0, . . . , ξ2k−2 > 0, ξ2k−1 < 0)

+ P(ξ1 > 0, ξ2 > 0, . . . , ξ2k−1 > 0, ξ2k < 0)

=
1

2k(2k − 1)
+

1

2k(2k + 1)
=

2

(2k + 1)(2k − 1)
.

Finally, we have

P(|Y2N | = 1/2) = 1− P(|Y2N | < 1/2) =
1

2N − 1
.

Recalling that δ = (4N)−1, we see that

||Y ||qq
||X||1||X||q−1

∞
=

E|Y2N |q

EX0
= 2δ

N−1∑
k=1

(2kδ)q

(2k + 1)δ · (2k − 1)δ
+

21−q

(4N − 2)δ
.
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If we tend with N to ∞, the first term on the right converges to
∫ 1/2

0
sq−2ds =

21−q/(q− 1) and the second to 21−q; thus, if N is taken sufficiently large, then the
ratio ||Y ||qq/(||X||1||X||q−1

∞ ) can be made arbitrarily close to Cq. This proves the
optimality of this constant in (2.1). �

Sharpness of (2.1), q > 2. As previously, fix a large positive integer N and put δ =
(4N)−1. Consider independent random variables ξ0, ξ1, ξ2, . . . such that ξ0 ≡ 1/2,
P(ξ1 = −1/2) = P(ξ1 = 1/2) = 1/2 and, for k = 1, 2, . . .,

P(ξ2k = δ) = 1− P(ξ2k = −1) =
1

1 + δ
,

P(ξ2k+1 = −δ) = 1− P(ξ2k+1 = 1− δ) = 1− δ.

Next, let τ = inf{n : ξ0 + ξ1 + . . .+ ξn ∈ {−1, 1}} and define martingales X, Y by

Xt = ξ0 + ξ1 + . . .+ ξτ∧btc and Yt = ξ0 − ξ1 + ξ2 − ξ3 + . . .+ (−1)btcξτ∧btc,

for t ≥ 0. We easily verify that ||X||1 = ||X||∞ = 1 and that Y is differentially
subordinate to X. It is also easy to see that the martingale Y converges almost
surely to a random variable Y∞, which takes values in the set {0, 2δ, 4δ, . . .}. We
compute that

P(Y∞ = 0) = P(τ = 1 or τ = 2) = P(ξ1 > 0) + P(ξ1 < 0, ξ2 < 0) =
1 + 2δ

2(1 + δ)

and, for k = 1, 2, . . . ,

P(Y∞ = 2kδ) = P(τ = 2k + 1 or τ = 2k + 2) =
δ(1− δ)k−1

(1 + δ)k+1
.

Consequently, we have

||Y ||qq
||X||1||X||q−1

∞
= EY q∞ =

δ

(1− δ)(1 + δ)

∞∑
k=1

(2kδ)q
(

1− δ
1 + δ

)k
.

If we let N →∞, then δ → 0 and the right-hand side converges to 1
2

∫∞
0
sqe−sds =

Cq. This proves that the constant Cq cannot be replaced in (2.1) by a smaller
number. �

3. Proof of Theorem 1.2

Let m = mφ,ψ,µ,ν be a multiplier as in (1.4). By the results in [3], we may assume
that the Lévy measure ν satisfies the symmetry condition ν(B) = ν(−B) for all
Borel subsets B of Rd. More precisely, there are µ̄, ν̄, φ̄, ψ̄ such that ν̄ is symmetric
and mφ,ψ,µ,ν = mφ̄,ψ̄,µ̄,ν̄ . Assume in addition that |ν| = ν(Rd) is finite and nonzero,
and define ν̃ = ν/|ν|. Consider the independent random variables T−1, T−2, . . .,
Z−1, Z−2, . . . such that for each n = −1, −2, . . ., Tn has exponential distribution
with parameter |ν| and Zn takes values in Rd and has ν̃ as the distribution. Next,
put Sn = −(T−1 + T−2 + . . .+ Tn) for n = −1, −2, . . . and let

Xs,t =
∑

s<Sj≤t

Zj , Xs,t− =
∑

s<Sj<t

Zj , ∆Xs,t = Xs,t −Xs,t−,

for −∞ < s ≤ t ≤ 0. For a given f ∈ L∞(Rd), define its parabolic extension Uf to
(−∞, 0]× Rd by

Uf (s, x) = Ef(x+Xs,0).
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Next, fix x ∈ Rd, s < 0 and f ∈ L∞(Rd). We introduce the processes F =

(F x,s,ft )t∈[s,0] and G = (Gx,s,f,φt )t∈[s,0] by

Ft = Uf (t, x+Xs,t),

Gt =
∑
s<u≤t

[
∆Fu · φ(∆Xs,u)

]
−
∫ t

s

∫
Rd

[
Uf (v, x+Xs,v− + z)− Uf (v, x+Xs,v−)

]
φ(z)ν(dz)dv.

(3.1)

Note that the sum in the definition of G can be seen as the result of modulating
of the jumps of F by φ, and the subsequent double integral can be regarded as an
appropriate compensator. We have the following statement, proved in [2].

Lemma 3.1. For any fixed x, s, f as above, the processes F x,s,f , Gx,s,f,φ are
martingales with respect to (Ft)t∈[s,0]. Furthermore, if ||φ||∞ ≤ 1, then Gx,s,f,φ is

differentially subordinate to F x,s,f .

Now, fix s < 0 and define the operator S = Ss,φ,ν by the bilinear form

(3.2)

∫
Rd
Sf(x)g(x)dx =

∫
Rd

E
[
Gx,s,f,φ0 g(x+Xs,0)

]
dx,

where f, g ∈ C∞0 (Rd). We have the following fact, proved in [2]. It constitutes the
crucial part of the aforementioned representation of Fourier multipliers in terms of
Lévy processes.

Lemma 3.2. Let 1 < p < ∞ and d ≥ 2. The operator Ss,φ,ν is well defined
and extends to a bounded operator on Lp(Rd), which can be expressed as a Fourier
multiplier with the symbol

M(ξ) = Ms,φ,ν(ξ)

=

[
1− exp

(
2s

∫
Rd

(1− cos〈ξ, z〉)ν(dz)

)] ∫
Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫

Rd(1− cos〈ξ, z〉)ν(dz)

if
∫
Rd(1− cos〈ξ, z〉)ν(dz) 6= 0, and M(ξ) = 0 otherwise.

We are ready to establish the following dual version of (1.8).

Theorem 3.3. Assume that 1 < q < ∞ and let m : Rd → C be a multiplier as in
Theorem 1.2. Then for any function f ∈ L1(Rd) ∩ L∞(Rd) we have

(3.3) ||Tmf ||qLq(Rd)
≤ Cq||f ||L1(Rd)||f ||

q−1
L∞(Rd)

.

Proof. By homogeneity, it suffices to establish the bound for f bounded by 1.
Furthermore, we may and do assume that at least one of the measures µ, ν is
nonzero. It is convenient to split the reasoning into two parts.

Step 1. First we show the estimate for the multipliers of the form

(3.4) Mφ,ν(ξ) =

∫
Rd(1− cos〈ξ, z〉)φ(z)ν(dz)∫

Rd(1− cos〈ξ, z〉)ν(dz)
.

Assume that 0 < ν(Rd) < ∞, so that the above machinery using Lévy processes
is applicable. Fix s < 0 and functions f, g ∈ C∞0 (Rd) such that f is bounded by
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1; of course, then the martingale F x,s,f also takes values in the unit ball of C. By
Hölder’s inequality, Fubini’s theorem and (2.1), we have∣∣∣∣∫

Rd
E
[
Gx,s,f,φ0 g(x+Xs,0)

]
dx

∣∣∣∣
≤
(∫

Rd
E|Gx,s,f,φ0 |qdx

)1/q (∫
Rd

E|g(x+Xs,0)|pdx
)1/p

=

(∫
Rd

E|Gx,s,f,φ0 |qdx
)1/q

||g||Lp(Rd)

≤
(
Cq

∫
Rd

E|F x,s,f0 |dx
)1/q

||g||Lp(Rd)

= (Cq||f ||1)
1/q ||g||Lp(Rd).

(3.5)

Plugging this into the definition of S, we obtain

||Ss,φ,νf ||q
Lq(Rd)

≤ Cq||f ||L1(Rd).

Now if we let s→ −∞, then Ms,φ,ν converges pointwise to the multiplier Mφ,ν given
by (3.4). By Plancherel’s theorem, Ss,φ,νf → TMφ,ν

f in L2(Rd) and hence there is

a sequence (sn)∞n=1 converging to −∞ such that limn→∞ Ssn,φ,νf → TMφ,ν
f almost

everywhere. Thus Fatou’s lemma yields the desired bound for the multiplier TMφ,ν
.

Step 2. Now we deduce the result for the general multipliers as in (1.4) and drop
the assumption 0 < ν(Rd) < ∞. For a given ε > 0, define a Lévy measure νε in
polar coordinates (r, θ) ∈ (0,∞)× S by

νε(drdθ) = ε−2δε(dr)µ(dθ).

Here δε denotes Dirac measure on {ε}. Next, consider a multiplier Mε,φ,ψ,µ,ν as
in (3.4), in which the Lévy measure is 1{|x|>ε}ν + νε and the jump modulator is
given by 1{|x|>ε}φ(x) + 1{|x|=ε}ψ(x/|x|). Note that this Lévy measure is finite and
nonzero, at least for sufficiently small ε. If we let ε→ 0, we see that∫

Rd
[1− cos〈ξ, x〉]ψ(x/|x|)νε(dx) =

∫
S
〈ξ, θ〉2φ(θ)

1− cos〈ξ, εθ〉
〈ξ, εθ〉2

µ(dθ)

→ 1

2

∫
S
〈ξ, θ〉2φ(θ)µ(dθ)

and, consequently, Mε,φ,ψ,µ,ν → mφ,ψ,µ,ν pointwise. This yields the claim by the
similar argument as above, using of Plancherel’s theorem and the passage to the
subsequence which converges almost everywhere. �

Now we shall apply duality to deduce (1.8).

Proof of Theorem 1.2. Observe that the class (1.4) is closed under the complex
conjugation: we have m̄ = mφ̄,ψ̄,µ,ν . Fix f ∈ Lp(Rd) and put

g =
Tmf

|Tmf |
1{x∈Rd:|Tmf(x)|≥1}.
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By Hölder’s inequality and Parseval’s identity,

|{x ∈ Rd : |Tmf(x)| ≥ 1}| ≤
∫
Rd
Tmf(x)g(x)dx

=

∫
Rd
T̂mf(x)ĝ(x)dx

=

∫
Rd
f̂(x)T̂m̄g(x)dx

=

∫
Rd
f(x)Tm̄g(x)dx

≤ ||f ||Lp(Rd)||Tm̄g||Lq(Rd)

≤ ||f ||Lp(Rd)

(
Cq||g||L1(Rd)

)1/q
.

(3.6)

Here in the latter passage we have used (3.3) and the fact that g takes values in the

unit ball of C. However, ||g||L1(Rd) = |{x ∈ Rd : |Tmf(x)| ≥ 1}| and C
p/q
q = Kq.

This completes the proof of the weak type estimate. �

In the remainder of this section we discuss the possibility of extending the asser-
tion of Theorem 1.2 to the vector-valued multipliers. For any bounded function m =
(m1,m2, . . . ,mn) : Rd → Cn, we may define the associated Fourier multiplier acting
on complex valued functions on Rd by the formula Tmf = (Tm1

f, Tm2
f, . . . , Tmnf).

As we shall see, the reasoning presented above can be easily modified to yield the
following statement.

Theorem 3.4. Let ν, µ be two measures on Rd and S, respectively, satisfying the
assumptions of Theorem 1.2. Assume further that φ, ψ are two Borel functions
on Rd taking values in the unit ball of Cn and let m : Rd → Cn be the associated
symbol given by (1.4). Then for any Borel function f : Rd → C we have

||Tmf ||qLq(Rd;Cn)
≤ Cq||f ||L1(Rd)||f ||

q−1
L∞(Rd)

, 1 < q <∞,

and
||Tmf ||Lp,∞(Rd;Cn) ≤ K1/p

p ||f ||Lp(Rd), 1 < p <∞.

Proof. Suppose first that ν is finite. For a given function f ∈ C∞0 (Rd) bounded
by 1, we introduce the martingales F and G = (G1, G2, . . . , Gn) by (3.1). It is not
difficult to check that Lemma 3.1 is also valid in the vector-valued setting (repeat
the reasoning from [2]). Applying the representation (3.2) to each coordinate of
G separately, we obtain the associated multiplier S = (S1,S2, . . . ,Sn), where Sj

has symbol Mφj ,ν defined in (3.4). Now we repeat the reasoning from (3.5), with a

vector-valued function g : Rd → Cn (the expression Gx,s,f,φ0 g(x + Xs,0) under the
first integral is replaced with the corresponding scalar product). An application of
(2.1) gives

||Ss,φ,νf ||q
Lq(Rd;Cn)

≤ Cq||f ||L1(Rd),

which extends to general f by standard density arguments. The passage to general
m as in (1.4) is carried over in the same manner as in the scalar case; this yields the
vector version of Theorem 3.3. The duality argument explained in (3.6) extends
to the vector-valued setting with no difficulty (one only has to replace appropri-
ate multiplications by scalar products) and thus Theorem 1.2 holds true for the
multipliers on Cn. �
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4. Weak-type bounds for the Beurling-Ahlfors transform

For the sake of clarity, we have decided to split this section into three parts.

4.1. Upper bounds. Let us rewrite the symbol corresponding to the Beurling-
Ahlfors transform in the form

m(ξ) =
ξ2

|ξ|2
=
ξ2
1 − ξ2

2

ξ2
1 + ξ2

2

+ i
2ξ1ξ2
ξ2
1 + ξ2

2

.

The real and imaginary parts of m belong to the class (1.4). For instance, the
choice d = 2, µ = δ(1,0) + δ(0,1), ψ(1, 0) = −1 = −ψ(0, 1) and ν = 0 gives Tm =

Re (BA); likewise, d = 2, µ = δ(1/
√

2,1/
√

2) + δ(1/
√

2,−1/
√

2), ψ(1/
√

2, 1/
√

2) = 1 =

−ψ(1/
√

2,−1/
√

2) and ν = 0 leads to Tm = Im (BA). Analogously, it can be shown
that 1

2BA also has the symbol as in (1.4). Thus Theorem 1.2 yields the following.

Theorem 4.1. For any 1 < p <∞ and f ∈ Lp(C) we have

|{z ∈ C : |ReBAf(z)| ≥ 1}| ≤ Kp||f ||pLp(C),

|{z ∈ C : |ImBAf(z)| ≥ 1}| ≤ Kp||f ||pLp(C)

and
|{z ∈ C : |BAf(z)| ≥ 1}| ≤ 2Kp||f ||pLp(C).

4.2. Lower bounds. We consider the cases 1 ≤ p ≤ 2 and p ≥ 2 separately.

Theorem 4.2. For any 1 ≤ p ≤ 2 there is a real-valued function f ∈ Lp(C) which
satisfies

|{z ∈ C : |BAf(z)| ≥ 1}| =
(∫ ∞

0

|1− t|pe−tdt
)−1 ∫

C
|f(z)|pdz.

Proof. Consider the function w : C → C given by w(z) = z̄ log |z|21{|z|<1}. We
easily derive that the complex partial derivatives of w are

∂̄w(z) = (1 + log |z|2)1{|z|<1} and ∂w(z) =

(
z̄

|z|

)2

1{|z|<1}.

Put f = ∂w. Then, using the polar coordinates,∫
C
|f(z)|pdz = 2π

∫ 1

0

|1 + log(r2)|prdr = π

∫ ∞
0

|1− t|pe−tdt

and, since BA f = ∂w (see (1.6)),

|{z ∈ C : |BAf(z)| ≥ 1}| = π.

This completes the proof. �

The corresponding lower bound in the case p ≥ 2 is much more interesting. We
obtain the same constant as in the martingale inequality (1.3) of Suh.

Theorem 4.3. For any p ≥ 2 and any c < pp−1/2 there is a function f on C such
that

|{z ∈ C : |BAf(z)| ≥ 1}| > c

∫
C
|f(z)|pdz − ε.

The further interesting fact is that the examples we are going to present are
based on appropriate extremal martingales X, Y in (1.3) (i.e., those which yield
the sharpness of this estimate).
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Proof of Theorem 4.3. Fix a positive number δ, let α = (p− 1)−1 and consider the
sequences (rk)k≥0, (ak)k≥1 given as follows. The term r0 < 1 will be specified later,
while for k ≥ 0,

rk+1 = (1 + δ)−k/(2α),

a2k+1 =
p− 1

p
(1 + δ)1−2k and a2k+2 =

p− 1

p
(1 + δ)2k+1.

Define w : C→ C by

(4.1) w(z) =


a1r

2−2α
0 z̄−1 if |z| ≥ r0,

a2k+1z|z|−2α if r2k+1 ≤ |z| < r2k,

a2k+2z|z|2α if r2k+2 ≤ |z| < r2k+1

for k = 0, 1, 2, . . .. The detailed explanation of how we have discovered this func-
tion is given in Subsection 4.3 below. We easily compute the complex derivatives

∂̄w(z) =


−a1r

2−2α
0 z̄−2 if |z| ≥ r0,

−αa2k+1z
2|z|−2α−2 if r2k+1 ≤ |z| < r2k,

αa2k+2z
2|z|2α−2 if r2k+2 ≤ |z| < r2k+1

and

∂w(z) =


0 if |z| ≥ r0,

(1− α)a2k+1|z|−2α if r2k+1 ≤ |z| < r2k,

(1 + α)a2k+2|z|2α if r2k+2 ≤ |z| < r2k+1,

k = 0, 1, 2, . . .. Note that for each k and each z ∈ C satisfying r2k+2 ≤ |z| < r2k+1

we have

∂w(z) ≥ (1 + α)a2k+2r
2α
2k+2 = 1.

Consequently, we may write

|{z ∈ C : |∂w| ≥ 1}| ≥ π
∞∑
k=0

(
r2
2k+1 − r2

2k+2

)
= π

∞∑
k=0

[
(1 + δ)−2k/α − (1 + δ)−(2k+1)/α

]
= π

[
1 + (1 + δ)−1/α

]−1

→ π/2

as δ → 0. We turn to the integral
∫
C |∂̄w|

p. We have∫
{|z|≥r0}

|∂̄w(z)|pdz = 2π

∫ ∞
r0

|a1r
2−2α
0 |pr1−2pdr =

π(p− 1)p−1(1 + δ)p

pp
r2−2αp
0

and (recall that r1 = 1)∫
{r1≤|z|<r0}

|∂̄w(z)|pdz = 2π

∫ r0

1

|αa1|pr1−2αpdr

=
π(p− 1)(1 + δ)p

pp
(1− r2−2αp

0 ).

Next, we easily check that 1/p ≤ |∂̄w| ≤ (1 + δ)/p on {|z| ≤ r1} and hence

π

pp
≤
∫
{|z|≤r1}

|∂w(z)|pdz ≤ π(1 + δ)p

pp
.
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Combining the above three facts, we see that if we take r0 sufficiently large and
δ sufficiently small, then the integral

∫
C |∂̄w|

p can be made arbitrarily close to

π(p− 1)p−p + πp−p = πp−p+1. Thus, for any ε > 0 we have

|{z ∈ C : |∂w| ≥ 1}|∫
C |∂̄w(z)|pdz

≥ pp−1

2
− ε

with the appropriate choice of the parameters r0 and δ. This completes the proof.
�

Since 1
2BA has the symbol belonging to (1.4), we get the following.

Corollary 4.4. For 1 < p <∞, let κp be the best constant in (1.8). Then

κp ≥

{(∫∞
0
|1− t|pe−tdt

)−1
/2p if 1 < p < 2,

pp−1/2p+1 if p ≥ 2.

4.3. On the search of the function w in the case p ≥ 2. Let us now sketch
some steps which led us to the discovery of the function w above. First we present
a pair (X,Y ) of martingales which implies the sharpness of (1.3). Fix ε ∈ (0, 1 −
p−1), a positive integer N and put δ = (1 − p−1 − ε)/(2N). We assume that
N is large enough so that ε > (p − 3)δ and δ < (2p)−1. Consider the sequence
(ξn)n≥0 of independent mean-zero random variables with the distributions uniquely
determined by the following assumptions:

(i) ξ0 ≡ ε/2, ξ1 ∈ {−ε/2, ε/2},
(ii) for n = 0, 1, 2, . . . , N ,

ξ2n+2 ∈
{
δ,−ε+ 2nδ

p− 1

}
and ξ2n+3 ∈

{
−δ, ε+ 2(n+ 1)δ

p− 1
− δ
}
,

(iii) we have

ξ2N+4 ∈ {−δ, p−1} and ξ2N+5 ∈ {δ,−p−1 + δ},

(iv) for n ≥ 2N + 6, the random variable ξn has the same distribution as ξn−4.

Next, introduce the stopping time τ by

τ =

{
1 if ξ1 = ε/2,

inf{n ≥ 2 : |ξn| 6= δ} if ξ1 = −ε/2

and for any t ≥ 0, define

Xt = ξ0 + ξ1 + . . .+ ξτ∧btc and Yt = ξ0 − ξ1 + ξ2 − . . .+ (−1)btcξτ∧btc.

Clearly, Y is differentially subordinate to X. Moreover, it can be checked that
the ratio P(supt≥0 |Yt| ≥ 1)/||X||pp = P(|Yτ | ≥ 1)/||Xτ ||pp can be made arbitrarily

close to pp−1/2, by choosing sufficiently small ε, δ and sufficiently large N . In fact,
a careful analysis of this example reveals the following further properties of the
terminal variable (Xτ , Yτ ):

1◦ If τ = 1, then (Xτ , Yτ ) = (ε, 0).
2◦ If τ ≤ 2N + 3, then Yτ = (p− 2)|Xτ |.
3◦ If τ ∈ {2N + 4k, 2N + 4k + 1}, k = 1, 2, . . ., then Yτ ≥ 1 and |Xτ | = p−1.
4◦ If τ ∈ {2N + 4k + 2, 2N + 4k + 3}, k = 1, 2, . . ., then Yτ ≥ 1 − 2p−1 and

Yτ = (p− 2)|Xτ |.
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These four conditions are the key in the construction of the extremal functions
announced in Theorem 4.3. Let us explain the connection now. First of all, it
is clear that the complex plane C should correspond to Ω and the pair (∂w, ∂w)
should play the role of the terminal value (Xτ , Yτ ). Motivated by the examples
of Baernstein and Montgomery-Smith [1], Iwaniec [11], Lehto [13] and others, it is
natural to work with the functions of the form

w(z) =

{
b0z|z|2β0 if |z| ≥ R0,

bnz|z|2βn if |z| ∈ [Rn, Rn−1), n = 1, 2, . . . ,

for some parameters (bn)n≥0, (βn)n≥0 and (Rn)n≥0 to be found. We derive that

∂w(z) =

{
b0β0z

2|z|2β0−2 if |z| > R0,

bnβnz
2|z|2βn−2 if |z| ∈ (Rn, Rn−1), n = 1, 2, . . . ,

and

∂w(z) =

{
b0(β0 + 1)|z|2β0 if |z| > R0,

bn(βn + 1)|z|2βn if |z| ∈ (Rn, Rn−1), n = 1, 2, . . . .

A little thought and experimentation suggests that the set {z ∈ C : |z| ≥ R0}
should correspond to the event {τ = 1}; the annulus {z ∈ C : R0 ≤ |z| < R1}
should be the analogue of {τ ≤ 2N + 3}; finally, that {z ∈ C : Rn ≤ |z| <
Rn−1}, n ≥ 2, should play the role of the set {τ ∈ {2N + 4k, 2N + 4k + 1}} or
{τ ∈ {2N + 4k + 2, 2N + 4k + 3}}, depending on the parity of n. Now we exploit
the algebraic relations between Xτ and Yτ described in 1◦–4◦. The first condition
suggests the equality ∂w(z) = 0 for |z| > R0, since Yτ vanishes on {τ = 1}. This
yields β0 = −1. Next, the relation Yτ = (p − 2)|Xτ |, valid on {τ ≤ 2N + 3} and
{τ ∈ {2N + 4k+ 2, 2N + 4k+ 3}}, k = 1, 2, . . ., implies βn = −(p−1)−1 for odd n.
On the remaining annuli, motivated by 3◦, we impose the condition ∂w = p|∂w|,
which yields βn = (p − 1)−1. The parameters bn and Rn are determined by the
condition w ∈W 1,2(C,C) and the further requirements

inf
Rn<|z|<Rn−1

∂w(z) = 1 for even n

and

inf
Rn<|z|<Rn−1

∂w(z) = 1− 2p−1 for odd n,

which are suggested by 3◦ and 4◦. This yields the function w given by (4.1).
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symmetric Lévy processes, submitted.



16 ADAM OSȨKOWSKI
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