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Abstract. For any 1 < p < ∞ and any c ≥ 1 we identify the least constant

Cp,c with the following property. If X = (Xt)t≥0 is a uniformly integrable
martingale and W = (Wt)t≥0 is a weight satisfying Muckenhoupt’s condition

Ap with [W ]Ap ≤ c, then we have the Lorentz-norm estimate∣∣∣∣∣
∣∣∣∣∣sup
t≥0
|Xt|

∣∣∣∣∣
∣∣∣∣∣
Lp,∞(W )

≤ Cp,c||X∞||Lp,∞(W ).

The proof exploits related sharp weak-type estimates and optimization argu-

ments.

1. Introduction

The paper is devoted to the study of sharp weighted versions of the classical max-
imal estimates for real-valued martingales obtained by Doob [2]. Let us start with
the necessary background, notation and the statement of related results. Assume
that (Ω,F ,P) is a complete probability space, filtered by (Ft)t≥0, a nondecreas-
ing family of sub-σ-fields of F , such that F0 contains all the events of probability
0. Let X be an adapted, real-valued, uniformly integrable martingale with right-
continuous trajectories that have limits from the left; such a martingale converges
almost surely to an integrable variable which will be denoted by X∞. The maximal
function of X is given by X∗ = sups≥0 |Xs| and the square bracket of X is denoted
by [X,X] (see e.g. Dellacherie and Meyer [1] for the definition). A classical result
of Doob [2] asserts that the maximal function satisfies the weak-type (p, p) estimate

||X∗||Lp,∞ ≤ ||X∞||Lp , 1 ≤ p <∞,

where ||X∗||Lp,∞ = supλ>0 [λpP(X∗ ≥ λ)]
1/p

is the usual weak p-th norm of X∗.
Furthermore, if 1 < p ≤ ∞, then we have the strong-type bound

||X∗||Lp ≤
p

p− 1
||X∞||Lp .

Both estimates above are sharp: for any value of p, the constants 1 and p/(p − 1)
cannot be improved. There is a related result proved by Osȩkowski in [8] which
provides a sharp comparison of weak p-th norms of X and X∗: for any 1 < p <∞
we have

(1.1) ||X∗||Lp,∞ ≤
p

p− 1
||X∞||Lp,∞ ,

and the constant p/(p−1) is again the best possible. See also [7] for a related sharp
Lq,∞ → Lp bound.
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The primary goal of this paper is to study weighted version of the estimate (1.1).
Here the word ‘weight’ will refer to a positive, uniformly integrable martingale
W = (Wt)t≥0. Such a process gives rise to a new (not necessarily probability)
measure W∞dP. For technical reasons, we will also assume that W has continuous
paths with probability 1. It is well-known that without any regularity assumptions
on the trajectories of the weight almost all reasonable inequalities fail to hold (cf.
the paper [4] for a related fact for BMO martingales).

When studying weighted Lp or weak-Lp estimates for maximal functions, one has
to restrict oneself to the so-called Ap weights. Let us discuss this issue a little here.
Assume that W is a given and fixed weight. Following Izumisawa and Kazamaki
[3], we say that W satisfies Muckenhoupt’s condition Ap (where 1 < p < ∞ is a
fixed parameter), if

(1.2) [W ]Ap := sup
τ

∣∣∣∣∣∣∣∣E[{Wτ/W∞
}1/(p−1)∣∣Fτ]p−1

∣∣∣∣∣∣∣∣
L∞

<∞,

where the supremum is taken over the class of all adapted stopping times. It turns
out that the weak-type estimate

(1.3) ||X∗||Lp,∞(W ) ≤ cp,[W ]Ap
||X∞||Lp(W )

holds for all martingales X (with some constant cp,[W ]Ap
depending only on the

parameters indicated) if and only if W satisfies (1.2). Here we use the notation

||X∞||Lp(W ) =
(
E|X∞|pW∞)1/p and ||X∗||Lp,∞(W ) = supλ>0 λ [W (X∗ ≥ λ)]

1/p
for

the weighted strong and weak weighted p-th norms of X (for A ∈ F , we write
W (A) =

∫
A
W∞dP). A similar phenomenon occurs in the context of strong type

inequalities: the estimate

||X∗||Lp(W ) ≤ Cp,[W ]Ap
||X∞||Lp(W )

holds for all X with some Cp,[W ]Ap
independent of X if and only if W is an Ap

weight. These results, proved by Izumisawa and Kazamaki [3], are in perfect cor-
respondence with the classical theorems of Muckenhoupt concerning weighted in-
equalities for the Hardy-Littlewood maximal function on Rd: cf. [5].

We will provide the proof of the weighted counterpart of (1.1). In fact, we will
establish a much stronger result: we will identify the best constant involved in this
weighted estimate. To describe this constant, we need to introduce some auxiliary
parameters. For the geometric interpretation of these objects, we refer the reader
to Figure 1 below. Let c ≥ 1 and 1 < p < ∞ be fixed. Then the line, tangent to
the curve x1x

p−1
2 = c at the point (1, c1/(p−1)), intersects the curve x1x

p−1
2 = 1 at

one point (if c = 1) or two points (if c > 1). Take the intersection point with larger
x1-coordinate, and denote this coordinate by 1 + d(p, c). Formally, d = d(p, c) is
the unique number in [0, p− 1) satisfying the equation

(1.4) c(1 + d)(p− 1− d)p−1 = (p− 1)p−1.

We are ready to state the main result of the paper.

Theorem 1.1. If 1 < p <∞ and W is an Ap weight, then for any martingale X
we have the estimate

(1.5) ||X∗||Lp,∞(W ) ≤
p

p− 1− d(p, [W ]Ap)
||X∞||Lp,∞(W ).
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Figure 1. The geometric interpretation of the number d = d(p, c).

The constant p/(p − 1 − d(p, [W ]Ap)) is the best possible: for any ε > 0, any
1 < p < ∞ and any c ≥ 1, there is an Ap weight W satisfying [W ]Ap = c and a
martingale X such that

||X∗||Lp,∞(W ) >

(
p

p− 1− d(p, [W ]Ap)
− ε
)
||X∞||Lp,∞(W ).

The proof of the above result will rest on the sharp version of the weighted
weak-type estimate (1.3). Such an estimate was proved in [6], but under more
restrictive conditions on the martingale X (the continuity of paths was required).
We establish the more general version in Section 2 below, using an appropriate
sharp reverse Hölder inequality for Ap weights which is of independent interest.
Theorem 1.1 is proved in Section 3.

2. A sharp weak-type estimate

2.1. A special function. We will work with a certain function constructed in
[10]. Let us briefly recall the definition of this object. Consider the hyperbolic-type
domain

Dp,c = {(x1, x2) ∈ R2
+ : 1 ≤ x1x

p−1
2 ≤ c},

foliated by the family of curves γb = {(x1, x2) ∈ R2
+ : x1x

p−1
2 = b}, 1 ≤ b ≤ c.

Then ∂+Dp,c = γc and ∂−Dp,c = γ1 are the upper and the lower parts of the
boundary of Dp,c. We will also need the following geometrical object. For any
x > 0, consider the line ` tangent to the upper boundary ∂+Dp,c, passing through

the point (x, (c/x)1/(p−1)). This line has the equation

(2.1) x2 = −c
1/(p−1)x−p/(p−1)

p− 1
x1 +

p

p− 1

( c
x

)1/(p−1)

and intersects the lower boundary ∂−Dp,c at two points. Take the point with the
larger x1-coordinate: since the point lies on ∂−Dp,c, its coordinates can be expressed
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in the form

(x(1 + d), (x(1 + d))1/(1−p))

for some d > 0. It is straightforward to check that d does not depend on x and
hence (by taking x = 1) it must be equal to d(p, c) defined in (1.4). Let Ix be
the line segment tangent to ∂+Dp,c with the endpoints (x, (c/x)1/(p−1)) and (x(1 +

d), (x(1 + d))1/(1−p)).
We are ready to introduce the special function from [10]. For a given d + 1 <

r < p, consider B = Bp,r,c : Dp,c → R uniquely determined by the following three
requirements:

(i) For any (x1, x2) ∈ ∂+Dp,c we have

B(x1, x2) =
(1 + d)1/(1−r)(1− r)

d+ 1− r
x

1/(1−r)
1 .

(ii) For any (x1, x2) ∈ ∂−Dp,c we have

B(x1, x2) = x
1/(1−r)
1 .

(iii) The function B is linear along any line segment Ix, x > 0.

It is not difficult to show that B is continuous and of class C∞ in the interior of
Dp,c. In [10], the following further property of B was established.

Lemma 2.1. For any p, c and r ∈ (d(p, c) + 1, p), the function Bp,r,c is locally
concave, i.e., concave along any line segment entirely contained in Dp,c.

We will also need the following majorization condition.

Lemma 2.2. For any p, c and r ∈ (d(p, c) + 1, p), we have

(2.2) x
1/(1−r)
1 ≤ Bp,r,c(x1, x2) ≤ (1 + d)1/(1−r)(1− r)

d+ 1− r
x

1/(1−r)
1 .

Proof. For brevity, set B = Bp,r,c. Fix x1 and let y > 0, z > 0 be chosen so that
(x1, y) ∈ ∂+Dp,c and (x1, z) ∈ ∂−Dp,c; then the desired inequality is equivalent to
B(x1, z) ≤ B(x1, x2) ≤ B(x1, y). Therefore, we will be done if we show that the
function t 7→ B(x1, t) is nondecreasing on the interval {t : (x1, t) ∈ Dp,c} = [z; y].
Pick x1/(1 + d) < x < x1. Using the equation (2.1), we see that the point

P =

(
x1,−

c1/(p−1)x−p/(p−1)

p− 1
x1 +

p

p− 1

( c
x

)1/(p−1)
)

lies on Ix and hence, by the definition of Bp,r,c,

B(P ) =
x1 − x
dx

B
(
x(1 + d), (x(1 + d))1/(1−p)

)
+
x(1 + d)− x1

dx
B

(
x,
( c
x

)1/(p−1)
)

=
x1 − x
dx

(x(1 + d))1/(1−r) +
x(1 + d)− x1

dx
· (1 + d)1/(1−r)(1− r)

d+ 1− r
x1/(1−r).

Differentiating this equality with respect to x and calculating a little bit, we get

Bx2
(P )

p

(p− 1)2

( c
x

)1/(p−1)

· x1 − x
x2

=
r(x(1 + d))1/(1−r)

(1− r)(d+ 1− r)
· x1 − x

x2
.

(Here and below, Bxi stands for the partial derivative of B with respect to the
variable xi, i = 1, 2. Similarly, Bxixj denotes the second-order derivative with
respect to xi and xj , i, j ∈ {1, 2}). This gives the claim, since taking all x ranging
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from x1/(1 + d) to x1, we get all points from the interior of Dp,c with the first
coordinate equal to x1. �

2.2. A reverse Hölder inequality for weights. We start with the following
useful interpretation of Ap weights in terms of appropriate two-dimensional mar-
tingales. Fix such a weight W and let c = [W ]Ap . Furthermore, let V = (Vt)t≥0 be

the martingale given by Vt = E(W
1/(1−p)
∞ |Ft), t ≥ 0. Note that Jensen’s inequality

implies WτV
p−1
τ ≥ 1 almost surely for any stopping time τ ; furthermore, the Ap

condition is equivalent to the reverse bound

WτV
p−1
τ ≤ c with probability 1.

In other words, an Ap weight of characteristic equal to c gives rise to a two-
dimensional martingale (W,V ) taking values in the domain Dp,c. In addition, this
martingale terminates at the lower boundary ∂−Dp,c: W∞V p−1

∞ = 1 almost surely.
A nice feature is that this is a full characterization: given any martingale pair
(W,V ) (with W having continuous paths) taking values in Dp,c and terminating at
∂−Dp,c, one easily checks that its first coordinate is an Ap weight with [W ]Ap ≤ c.

Equipped with the above interpretation, we are ready for the proof of the fol-
lowing statement.

Lemma 2.3. Suppose that W is an Ap weight, put c = [W ]Ap and let d = d(p, c)
be the positive constant given by (1.4). Then for r ∈ (d+ 1, p) we have

[W ]Ar ≤
(

(1 + d)1/(1−r)(1− r)
d+ 1− r

)r−1

.

Proof. Let B = Bp,r,c and pick an arbitrary stopping time τ . Furthermore, for a
given δ > 0, consider the stopping time

σ = σδ = inf{t : Wt ≤ δ or Wt + [W,W ]t + [V, V ]t ≥ δ−1}.
The process (W,V ) takes values in the set Dp,c and terminates when reaching the
lower boundary ∂−Dp,c. Thus, by the definition of σ, we see that on the set {σ > 0}
the stopped process (Wσ, V σ) is bounded. Since B is of class C∞ in the interior of
Dp,c, we may apply Itô’s formula to obtain that on {σ > 0},

B(Wσ
∞, V

σ
∞) = I0 + I1 + I2/2,

where

I0 = B(Wσ
τ , V

σ
τ ),

I1 =

∫ ∞
τ

Bx1(Wσ
s , V

σ
s )dWσ

s +

∫ ∞
τ

Bx2(Wσ
s , V

σ
s )dV σs ,

I2 =

∫ ∞
τ

Bx1x1
(Wσ

s , V
σ
s )d[Wσ,Wσ]s + 2

∫ ∞
τ

Bx1x2
(Wσ

s , V
σ
s )d[Wσ, V σ]s

+

∫ ∞
τ

Bx2x2
(Wσ

s , V
σ
s )d[V σ, V σ]s.

By the definition of the stopping time σ and properties of stochastic integrals,
the processes

(∫ u
0
Bx1

(Wσ
s , V

σ
s )dWσ

s

)
u≥0

and
(∫ u

0
Bx2

(Wσ
s , V

σ
s )dV σs

)
u≥0

are L2-

bounded martingales. Moreover, since B is locally concave, its Hessian matrix is
nonpositive-definite and hence I2 ≤ 0. Putting the above facts together, we get

E
[
B(Wσ

∞, V
σ
∞)|Fτ ]1{σ>0} ≤ B(Wσ

τ , V
σ
τ )1{σ>0},
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which combined with (2.2) yields

E
(
(Wσ
∞)1/(1−r)|Fτ

)
1{σ>0} ≤

(1 + d)1/(1−r)(1− r)
d+ 1− r

(Wσ
τ )1/(1−r)1{σ>0}.

Now recall that σ depends on δ and send this parameter to 0. Clearly, then σ →∞
and hence, by the path-continuity of W and Fatou’s lemma, we obtain

(2.3) E
(
W 1/(1−r)|Fτ

)
≤ (1 + d)1/(1−r)(1− r)

d+ 1− r
W 1/(1−r)
τ .

This is precisely the assertion, since τ was arbitrary. �

The above lemma will enable us to establish the following fact (recall that for
A ∈ F we write W (A) =

∫
A
W∞dP).

Theorem 2.4. Let 1 < p < ∞. Suppose that W is an Ap weight with c = [W ]Ap
and let d = d(p, c). Then for any r ∈ (d+ 1, p) and any cádlág martingale (Xt)t≥0

we have

(2.4) W (X∗ ≥ 1) ≤
(

(1 + d)1/(1−r)(1− r)
d+ 1− r

)r−1

E(|X∞|rV 1−r
∞ 1{X∗≥1}),

where Vt = E(W 1/(1−r)|Ft) for t ∈ [0,∞].

Proof. Let ε > 0 and set τ = inf{t : |Xt| ≥ 1 − ε}. Our starting point is the
inequality

(2.5) 1{τ<∞} ≤
|Xτ |
1− ε

1{τ<∞} =
1

1− ε
· V 1−1/r

τ ·
(
|Xτ |rV 1−r

τ 1{τ<∞}
)1/r

.

There are two factors on the right which must be handled appropriately. By (2.3),
we see that

V 1−1/r
τ = E(V∞|Fτ )1−1/r = E(W 1/(1−r)

∞ |Fτ )1−1/r

≤
(

(1 + d)1/(1−r)(1− r)
d+ 1− r

)1−1/r

W−1/r
τ .

To treat the term |Xτ |rV 1−r
τ 1{τ<∞}, observe that the function (x, v) 7→ |x|rv1−r

is convex on R × (0,∞). Indeed, it is of class C1, symmetric with respect to the
variable x and its Hessian matrix at (x, v) ∈ (0,∞)× (0,∞), which is equal to[

r(r − 1)xr−2v1−r r(1− r)xr−1v−r

r(1− r)xr−1v−r r(r − 1)xrv−1−r

]
,

is nonnegative definite. Consequently, we may write

|X∞|rV 1−r
∞ ≥ |Xτ |rV 1−r

τ +r|Xτ |r−2XτV
1−r
τ (X∞−Xτ )+(1−r)|Xτ |rV −rτ (V∞−Vτ ),

since the graph of a convex function lies above any tangent plane. Pick an arbitrary
event A ∈ Fτ , a parameter δ > 0 and put Aδ = A ∩ {|Xτ | ≤ δ−1, δ ≤ Vτ ≤ δ−1}.
Then Aδ also belongs to Fτ and the above inequality implies∫

Aδ

|X∞|rV 1−r
∞ dP ≥

∫
Aδ

|Xτ |rV 1−r
τ dP,
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since E(X∞ − Xτ |Fτ ) = 0 and E(V∞ − Vτ |Fτ ) = 0. The events Aδ increase
as δ decreases and we have A =

⋃∞
n=2A1/n. Therefore, Lebesgue’s monotone

convergence theorem gives∫
A

|X∞|rV 1−r
∞ dP ≥

∫
A

|Xτ |rV 1−r
τ dP.

In particular, this implies that |Xτ |rV 1−r
τ is integrable (by taking A = Ω) and

|Xτ |rV 1−r
τ ≤ E(|X∞|rV 1−r

∞ |Fτ ). Plugging the above observations to (2.5), we
obtain

1{τ<∞} ≤
1

1− ε

(
(1 + d)1/(1−r)(1− r)

d+ 1− r

)1−1/r (
E(|X∞|rV 1−r

∞ 1{τ<∞}|Fτ )
)1/r

W−1/r
τ ,

or, equivalently,

Wτ1{τ<∞} ≤
(

1

1− ε

)r (
(1 + d)1/(1−r)(1− r)

d+ 1− r

)r−1

E(|X∞|rV 1−r
∞ 1{τ<∞}|Fτ ).

Integrating and using the equality Wτ = E(W |Fτ ), we get

W (τ <∞) ≤
(

1

1− ε

)r (
(1 + d)1/(1−r)(1− r)

d+ 1− r

)r−1

E(|X∞|rV 1−r
∞ 1{τ<∞}).

But {X∗ ≥ 1} ⊆ {τ <∞} for any ε > 0 (where ε is the parameter appearing in the
definition of τ). Furthermore, we see that

⋂
ε>0{τ < ∞} ⊆ {X∗ ≥ 1}. Therefore,

letting ε→ 0 and applying Lebesgue’s dominated convergence theorem, we obtain
the assertion. �

3. Proof of Theorem 1.1

3.1. Proof of (1.5). Let 1 < p <∞, take an Ap weight W , put c = [W ]Ap and let
d = d(p, c) be given by (1.4). In addition, fix a martingale X as in the statement.
Using (2.4), we obtain

W (X∗ ≥ 1) ≤
(

(1 + d)1/(1−r)(1− r)
d+ 1− r

)r−1

r

∫ ∞
0

λr−1W (X∗ ≥ 1, |X| ≥ λ)dλ.

Set K = ||X||Lp,∞(W ): then for any λ > 0 we have the inequality

W (X∗ ≥ 1, |X| ≥ λ) ≤ min{(K/λ)p,W (X∗ ≥ 1)}
and therefore, plugging it above, we get

W (X∗ ≥ 1)

≤
(

(1 + d)1/(1−r)(1− r)
d+ 1− r

)r−1

r

[∫ λ0

0

λr−1W (X∗ ≥ 1)dλ+Kp

∫ ∞
λ0

λr−1−pdλ

]
,

where λ0 = KW (X∗ ≥ 1)−1/p. This, after some straightforward manipulations, is
equivalent to

W (X∗ ≥ 1) ≤
(

(1 + d)1/(1−r)(1− r)
d+ 1− r

)r−1

· p

p− r
KrW (X∗ ≥ 1)1−r/p,

or [
W (X∗ ≥ 1)

]1/p ≤ ( (1 + d)1/(1−r)(1− r)
d+ 1− r

)1−1/r (
p

p− r

)1/r

||X||Lp,∞(W ).
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The constant on the right, considered as a function of r ∈ (d + 1, p), attains its
minimal value p/(p− 1− d) at the point r = 1 + pd/(d+ 1). To show this, denote
this constant by exp(G(r)) and compute that

G(r) = − log(1 + d) +

(
1− 1

r

)
log

[
(1 + d)(1− r)
d+ 1− r

]
+

1

r
log

p

p− r
and

G′(r) =
1

r2
log

[
(1 + d)(1− r)(p− r)

p(d+ 1− r)

]
+

d

r(d+ 1− r)
+

1

r(p− r)
.

We easily check that G′(1 + pd/(d + 1)) = 0; furthermore, the function H(r) =
r2G′(r) has the same sign as G′ and

H ′(r) =

(
p

(p− r)2
− 1

p− r

)
+

(
1

r − 1
− 1

r − d− 1
+

d(d+ 1)

(d+ 1− r)2

)
=

r

(p− r)2
+

rd2

(r − 1)(r − 1− d)2
.

Clearly, H ′ is nonnegative, so H is increasing and hence G′ is negative on (d+1, 1+
pd/(d+1)) and positive on (1+pd/(d+1), p). Therefore, the choice r = 1+pd/(d+1)
indeed minimizes the constant in the weak-norm estimate. It remains to check that
for r = 1 + pd/(d+ 1) we have(

(1 + d)1/(1−r)(1− r)
d+ 1− r

)1−1/r (
p

p− r

)1/r

=
p

p− 1− d
.

This is just a matter of simple manipulations; we leave the straightforward calcu-
lation to the reader.

3.2. Sharpness. Now we will prove that the constant p/(p − 1 − d(p, [W ]Ap)) in
(1.5) is indeed the best possible. The unweighted case, corresponding to [W ]Ap = 1,
is simple. Fix 1 < p <∞, ε > 0 and let B be a one-dimensional Brownian motion
starting from 1. If we set τ = inf{t : Bt ≤

(
(p − 1)/p + ε

)
B∗t }, then τ is an

Lp/2-integrable stopping time (cf. Peskir [9]). Consequently, the stopped process
X = Bτ is a martingale converging in Lp and hence ||X∞||Lp,∞ ≤ ||X∞||Lp < ∞.
On the other hand, we have X∞ = ((p− 1)/p+ ε)X∗ almost surely, so

||X∞||Lp,∞ =

(
p− 1

p
+ ε

)
||X∗||Lp,∞

and the sharpness follows from the fact that ε is arbitrary.
If c := [W ]Ap > 1, the construction and the analysis of the appropriate coun-

terexample is more elaborate. Some parts of the construction are taken from [6],
but there are several crucial modifications, so we have decided to provide all details
here. We split the reasoning into a few separate parts.

1◦ Special points in the first quadrant. Let, as usual, d = d(p, c) be given by
(1.4). For two given numbers b and c satisfying 1 < b < c, draw three curves:

γ1 = {(x1, x2) ∈ R2
+ : x1x

p−1
2 = 1}, γb = {(x1, x2) ∈ R2

+ : x1x
p−1
2 = b} and γc =

{(x1, x2) ∈ R2
+ : x1x

p−1
2 = c}. Next, consider the line passing through (1, c1/(p−1)),

tangent to γc. This line intersects γb in two points: P0 = (x1+, x2+) and P1 =
(x1−, x2−), where x1+ > 1 and x1− < 1. Furthermore, it intersects γ1 at a point
Z1 = (1+d, (1+d)1/(1−p)) where d is given by (1.4). Next, construct inductively the
sequences (Pn)n≥2 and (Zn)n≥2 of points as follows. Having constructed Pn−1 and
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Pn−2, consider a line passing through Pn−1, tangent to γc, different from Pn−2Pn−1;
this line intersects γb in Pn−1 and yet another point, which we denote by Pn.
Furthermore, let Zn be the point of intersection of the line Pn−1Pn with γ1, having
a bigger x-coordinate than Pn. We hope that the Figure 2 below clarifies the
construction.

Figure 2. Special points P0 = (x1+, x2+), P1 = (x1−, x2−), P2,
. . . and Z1 = (1 + d, (1 + d)1/(1−p)), Z2, Z3, . . .

It is clear that x1±, x2± are functions of b, c and p; furthermore, if we keep c
and p fixed, and let b ↑ c, then x1+ ↓ 1 and x1− ↑ 1, so in particular the difference
x1+−x1− converges to 0. Observe also that the picture has a self-similarity property.
Clearly, for any λ > 0 we have (x1, x2) ∈ γc if and only if (λx1, λ

1/(1−p)x2) ∈ γc,
and a similar equivalence holds for γb and γ1. In consequence, for each n ≥ 0 we
have

Pn =
(
x1+(x1−/x1+)n, x2+(x1+/x1−)n/(p−1)

)
and

Zn+1 =
(

(1 + d)(x1−/x1+)n, (1 + d)1/(1−p)(x1+/x1−)n/(p−1)
)
.

In particular, this implies that for each n ≥ 0 the point Pn splits the segment
Pn+1Zn+1 in the same ratio:

(3.1)
|Zn+1 − Pn|
|Zn+1 − Pn+1|

=
1 + d− x1+

1 + d− x1−
.

2◦ Construction of the weight W . Introduce the two-dimensional continuous-
path martingale (W,V ) with distribution uniquely determined by the following
requirements.

• W is a stopped Brownian motion,
• (W0, V0) = P0 almost surely.
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• The range of (W,V ) is equal to the union of the segments PnZn, n =
1, 2, . . ..

A more explicit description is in order. The process (W,V ) starts from P0 and
first, it evolves along the line segment P1Z1, hitting eventually one of the endpoints.
Denote

τ1 = inf{t : (Wt, Vt) ∈ {P1, Z1}}.
If the ending point is Z1, then the process (W,V ) stops and we define its lifetime
to be τ = τ1. Otherwise, it continues its movement, but now it evolves along the
line segment P2Z2, ending after some time in the set {P2, Z2}. Let

τ2 = inf{t : (Wt, Vt) ∈ {P2, Z2}}.
If (Wτ2 , Vτ2) = Z2, then the evolution is over and the lifetime τ of (W,V ) equals
τ2. If (Wτ2 , Vτ2) = P2, the process starts moving along P3Z3, and so on. Thus, we
end up with a sequence (τn)n≥0 of stopping times (we set τ0 ≡ 0) and the lifetime
variable τ = supn≥0 τn. Furthermore, directly from the self-similarity of the picture
mentioned above (see (3.1)), we get

(3.2) P(τ > τn) =

(
1 + d− x1+

1 + d− x1−

)n
,

so in particular τ is finite with probability 1 (since all τn’s are). Finally, one easily
checks that the pair (W,V ) is uniformly integrable with values in {(w, v) : 1 ≤
wvp−1 ≤ c}, and hence W is an Ap weight satisfying [W ]Ap ≤ c. Actually, the Ap
characteristic is equal to c, since the trajectory of (W,V ) touches the curve γc.

3◦ Construction of the martingale X. The process X will be an appropriate
affine transformation of W . Let δ be a small positive number to be specified later.
Define the points P̃n = (1 + δ)n, Z̃n+1 = (1 + δ)n(1− s) for n = 0, 1, 2, . . ., where

s = δ(1 + d− x1+)/(x1+ − x1−). Then Z̃n < P̃n−1 < P̃n for each n ≥ 1 and

(3.3)
|Pn−1 − Zn|
|Pn − Zn|

=
|P̃n−1 − Z̃n|
|P̃n − Z̃n|

=
1 + d− x1+

1 + d− x1−
.

We construct the martingale X separately on each interval [τn, τn+1] (where τn’s

are the stopping times introduced in Step 2◦). First, we let X start from P̃0 and on

the interval [τ0, τ1], let it move along [Z̃1, P̃1] so that τ1 = inf{t : Xt ∈ {P̃1, Z̃1}}.
Clearly, this is possible because of (3.3); actually, we may even require that

{Xτ1 = P̃1} = {(Wτ1 , Vτ1) = P1} and {Xτ1 = Z̃1} = {(Wτ1 , Vτ1) = Z1}.
Indeed, it suffices to put Xt = ϕ(Wt), t ∈ [τ0, τ1], where ϕ : R → R is an affine
mapping sending 1 + d to 1− s and x1− to 1 + δ.

If Xτ1 = Z̃1, the process stops (and so does (W,V )); otherwise, on the set

{τ > τ1}, the movement is continued, along the segment [Z̃2, P̃2] on the time

interval [τ1, τ2] so that τ2 = inf{t > τ1 : Xt ∈ {P̃2, Z̃2} and

{Xτ2 = P̃2} = {(Wτ2 , Vτ2) = P2} and {Xτ2 = Z̃2} = {(Wτ2 , Vτ2) = Z2}.
This can be guaranteed due to (3.3): if ϕ is an affine mapping which sends (1 +
d)x1−/x1+ to (1+δ)(1−s) and x2

1−/x1+ to (1+δ)2, then the formula Xt = ϕ(Wt) on
{τ > τ1}, t ∈ [τ1, τ2], gives us the desired process X. We continue the construction
using this pattern on each [τn, τn+1], requiring

{Xτn = P̃n} = {(Wτn , Vτn) = Pn} and {Xτn = Z̃n} = {(Wτn , Vτn) = Zn}
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for all n ≥ 1. It is clear from the construction that X converges almost surely and
satisfies

(3.4) X∞ = (1− s)X∗.

4◦ Calculation. Now we will check that for appropriate δ the variable X∞ belongs
to Lp(W ) (and hence also to Lp,∞(W )). We have

E|X∞|pW∞ =

∞∑
n=0

(1− s)p(1 + δ)np · (1 + d)

(
x1−

x1+

)n
·
(

1 + d− x1+

1 + d− x1−

)n
x1+ − x1−

1 + d− x1−

= (1− s)p(1 + d) · x1+ − x1−

1 + d− x1−

∞∑
n=0

[
(1 + δ)p · x1−

x1+
· 1 + d− x1+

1 + d− x1−

]n
.

If δ is chosen so that the expression in the square brackets is less than 1, then the
above geometric series converges. So, take δ smaller than(

1 + d− x1−

1 + d− x1+
· x1+

x1−

)1/p

− 1

and let us look at the factor 1− s appearing in (3.4). If δ is sufficiently close to the
above quantity, we see that 1− s can be made arbitrarily close to

(3.5) 1−

(
1 + x1+−x1−

1+d−x1+

)1/p (
x1+−x1−
x1−

+ 1
)1/p

− 1

x1+ − x1−
(1 + d− x1+).

Recalling our discussion in 1◦, if we let b → c, then x1+, x1− converge to 1 and
x1+ − x1− tends to 0. Consequently, the above expression converges to

1−
(

1

pd
+

1

p

)
d =

p− d− 1

p
.

Therefore, if we choose first b sufficiently close to c and then δ sufficiently close
to (3.5), then the factor 1 − s can be made arbitrarily close to (p − d − 1)/p and,
simultaneously, X∞ ∈ Lp,∞(W ). This shows that the constant p/(p − 1 − d) is
indeed the best possible.
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