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ABSTRACT. Suppose that d ≥ 1 is an integer, α ∈ (0, d) is a fixed parameter and let
Iα be the fractional integral operator associated with d-dimensional Walsh-Fourier series
on (0, 1]d. Let p, q be arbitrary numbers satisfying the conditions 1 ≤ p < d/α and
1/q = 1/p−α/d. We determine the optimal constant K(α, β, p) depending only on the
parameters indicated such that for any f ∈ Lp((0, 1]d) we have

||Iαf ||Lq,∞((0,1]d) ≤ K(α, β, p)||f ||Lp((0,1]d).

Actually, we study this inequality in a more general context of probability spaces equipped
with a regular tree-like structures. This allows us to obtain this result also for non-integer
dimension. The proof exploits a certain modification of the so-called Bellman function
method and appropriate interpolation-type arguments. We also present a sharp weighted
weak-type bound for Iα, which can be regarded as a version of the Muckenhoupt-Wheeden
conjecture for fractional integral operators.

1. INTRODUCTION

Let d be a positive integer. For 0 < α < d, the fractional integral (or Riesz potential)
Iα is defined by the formula

(1.1) Iαf(x) =
4(d−α)/2

(4π)d/2
Γ
(
(d− α)/2

)
Γ(α/2)

∫
Rd

f(y)

|x− y|d−α
dy.

Recalling that the that Fourier transform of the Laplacian −∆ is given by (̂−∆)f(ξ) =

4π2|ξ|2f̂(ξ), the constant in front of the integral is chosen so

(1.2) Iα(f)(x) = (−∆)−α/2f(x).

The above operators play an important role in analysis. For example, as evidenced in the
monographs of Stein [33] and Grafakos [14], they can be used in the study of differentia-
bility or smoothness properties of functions. It is well known that if 1 < p < d/α and q
satisfies the relation 1/q = 1/p− α/d, then Iα maps Lp into Lq; furthermore, in the limit
cases (p, q) = {(1, d/(d − α)), (d/α,∞)} the corresponding Lp → Lq estimates do not
hold. The boundedness has many important applications, e.g. it leads to Sobolev embed-
ding theorems and related comparisons between sizes of functions and their derivatives.

A simple Fubini theorem argument can be used to show that these operators also have a
representation in terms of the heat semigroup of Brownian motion in Rd. More precisely,
with our normalization given above we have
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(1.3) Iα(f)(x) =
1

Γ(α/2)

∫ ∞
0

tα/2−1Ptf(x) dt,

where Ptf(x) is the convolution of f with the Gaussian kernel 1
(4πt)d/2

e−|x|
2/(4t). From

the representation in (1.3), it was shown in [1] that Iα(f)(x) also has a representation as the
projection of a martingale transform of a stochastic integral (with unbounded multiplier) in
the style of the representation given for Riesz transforms and many other singular integrals
and Fourier multipliers; see [2] for an overview of such results. Such a representation
for the fractional integrals raises many questions about the possibility of obtaining sharp
inequalities for these operators using the martingale transform techniques of Burkholder
[4] and their many extensions and refinements (as presented in, for example, [24]), which
have been so effectively used to obtain bounds for the classical Riesz transforms and other
Fourier multipliers.

The purpose of this paper is to study the properties of closely related operators arising in
the context of the d-dimensional Walsh system where the martingale tools can be brought
to bear. Consider the unit cube (0, 1]d in Rd equipped with the lattice of its dyadic sub-
cubes. That is, consider sets of the form

(
a1
2n ,

a1+1
2n

]
×
(
a2
2n ,

a2+1
2n

]
× . . .

(
ad
2n ,

ad+1
2n

]
for

some nonnegative integer n and some a1, a2, . . ., ad ∈ {0, 1, . . . , 2n − 1}. Recall that the
Rademacher system {rn}n≥0 of functions on (0, 1] is given by

rn(t) = sgn
(

sin(2n+1πt)
)
.

Then {wn}n≥0, the Walsh system on (0, 1], is defined as follows: w0 ≡ 1 and if n is a
positive integer with n = 2n1 + 2n2 + . . .+ 2nk and n1 > n2 > . . . > nk, then

wn(t) = rn1
(t)rn2

(t) . . . rnk(t).

The extension of the Walsh system to the d-dimensional setting is the collection of all
functions on (0, 1]d which are of the form

x = (x1, x2, . . . , xd) 7→ wj1(x1)wj2(x2) . . . wjd(xd),

where j1, j2, . . ., jd are nonnegative integers.
Now, assume that f is a Lebesgue-integrable function on the cube (0, 1]d. We define the

associated rectangular partial sums of d-dimensional Walsh-Fourier series by the formula

Sn1,n2,...,nd(f)(x) =

n1−1∑
j1=0

n2−1∑
j2=0

. . .

nd−1∑
jd=0

f̂(j1, j2, . . . , jd)

d∏
k=1

wjk(xk).

Here x = (x1, x2, . . . , xd) ∈ (0, 1]d and

f̂(j1, j2, . . . , jd) =

∫
[0,1)d

f(x)

d∏
k=1

wjk(xk)dx

is the (j1, j2, . . . , jd)th Walsh-Fourier coefficient of f . There has been a considerable in-
terest in the relation between the size of f and the behavior of the partial sum Sn,n,...,n(f).
We refer the reader to the works of Goginava [11], [12], Goginava and Weisz [13], Nagy
[20], Simon [29], [30] and Weisz [39], [40], [41]. Our contribution is the study of proper-
ties of fractional integral operators which arise naturally in this setting. The definition is
the following. Given a parameter α ∈ (0, d), the associated fractional integral operator Iα
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is given by

(1.4) Iαf = S0,0,...,0(f) +

∞∑
k=1

2−kα
(
Sk,k,...,k(f)− Sk−1,k−1,...,k−1(f)

)
.

This is the discrete and localized version of the usual fractional integral operator in Rd,
discussed at the beginning. In the literature, one may encounter an alternative definition

Iαf =

∞∑
k=0

2−kαSk,k,...,k(f),

which differs from the preceding one by the multiplicative factor only: we have Iα =
(1− 2−α)Iα. The operator (1.4) was introduced and studied by Watari [38]. A convenient
reference, which presents a probabilistic approach, is the paper of Chao and Ombe [7]. For
more recent works, we refer the interested reader to the works of Lacey et. al. [16], Cruz-
Uribe and Moen [8] and Osȩkowski [25]. The arguments presented in the first two papers
can be used to prove that the fractional integral operator is bounded as an operator from
Lp((0, 1]d) to Lq((0, 1]d), where, as in the classical case, 1 < p ≤ d/α and 1

q = 1
p −

α
d .

Furthermore (cf. [25]), for the limit values p = 1, q = d/(d − α), we have the sharp
weak-type estimate

|||Iαf |||Lq,∞((0,1]d) =(1− 2−α)|||Iαf |||Lq,∞((0,1]d)≤
2d−α − 2−α

2d−α − 1
||f ||Lp((0,1]d),(1.5)

where
|||f |||Lq,∞((0,1]d) = sup

λ>0
λ|{x ∈ (0, 1]d : |f(x)| ≥ λ}|1/q

is the usual weak-type quasi-norm. These results are in perfect correspondence with those
for the classical Riesz potentials.

The principal goal of this paper is to extend (1.5) to other values of p and q. It will be
convenient for us to work under a different (but equivalent) norming of the weak spaces:

||f ||Lq,∞((0,1]d) = sup

{
1

|E|1−1/q

∫
E

|f |dx : E ⊂ (0, 1]d, |E| > 0

}
.

We will prove the following fact.

Theorem 1.1. Let p, q, α be arbitrary numbers satisfying 0 < α < d, 1 ≤ p < d/α and
1/q = 1/p− α/d. Then

||Iα||Lp((0,1]d)→Lq,∞((0,1]d)

=
2d−α − 2−α

2d−α − 1

(
1 +

(1− 2−α)p
′

(1− 2−d)p′−1(2p′(d−α)−d − 1)

)1/p′

,
(1.6)

where p′ is the harmonic conjugate to p.

Actually, we will work in a more general setting of probability spaces equipped with
regular tree-like structures (for the definitions, see Section 2 below). In particular, this will
enable us to obtain a version of the above theorem for non-integer values of d as well.

Let us say a few words about the structure of our approach. The main point, presented
in Theorem 3.1, is a restricted-type estimate for Iα. More specifically, for an arbitrary set
A, we provide a sharp upper bound for the essential supremum of IαχA in terms of the
measure of A. Then, using some interpolation-type arguments, we are able to extend this
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result to a class of appropriate sharp upper bounds for p-th norms of IαχA, and establish
the desired weak-type estimates using duality arguments.

The proof of Theorem 3.1 rests on Bellman function method, a powerful technique used
widely in analysis and probability theory. Roughly speaking, the method enables one to
deduce a given inequality from the existence of a certain special function, which enjoys
some majorization and convexity-type properties. This type of approach originates from
the theory of stochastic optimal control, and its connection with other areas of mathemat-
ics was first observed by Burkholder in [4], who studied sharp inequalities for martingale
transforms. Since then, the method has been intensively developed in subsequent works of
Burkholder and his students; a convenient reference on the subject is the monograph [24]
by the second author. Furthermore, in the late 90’s, Nazarov, Treil and Volberg showed
that the method can be applied in the much wider setting of harmonic analysis. Since the
seminal papers [22], [23], the technique has been used in numerous settings; see for exam-
ple [9], [31], [32], [36], [37], and references therein. At this point we should mention that
some attempts to introduce a general Bellman setup for the study of dyadic fractional inte-
gral operators can be found in [25]. However, in comparison to that paper, we investigate
below the less restrictive setting of probability spaces equipped with tree-like structures.
Furthermore, which is even more interesting, the results investigated here require several
novel reductions and much more delicate analysis; this in turn leads to much more compli-
cated Bellman functions than those appearing in [25].

This paper is organized as follows. In the next section we introduce the necessary prob-
abilistic background and make the connection to martingales. In Section 3, we establish a
sharp upper bound for ||IαχA||∞, using the Bellman function method. Section 4 contains
the proof of Theorem 1.1 and its generalized, probabilistic version. In the final part of the
paper, we show how our approach can lead to certain weighted weak-type bounds, which
can be regarded as a version of Muckenhoupt-Wheeden conjecture for fractional integral
operators.

2. PROBABILISTIC SETUP

Suppose that (Ω,F ,P) is a fixed, nonatomic probability space, equipped with the fol-
lowing tree-like structure T .

Definition 2.1. A set T of measurable subsets of Ω will be called a tree if the following
conditions are satisfied:

(i) Ω ∈ T and for every J ∈ T , we have P(J) > 0.
(ii) For every J ∈ T there is a finite subsetC(J) ⊂ T containing at least two elements

such that
(a) the elements of C(J) are pairwise disjoint subsets of J and
(b) J =

⋃
C(J).

(iii) T =
⋃
m≥0 T m, where T 0 = {Ω} and Tm+1 =

⋃
J∈T m C(J).

In what follows, we will need to work with trees satisfying certain regularity-type prop-
erty. Our β below plays the role of the dimension d. We emphasize that, as in the Varopou-
los’ analysis of “finite dimensional” semigroups [34, 35], this “dimension” may not be an
integer.

Definition 2.2. Let β ≥ 1 be a given number. A tree T is called β-regular, if for any
nonnegative integer n and any J1 ∈ T n, J2 ∈ C(J1) we have P(J2)/P(J1) ∈ [2−β , 1 −
2−β ].
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Any tree-like structure gives rise to the corresponding filtration (Fn)n≥0, given by
Fn = σ(J : J ∈ T n). Given an integrable random variable f , one can consider the
associated martingale given by (E(f |Fn))n≥0; this sequence will be denoted by (fn)n≥0
or, with a slight abuse of notation, again by the letter f . Note that such martingales are
simple, i.e., for any nonnegative integer n, the random variable fn takes only a finite num-
ber of values. This follows at once from the fact that Fn consists of finite number of sets.
For a given martingale f = (fn)n≥0, we will denote the associated difference sequence by
df = (dfn)n≥0: df0 = f0 and dfn = fn − fn−1 for n ≥ 1.

Any tree-like structure T also gives rise to the corresponding class of fractional integral
operators. Given α ≥ 0 and an integrable random variable f , we define g = (gn)n≥0, the
associated α-transform of f , by the the identity

gn =

n∑
k=0

2−kαdfk, n = 0, 1, 2, . . . .

Of course, this is equivalent to saying that dgn = 2−nαdfn for each n. It follows from
the escape inequalities of Burkholder [5] that the martingale g converges almost surely. Its
pointwise limit will be denoted by Iαf and called the fractional integral of f . We would
like to stress here that the operator Iα depend on the underlying tree and sometimes we
will indicate this dependence by adding an appropriate superscript such as ITα . We will
also often write (Iαf)n instead of gn.

Here is our main example which exploits all the concepts introduced above.

Example 2.1. Suppose that the underlying probability space is the d-dimensional unit
cube (0, 1]d equipped with its Borel subsets and Lebesgue measure. Let T k be a collection
of all dyadic cubes of volume 2−kd, contained in (0, 1]d. Then T = (T n)n≥0 is a d-regular
tree. For a given integrable function f : (0, 1]d → R, one easily checks that the associated
martingale (fn)n≥0 is just the sequence of appropriate partial sums associated with the
Walsh-Fourier series: fn = E(f |Fn) = Sn,n,...,n(f). Hence the corresponding fractional
integral operator is given by

Iαf =

∞∑
n=0

2−nα
(
Sn,n,...,n(f)− Sn−1,n−1,...,n−1(f)

)
(we use the convention S−1,−1,...,−1(f) = 0), which is precisely the fractional integral
operator Iα defined in (1.4).

In our further considerations we will exploit the fact that the operator Iα is self-adjoint.
That is, if f , g are bounded random variables, then

(2.1) E(Iαf)g = Ef(Iαg).

This is straightforward. By the martingale property we have Edfndgm = 0 whenever
n 6= m, and hence

E(Iαf)g = E
∞∑

m,n=0

2−nαdfndgm

= E
∞∑
n=0

2−nαdfndgn = E
∞∑

m,n=0

2−mαdfndgm = Ef(Iαg).
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We conclude this section by recalling some classical notions from real analysis. Given
a random variable f , we define its decreasing rearrangement f∗ : (0, 1]→ [0,∞) by

f∗(t) = inf
{
s : P(|f | > s) ≤ t

}
.

Then f∗∗ : (0, 1]→ [0,∞), the maximal function of f∗, is given by the formula

f∗∗(t) =
1

t

∫ t

0

f∗(s)ds, t ∈ (0, 1].

One easily verifies that f∗∗ can alternatively be defined by

f∗∗(t) =
1

t
sup

{∫
E

|f |dP : P(E) = t

}
.

3. RESTRICTED BOUNDS FOR MARTINGALES

Now we will establish a sharp martingale bound which can be regarded as the funda-
mental “building block” for our further considerations. For the sake of convenience, we
will split this section into two parts.

3.1. A special function. Suppose that β ≥ 1 and α ∈ (0, β) are given and fixed. For an
arbitrary x ∈ (0, 1], introduce the parameter n(x) = sup{k : 2βkx < 1}. The main object
of this subsection is the function Bα,β : [0, 1]× R→ R given by the formula

Bα,β(x, y) = y +
2β−α − 2−α

2β−α − 1
x
(
(2(β−α)n(x) − 1

)
+ 2−(n(x)+1)α(1− 2βn(x)x)

if x > 0, and Bα,β(0, y) = y for all y ∈ R. In most instances it will be clear from the
context which α and β we are working with, so we will skip the lower indices and simply
write B instead of Bα,β .

One checks easily that B is a continuous function. We will need the following further
properties of B.

Lemma 3.1. (i) We have B(x, y) ≥ y for all (x, y) ∈ [0, 1]× R.
(ii) For any y ∈ R, the function ξ(x) = B(x, y + x) is nondecreasing on [0, 1].

Proof. The majorization (i) is evident: B(x, y) is a sum of y and two additional terms, both
of which are nonnegative. We turn our attention to (ii). We haveB(x, y+x) = y+B(x, x),
so it suffices to show the claim for y = 0. Furthermore, by the continuity ofB, it is enough
to establish the monotonicity on the interval (2−(n+1)β , 2−nβ), where n is an arbitrary
nonnegative integer. On such an interval we have n(x) = n. Differentiating gives

∂B(x, x)

∂x
= 1 +

2β−α − 2−α

2β−α − 1
(2(β−α)n − 1)− 2(β−α)n−α

=
(2(β−α)(n+1) − 1)(1− 2−α)

2β−α − 1
≥ 0,

as needed. �

The main property of B is studied in a the next lemma below. It can be regarded as a
concavity-type condition.

Lemma 3.2. Fix (x, y) ∈ [0, 1] × R. Suppose that a finite collection of points (xj , yj) ∈
[0, 1]× R have the following properties:

(a) All the points lie on a line of slope 2−α passing through the point (x, y).
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(b) There are numbers λj ∈ [2−β , 1− 2−β ] summing up to 1, such that

(x, y) =
∑
j

λj(xj , yj).

Then we have the inequality

(3.1) B(x, y) ≥ max
j

{
2−αB(xj , 2

αyj)
}
.

Proof. With no loss of generality, we may assume that the sequence (xj) is nonincreasing.
Consider the function ξ : [−x, 1− x]→ R given by

ξ(t) = B(x+ t, 2αy + t).

By the second part of the preceding lemma, ξ is nondecreasing. In addition, since all
(xj , yj) lie on a line of slope 2−α passing through (x, y), we have

B(xj , 2
αyj) = B

(
x+ (xj − x), 2αy + (xj − x)

)
= ξ(xj − x).

By the monotonicity of (xj) which we have assumed at the beginning, the right-hand side
of (3.1) is equal to 2αB(x1, 2

αy1). In addition, by (ii), we may write

x1 = λ−11 x−
∑
j 6=1

λjλ
−1
1 xj ≤ λ−11 x ≤ 2βx,

which implies
B(x1, 2

αy1) = ξ(x1 − x) ≤ ξ
(

min{2βx, 1} − x
)
.

It remains to observe that the latter expression is equal to 2αB(x, y). Let us briefly check
this: if 2βx < 1, then n(2βx) = n(x)− 1 and

ξ(2βx− x)

= B(2βx, 2αy + 2βx− x)

= 2αy + 2βx− x+ 2β−α(1− 2−β)2βx
(2β−α)n(x)−1 − 1

2β−α − 1
+ 2−n(x)α

(
1− 2βn(x)x

)
= 2αy + 2βx− x+ 2β(1− 2−β)x

(2β−α)n(x) − 2β−α

2β−α − 1
+ 2−n(x)α

(
1− 2βn(x)x

)
= 2αy + 2β(1− 2−β)x

(2β−α)n(x) − 1

2β−α − 1
+ 2−n(x)α

(
1− 2βn(x)x

)
= 2αB(x, y).

On the other hand, if 2βx ≥ 1, then n(x) = 0 and thus

ξ
(

min{2βx, 1}− x
)

= ξ(1− x) = B(1, 2αy+ 1− x) = 2αy+ 1− x = 2αB(x, y). �

3.2. Restricted bound for fractional integral operators. We are ready to formulate and
prove the main result of this section.

Theorem 3.1. Suppose that f is an [0, 1]-valued random variable on a probability space
equipped with a β-regular tree T . Then for any 0 < α < β we have the inequality

(3.2) ||Iαf ||∞ ≤ B (Ef,Ef) .

This bound is sharp: for any x ∈ [0, 1] there is a β-regular tree T and a random variable
f taking values in [0, 1] such that Ef = x and both sides of (3.2) are equal.



8 RODRIGO BAÑUELOS AND ADAM OSȨKOWSKI

Proof of (3.2). The main step in the proof of the inequality is to show that the sequence
(||2−nαB(fn, 2

nα(Iαf)n)||∞)n≥0 is nonincreasing. To see that this is true, fix a nonnega-
tive integer n and pick J ∈ T n. Let J1, J2, . . ., Jk be the collection of all pairwise disjoint
children of J belonging to T n+1. Set x = fn|J , y = 2nα(Iαf)n|J and put xj = fn+1|Jj ,
yj = 2nα(Iαf)n+1|Jj , j = 1, 2, . . . , k. On the set J , we have fn+1 = fn + dfn+1 =
x+ dfn+1 and 2nα(Iαf)n+1 = 2nα(Iαf)n + 2−αdfn+1 = y+ 2−αdfn+1. Consequently,
the property (a) formulated in the statement of Lemma 3.2 is satisfied. Next, the tree T
is β-regular, so P(Jj)/P(J) ∈ [2−β , 1 − 2−β ] and hence, by the martingale property of
(fn)n≥0, the condition (b) also holds true. Therefore, from (3.1) it follows that on J ,

||2−nαB(fn, 2
nα(Iαf)n)||∞ ≥ 2−nαB(fn, 2

nα(Iαf)n)

≥ ess sup
J

2−(n+1)αB(fn+1, 2
(n+1)α(Iαf)n+1).

Thus, taking the supremum over J , we get that

||2−nαB(fn, 2
nα(Iαf)n)||∞ ≥ ||2−(n+1)αB(fn+1, 2

(n+1)α(Iαf)n+1)||∞.

Now, combining this with the first part of Lemma 3.1, we obtain

||(Iαf)n||∞ ≤ ||2−nαB(fn, 2
nα(Iαf)n)||∞ ≤ B(f0, (Iαf)0) = B(Ef,Ef).

It remains to take the supremum over all n to complete the proof. �

Sharpness of (3.2). Fix x ∈ [0, 1]. If x = 0, we consider the constant martingale f =
(0, 0, . . .); then Iαf = (0, 0, . . .) as well and ||Iαf ||∞ = 0 = B(0, 0).

Suppose next that x > 0 and recall that n(x) = sup{k : 2βkx < 1}. Consider the tree
T satisfying the following requirements:

(i) We have T 0 = Ω;
(ii) For any n, the collection T n+1 is obtained from T n by splitting each J ∈ T n into

two sets J−, J+ satisfying P(J−)/P(J) = 2−β , P(J+)/P(J) = 1− 2−β .
Of course, the tree T is β-regular. Furthermore, there is a sequence J0 ⊃ J1 ⊃ J2 ⊃ . . .
with Jn ∈ T n such that P(Jn) = 2−βn for all n. Pick a set A ∈ F satisfying P(A) = x
and Jn(x)+1 ⊂ A ⊂ Jn(x), and put f = χA. Then f takes values in [0, 1] and Ef = x.
Furthermore, directly from the definition, if 1 ≤ k ≤ n(x), then fk = 0 outside Jk; on the
other hand, for ω ∈ Jk we have

fk(ω) =
1

P(Jk)

∫
Jk

χAdP =
P(A)

P(Jk)
= 2βkx, k = 0, 1, . . . , n(x).

A similar argument shows that on Jn(x)+1 we have

fn(x)+1 =
1

P(Jn(x)+1)

∫
Jn(x)+1

χAdP = 1.

This implies that for ω ∈ Jn(x)+1 we have df0 = x, dfk = (2βk − 2β(k−1))x (k =

1, 2, . . . , n(x)) and dfn+1 = 1− 2βn(x)x. Consequently,

(Iαf)n(x)+1(ω) =

n+1∑
k=0

2−kαdfk(ω)

= x+ 2β(1− 2−βx
(2β−α)n(x) − 1

2β−α − 1
+ 2−(n(x)+1)α(1− 2βn(x)x)

= B(x, x).
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Since Jn(x)+1 has positive measure, we see that the bound (3.2) can be attained. This
completes the proof of the theorem. �

Remark 3.1. The inequality (3.2) is still sharp if the underlying probability space with the
tree structure is the unit cube (0, 1]d equipped with its dyadic lattice. More precisely, for
any x ∈ [0, 1] there is a Borel subset A of the cube such that |A| = x and both sides of
(3.2) are equal. This is trivial for x = 0. When x > 0, the same construction as above
works as well. The only modification which is needed is to let T n be the class of all dyadic
subcubes of (0, 1]d of measure 2−nd. The whole analysis of the difference sequence of the
corresponding martingale f = (fn)n≥0 can be repeated word-by-word. We leave these
details to the reader.

As an application, we obtain the following result for fractional integral operator, which
can be regarded as a restricted L∞ → Lβ/(β−α),∞ estimate. The further extensions of this
result will be taken up in the next section.

Corollary 3.1. Suppose that (Ω,F ,P) is a probability space equipped with a β-regular
tree T and A is an arbitrary element of F . Then for any 0 < α < β we have the estimate

(3.3) ||IαχA||∞ ≤ Cα,βP(A)α/β ,

where

Cα,β =
2β−α − 2−α

2β−α − 1
.

The constant is the best possible.

Proof. Since χA takes values in [0, 1], the inequality (3.2) implies that

||IαχA||∞ ≤ B(P(A),P(A)).

Furthermore, recall that in the proof of the sharpness of this bound, the constructed ex-
tremals were characteristic functions of some measurable sets. So, to complete the proof
of (3.3) (as well as its sharpness), it suffices to show that B(x, x) ≤ Cα,βx

α/β , and that
the constant Cα,β cannot be decreased. To do this, let us take a look at the function
ξ : x 7→ B(x, x) − Cα,βxα/β . It is continuous and concave on each interval of the form
[2−(n+1)β , 2−nβ ]; thus, to show that ξ is nonpositive, it suffices to verify that ξ(2−nβ) ≤ 0
for each n. However, we easily check that

ξ(2−nβ) = 2−nβ(1− Cα,β) = 2−nβ
2−α − 1

2β−α − 2−α
≤ 0,

so the bound B(x, x) ≤ Cα,βxα/β holds true. To see that Cα,β is optimal, we observe that

B(2−nβ , 2−nβ)

(2−nβ)α/β
= 2−n(β−α)(1− Cα,β) + Cα,β → Cα,β ,

as n→∞ and this completes the proof. �

The inequality (3.3) remains sharp for the fractional integral operator associated with
the Walsh-Fourier series on (0, 1]d. This follows at once from Remark 3.1.



10 RODRIGO BAÑUELOS AND ADAM OSȨKOWSKI

4. WEAK TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATORS

We have split this section into two parts. The main step in the proof of the weak type
inequality rests on providing an efficient upper bound for ||IαχA||p. In order to achieve
this goal, we will construct a tree T ′ and a set A such that ITα χA is appropriately controlled
by IT

′

α χA. The construction is presented in the first part of this section, and the remainder
is devoted to the weak-type estimate.

4.1. A special tree and a special random variable. The construction is a slight modi-
fication of the example used in the proof of the sharpness of (3.2). Fix x ∈ (0, 1] and
β ≥ 1. We consider essentially the same tree T : T 0 = Ω and for each n ≥ 0, the class
T n+1 is obtained from T n by splitting each J ∈ T n into two sets J−, J+ satisfying
P(J−)/P(J) = 2−β , P(J+)/P(J) = 1 − 2−β . The only exception of this inductive rule
is the following. Pick a set J ∈ T n(x) satisfying P(J) = 2−βn(x) (if there are several sets
of this type, just fix one of them). Then we split it into two sets A, A′ such that P(A) = x
and P(A′) = 2−βn(x)−x. The children of A and A′ are created according to the inductive
pattern described above. Of course, this tree may or may not be β-regular. This will de-
pends on the split of J into A and A′. More precisely, one easily checks that we have the
β-regularity if and only if 2βn(x)x ∈ [2−β , 1− 2−β ].

Now, let f = χA and let us analyze the random variable Iαf . First, note that A is
Fn(x)+1-measurable, which implies that fn(x)+1 = fn(x)+2 = . . . = χA and hence we
also have (Iαf)n(x)+1 = (Iαf)n(x)+2 = . . . = Iαf . For any 0 ≤ k ≤ n(x), let Jk be
the unique element of T k which contains A. A similar analysis to that from the preceding
section reveals the following structure of the martingale difference sequence. We have
df0 = x and for 1 ≤ k ≤ n(x), we have dfk =

(
2kβ − 2(k−1)β

)
x on Jk, dfk = −2(k−1)β

on Jk−1 \ Jk and dfk = 0 elsewhere. Finally, dfn(x)+1 = 1 − 2βn(x)x on A, dfn(x)+1 =

−2βn(x)x on A′ and dfn(x)+1 = 0 elsewhere. With these observation we can compute
explicitly the distribution of Iαf . In fact, it is not difficult to see that we have the following
identities. For 0 ≤ k ≤ n(x)− 1, and

P
(
Iαf = x

(
1 + Cα,β(2n(x)(β−α) − 1)− 2n(x)(β−α)−α

))
= 2−n(x)β(1− 2βn(x)x)

and

(4.1) P
(
Iαf = x

(
1 + Cd,α(2n(x)(β−α) − 1) + 2−(n(x)+1)α(1− 2βn(x)x)

))
= x.

Finally, we have P(Iαf = a) = 0 for any point a different from these mentioned above.
Directly from this description one can identify the explicit formula for the function (Iαf)∗∗.
We state it as a separate lemma.

Lemma 4.1. We have

(Iαf)∗∗(s) =

{
B(x, x), if s ∈ (0, x]
x
sB(s, s), if s ∈ (x, 1].

Proof. Let s0 = 0, s1 = x and sk = 2−(n(x)+2−k)β , k = 2, 3, . . . , n(x) + 2. It follows
from the above considerations that

(Iαf)∗(s) = x

(
1 + Cα,β(2n(x)(β−α) − 1)) + 2−(n(x)+1)α(1− 2−βn(x)x)

)
= B(x, x),

if s ∈ (0, x]. Moreover,

(Iαf)∗(s) = x

(
1 + Cα,β(2(n(x)+1−k)(β−α) − 1)− 2(n(x)+1−k)(β−α)−α

)
,
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if s ∈ (sk, sk+1), k = 1, 2, . . . , n(x) + 1. Therefore, if s ∈ (0, x], then

(Iαf)∗∗(s) =
1

s

∫ s

0

(Iαf)∗(u)du = B(x, x).

Next, if s ∈ (s1, s2) = (x, 2−nβ), then n(s) = n(x) and hence

(Iαf)∗∗(s) =
1

s

(
xs
(

1 + Cα,β(2n(x)(β−α) − 1))− 2n(x)(β−α)−α
)

+ 2−(n(x)+1)αx
)

=
x

s
B(s, s).

Finally, if s ∈ (sk, sk+1] for some k = 2, 3, . . . , n(x) + 1, then n(s) = n(x) + 1− k and

s(Iαf)∗∗(s) = 2−nβx
(
1 + Cα,β(2n(x)(β−α) − 1)

)
+

k−1∑
j=2

(sj+1 − sj)x
(

1 + Cα,β(2(n(x)+1−j)(β−α) − 1)− 2(n(x)+1−j)(β−α)−α
)

+ (s− sk)

(
1 + Cα,β(2(n(x)+1−k)(β−α) − 1)− 2(n(x)+1−k)(β−α)−α

)
=xB(s, s) + 2(n(x)−1)αx(1− 2−β)(Cα,β − 2−α)

2(k−2)α − 1

2α − 1

+ Cα,β2−n(x)α − 2−β−(n(x)+1−k)α(Cα,β − 2−α).

Using the identities

Cα,β =
1− 2−β

1− 2−α
(Cα,β − 2−α), 2α−β(Cα,β − 2−α) + 1 = Cα,β ,

we verify that the latter expression is equal to xB(s, s). This completes the proof. �

Remark 4.1. Suppose that the probability space is the unit cube (0, 1]d and that the tree
structure is given by the dyadic lattice. If x = 2−(n+1)d for some integer n, then there is
a dyadic cube A of measure x for which all the properties listed above hold true. To see
this it suffices to repeat word-by-word the above reasoning, replacing the classes T n by
the appropriate families of dyadic subcubes of (0, 1]d.

4.2. Weak-type estimates. We turn our attention to the main results of this paper. We
start with the following intermediate fact.

Lemma 4.2. Suppose that (Ω,F ,P) is equipped with a β-regular tree T and let A ∈ F .
Then for any E ∈ F we have

(4.2)
∫
E

IαχAdP ≤

{
P(E)B(P(A),P(A)) if P(E) ≤ P(A),

P(A)B(P(E),P(E)) if P(E) > P(A).

Proof. This is straightforward. If P(E) ≤ P(A), then∫
E

IαχAdP ≤ P(E)||IαχA||∞ ≤ P(E)B(P(A),P(A)),

in view of (3.2). If P(E) > P(A), then we use the fact that Iα is a self-adjoint operator
(see (2.1)) to obtain∫

E

IαχAdP = EχEIαχA = EχAIαχE ≤ P(A)||IαχE ||∞ ≤ P(A)B(P(E),P(E)),

where the latter bound follows again from (3.2). �
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The next statement is a significant extension of Corollary 3.1 and can be regarded as a
dual to the weak-type bound.

Theorem 4.1. Suppose that (Ω,F ,P) is a probability space equipped with a β-regular
tree T . Then for any A ∈ F and any 1 ≤ p ≤ ∞ we have

(4.3) ||IαχA||p ≤ Kα,β,pP(A)1/p+α/β ,

where

Kα,β,p =

(
Cpα,β +

(1− 2−β)(Cα,β − 2−α)p

2p(β−α)−β − 1

)1/p

(when p =∞, then Kα,β,p = Cα,β). The constant is the best possible.

Proof of (4.3). The case p = ∞ has already been studied in Corollary 3.1, so we may
assume that p is finite. If P(A) = 0, then the claim is obvious. Therefore, from now on,
we assume that x = P(A) > 0. Fix s ∈ (0, 1] and suppose that P(E) = s. If we divide
both sides of (4.2) by P(E) and apply Lemma 4.1, we obtain the bound

1

P(E)

∫
E

IαχAdP ≤ (IαχA)∗∗(P(E)).

Here A is the set of probability x constructed in §4.1. Thus, taking the supremum over all
E satisfying P(E) = s ∈ (0, 1], we get

(IαχA)∗∗(s) ≤ (IαχA)∗∗(s), s ∈ (0, 1].

This is the classical domination relation introduced by Hardy, Littlewood and Pólya. In
particular (see [15, §249]), it implies that for any convex, nondecreasing function Φ on
[0,∞) we have

EΦ(IαχA) ≤ EΦ(IαχA)

and hence, in particular,
||IαχA||pp ≤ ||IαχA||pp.

Since we know explicitly the distribution of IαχA (see the reasoning preceding the state-
ment of Lemma 4.1), we easily compute the right-hand side above: it equals

xp
n(x)−1∑
k=0

2−kβ(1− 2−β)
[
1 + Cα,β(2k(β−α) − 1)− 2k(β−α)−α

]p
+ xp2−nβ(1− 2nβx)

[
1 + Cα,β(2n(x)(β−α) − 1)− 2n(x)(β−α)−α

]p
+ x

[
x+ Cα,βx(2n(x)(β−α) − 1) + 2−(n(x)+1)α(1− 2n(x)βx)

]p
.

Now, we have Cα,β ≥ 1, so

1 + Cα,β(2k(β−α) − 1)− 2k(β−α)−α ≤ (Cα,β − 2−α)2k(β−α).

Furthermore, the expression in the third square bracket is equal to B(x, x), and we have
shown in the proof of Corollary 3.1 that this number is not larger than Cα,βxα/β . Conse-
quently, we may write

||IαχA||pp ≤xp(1− 2−β)(Cα,β − 2−α)p
2n(x)((β−α)p−β) − 1

2(β−α)p−β − 1

+ xp(1− 2βn(x)x)(Cα,β − 2−α)p2n(x)((β−α)p−β + Cpα,β x
1+pα/β .
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Thus, the claim will proved if we manage to show that

(1− 2−β)(Cα,β − 2−α)p
2n(x)((β−α)p−β) − 1

2(β−α)p−β − 1

+ (1− 2βn(x)x)(Cα,β − 2−α)p2n(x)((β−α)p−β) − (Kp
α,β,p − C

p
α,β)x1+pα/d−p ≤ 0.

(4.4)

It is easy to check that the left-hand side is a continuous function of x ∈ (0, 1]. Further-
more, if x ∈ (2−(n+1)β , 2−nβ) (so that n(x) = n), then the left-hand side is convex in x.
Therefore, it is enough to verify (4.4) for x = 2−nβ only. Plugging this particular x, we
see that the bound becomes

(Kp
α,β,p − C

p
α,β)(2n((β−α)p−β) − 1) ≤ (Kp

α,β,p − C
p
α,β)2n((β−α)p−β),

which is evident. �

Sharpness of (4.3). Now we will show that the constantKα,β,p cannot be improved. Again,
it suffices to deal with finite p only. Fix a large positive integer n and consider the exam-
ple of §4.1 corresponding to x = 2−β(n+1). Then, as we have observed there, the tree is
β-regular. By the above computations, ||IαχA||pp/|A|1+pα/β equals

2(1−p)β(n+1)+(n+1)pα
n∑
k=0

2−kβ(1− 2−β)
[
1 + Cα,β(2k(β−α) − 1)− 2k(β−α)−α

]p
+ 2(n+1)pα

[
2−β(n+1) + Cα,β2−β(n+1)(2n(β−α) − 1) + 2−(n+1)α(1− 2−β)

]p
= Mn +Nn.

Now, we easily see that

lim
n→∞

Nn = (Cα,β2α−β + 1− 2β)p = Cpα,β .

To handle the limit of Mn, we use Stolz-Cesáro theorem: we have

lim
n→∞

Mn = lim
n→∞

2−nβ(1− 2−β)
[
1 + Cα,β(2n(β−α) − 1)− 2n(β−α)−α

]p
2(p−1)β(n+1)−(n+1)pα − 2(p−1)βn−npα

=
(1− 2−β)(Cα,β − 2−α)p

2p(β−α)−β − 1
.

This yields limn→∞(Mn +Nn) = Kp
α,β,p and hence the inequality (4.3) is indeed sharp.

�

Now we will establish the main result of this paper. In what follows, p′ will stand for
the harmonic conjugate to p.

Theorem 4.2. Suppose that (Ω,F ,P) is a probability space equipped with a β-regular
tree. Let p, q and α be arbitrary numbers satisfying 0 < α < β, 1 ≤ p < β/α and
1/q = 1/p− α/β. Then for any random variable f ∈ Lp we have the sharp bound

(4.5) ||Iαf ||q,∞ ≤ Kα,β,p′ ||f ||p.

Proof. Without loss of generality, we may assume that the random variable f is nonnega-
tive since the passage from f to |f | does not affect the norm of f , and does not decrease
the weak norm of Iαf . Pick an arbitrary set A ∈ F of positive probability. Using the fact
that Iα is a self-adjoint operator, we may write∫

E

IαfdP = EfIαχE ≤ ||f ||p||χE ||p′ .
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Consequently, by the previous theorem, we obtain∫
E

IαfdP ≤ Kα,β,p′ ||f ||pP(E)1/p
′+α/β = Kα,β,p′ ||f ||pP(E)1−1/q.

It suffices to divide both sides by P(E)1−1/q and take the supremum over all E on the left
to obtain (4.5).

To see that the constant Kα,β,p′ cannot be replaced by a smaller number, assume first
that p > 1 (so that p′ < ∞). Pick ε > 0 and a set A ∈ F such that ||IαχA||p′ >
(Kα,β,p′−ε)P(A)1/p

′+α/β . The existence of such a set is guaranteed by Theorem 4.1. We
take f = (IαχA)p

′−1 and repeat the above calculations to get

||Iαf ||q,∞ ≥
1

P(A)1−1/q

∫
A

Iαf dP

=
1

P(A)1−1/q
EfIαχA

=
1

P(A)1−1/q
||f ||p||IαχA||p′ ≥ (Kα,β,p′ − ε)||f ||p.

To deal with the case p = 1, we look once again at the set A of probability x = 2−(n+1)β ,
constructed in §4.1. As we have proved there (see (4.1)), we have

P
(
Iαf = 2−(n+1)β

(
1 + Cd,α(2(n+1)(β−α) − 1)

))
= 2−(n+1)β .

Hence, if we take E =
{
Iαf = x

(
1 + Cα,β(2(n+1)(β−α) − 1)

)}
, we get

||IαχA||q,∞
||χA||1

≥ 1

P(A)P(E)1−1/q

∫
E

IαfdP =
1 + Cα,β(2(n+1)(β−α) − 1)

2(n+1)(β−α) → Cα,β

as n→∞. This proves the desired sharpness. �

Here is the analogue of Remark 3.1

Remark 4.2. The inequalities (3.3), (4.3) and (4.5) are still sharp for the fractional integral
operators associated with the Walsh-Fourier series. To see this, note that all the extremal
functions we considered above were characteristic functions of certain sets A of probability
2−(n+1)β . Thus, the claim follows from Remark 4.1.

5. MUCKENHOUPT-WHEEDEN INEQUALITY FOR FRACTIONAL INTEGRAL OPERATORS

Let w be a weight (i.e., a nonnegative, locally integrable function) on Rd and let M
be the Hardy-Littlewood maximal operator. In 1971, Fefferman and Stein [10] proved the
existence of a universal constant c such that

λw
({
x ∈ Rd : Mf(x) ≥ λ

})
≤ c||f ||L1(Mw), λ > 0

(we use the notation w(E) =
∫
E
w(x)dx and ||f ||L1(Mw) =

∫
Rd |f(x)|Mw(x)dx). This

gave rise to the following natural question, formulated by Muckenhoupt and Wheeden in
the seventies. Suppose that T is a Calderón-Zygmund singular integral operator. Is there a
constant c, depending only on T , such that

(5.1) λw
({
x ∈ Rd : Tf(x) ≥ λ

})
≤ c||f ||L1(Mw) ?

This problem, called the Muckenhoupt-Wheeden conjecture, remained open for a long
time, and many mathematicians contributed to some partial results in this direction. In
particular, Chanillo and Wheeden [6] proved that the estimate holds true for the square
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function. Buckley [3] showed that the conjecture is true for weights of the form wδ(x) =
|x|−d(1−δ), 0 < δ < 1. The best known result in this direction is that of Pérez, who showed
that if M2 denotes the second iteration of M , then

λw
({
x ∈ Rd : Tf(x) ≥ λ

})
≤ c||f ||L1(M2w).

In fact, he proved a stronger statement in which the operator M2 is replaced by the smaller
object ML(logL)ε ; see [26] for details. We also refer the interested reader to the recent
works of Lerner, Ombrosi and Pérez [17, 18, 19] for further results concerning weaker
forms of (5.1). In 2010, the Muckenhoupt-Wheeden conjecture was finally shown to be
false. See the counterexamples by Reguera, Thiele, Nazarov, Reznikov, Vasyunin and
Volberg in [21, 27, 28].

The purpose of this section is to establish a sharp version of the Muckenhoupt-Wheeden
inequality for fractional integral operators in the martingale setting. Let (Ω,F ,P) be a
probability space equipped with a β-regular tree T . Given an adapted martingale f =
(fn)n≥0, its maximal function Mf is defined by Mf = supn≥0 |fn|. Let w be a weight,
i.e., a nonnegative, integrable variable. In analogy to the previous setting, we will write
w(E) = EχEw; we will also use the notation ||f ||L1(w) = E|f |w and

||f ||Lp,∞(w) = sup

{
1

w(E)1−1/p

∫
E

|f |w dP : E ∈ F , w(E) > 0

}
.

Our result can be stated as follows. For an analogous statement concerning classical
Riesz potentials on Rd, consult the work of Lacey et. al. [16].

Theorem 5.1. For any weight w and any 0 < α < β we have

(5.2) ||Iαf ||Lβ/(β−α),∞(w) ≤ Cα,β ||f ||L1((Mw)1−α/β).

The constant is the best possible.

In the proof of the above theorem, we will need the following auxiliary fact.

Lemma 5.1. Suppose that g is a nonnegative function and (gn)n≥0 is the associated mar-
tingale. Then

(5.3)

∣∣∣∣∣
∣∣∣∣∣ Iαg

(Mg)1−α/βg
α/β
0

∣∣∣∣∣
∣∣∣∣∣
∞

≤ Cα,β

and the constant Cα,β is the best possible.

Proof. By homogeneity, we may assume that Mg(ω) = 1; in particular, this implies
gn(ω) ≤ 1 for all n. Let A be a set of probability g0(ω), constructed in §2 in the proof of
the sharpness of (3.2) and pick ω′ ∈ A. A key observation is that we have the pointwise
bound Iαg(ω) ≤ IαχA(ω′). To see this, note that by the β-regularity of T , for any n ≥ 1
we have gn(ω) ≤ 2βgn−1(ω), and hence

gn(ω) ≤ min
{

2nβg0, 1
}

= (IαχA)n(ω′).

This implies

Iαg(ω) = (1− 2−α)

∞∑
n=0

2−nαgn(ω) ≤ (1− 2−α)

∞∑
n=0

2−nα(IαχA)n(ω′) = IαχA(ω′).

Therefore, by (3.3), ∣∣∣∣∣
∣∣∣∣∣ Iαg

(Mg)1−α/βg
α/β
0

∣∣∣∣∣
∣∣∣∣∣
∞

≤
||IαχA||∞
P(A)α/β

≤ Cα,β .
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This is precisely (5.3). To see that this bound is sharp, pick A ∈ F of positive probability
and let g = χA. Then ∣∣∣∣∣

∣∣∣∣∣ Iαg

(Mg)1−α/βg
α/β
0

∣∣∣∣∣
∣∣∣∣∣
∞

=
||IαχA||∞
P(A)α/β

,

which, by Corollary 3.1, can be made arbitrarily close to Cα,β by an appropriate choice of
A. The proof is complete. �

We turn our attention to the main result.

Proof of Theorem 5.1. With no loss of generality, we may restrict ourselves to nonnegative
functions f . Pick an arbitrary event E ∈ F of positive measure. We have∫

E

Iαf w dP = EfIα(χEw) ≤ ||f ||L1((Mw)1−α/β)

∣∣∣∣∣∣(Mw)α/β−1Iα(χEw)
∣∣∣∣∣∣
∞

≤ ||f ||L1((Mw)1−α/β)

∣∣∣∣∣∣(M(χEw))α/β−1Iα(χEw)
∣∣∣∣∣∣
∞
.

Applying (5.3) to the function g = χEw, we obtain∫
E

Iαf w dP ≤ Cα||f ||L1((Mw)1−α/β)P(A)α/β = Cα||f ||L1((Mw))1−α/βw(E)α/β ,

since P(A) = g0 = Eg = w(E). This is the desired bound (5.2). To see the sharpness,
take w = 1. The estimate reduces to the weak-type bound (4.5) with p = 1 in which the
constant Kα,β,∞ = Cα,β is the best possible. �
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