Sharp inequalities for dyadic A_{1} weights

Adam Osȩkowski

Abstract

We show how the Bellman function method can be used to obtain sharp inequalities for the maximal operator of a dyadic A_{1} weight on \mathbb{R}^{n}. Using this approach, we determine the optimal constants in the corresponding weak-type estimates. Furthermore, we provide an alternative, simpler proof of the related maximal L^{p} inequalities, originally shown by Melas.

Mathematics Subject Classification (2010). Primary 42B25; Secondary 46E30.

Keywords. Maximal operator, dyadic, A_{1} weight, best constants.

1. Introduction

A locally integrable nonnegative function w on \mathbb{R}^{n} is called a dyadic A_{1} weight if it satisfies the condition

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q} w(x) \mathrm{d} x \leq C \underset{x \in Q}{\operatorname{essinf}} w(x) \tag{1.1}
\end{equation*}
$$

for any dyadic cube Q in \mathbb{R}^{n}. This is equivalent to saying that

$$
\begin{equation*}
M_{d} w(x) \leq C w(x) \quad \text { for almost all } x \in \mathbb{R}^{n} \tag{1.2}
\end{equation*}
$$

where M_{d} is the dyadic maximal operator, given by

$$
M_{d} w(x)=\sup \left\{\frac{1}{|Q|} \int_{Q} w(t) \mathrm{d} t: x \in Q, Q \subset \mathbb{R}^{n} \text { a dyadic cube }\right\} .
$$

The smallest C for which (1.1) (equivalently, (1.2)) holds is called the dyadic A_{1} constant of w and is denoted by $[w]_{1}$. A classical result of Coifman and Fefferman [2] states that any A_{1} weight satisfies the reverse Hölder inequality

$$
\begin{equation*}
\left(\frac{1}{|Q|} \int_{Q} w(x)^{p} \mathrm{~d} x\right)^{1 / p} \leq \frac{c}{|Q|} \int_{Q} w(x) \mathrm{d} x \tag{1.3}
\end{equation*}
$$

for certain $p>1$ and $c \geq 1$ which depend only on the dimension n and the value of $[w]_{1}$. The exact information on the range of possible p 's was studied by Melas [3] (see also [1] for related results in the non-dyadic case). Here is the precise statement.

Theorem 1.1. Let w be a dyadic weight on \mathbb{R}^{n}. Then for every p such that

$$
1 \leq p<p_{0}\left(n,[w]_{1}\right):=\frac{\log \left(2^{n}\right)}{\log \left(2^{n}-\frac{2^{n}-1}{[w]_{1}}\right)}
$$

and for every dyadic cube Q we have

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q}\left(M_{d} w(x)\right)^{p} d x \leq \frac{2^{n}-1}{\left(2^{n}-\frac{2^{n}-1}{[w]_{1}}\right)^{p}-2^{n}}\left(\frac{1}{|Q|} \int_{Q} w(x) d x\right)^{p} \tag{1.4}
\end{equation*}
$$

Both the range of p and the corresponding constant in (1.4) are best possible.
This result implies that the range of admissible exponents p in the reverse Hölder inequality (1.3) is at least $\left[1, p_{0}\left(n,[w]_{1}\right)\right)$. To prove that both intervals are actually equal, Melas [3] constructed, for any $\lambda>1$, a dyadic weight on $[0,1]^{n}$ such that $[w]_{1}=\lambda$ and $\int_{[0,1]^{n}} w(x)^{p_{0}(n, \lambda)} \mathrm{d} x=\infty$.

The purpose of this paper is to study the corresponding weak-type estimates. We will prove the following result.

Theorem 1.2. Let w be a dyadic weight on \mathbb{R}^{n} and let $1 \leq p \leq p_{0}\left(n,[w]_{1}\right)$. Then for every dyadic cube Q we have

$$
\begin{equation*}
\frac{1}{|Q|}\left|\left\{x \in Q: M_{d} w(x)>1\right\}\right| \leq\left(\frac{1}{|Q|} \int_{Q} w(x) d x\right)^{p} \tag{1.5}
\end{equation*}
$$

Both the range of p and the constant 1 are already best possible in the estimate

$$
\frac{1}{|Q|}|\{x \in Q: w(x)>1\}| \leq\left(\frac{1}{|Q|} \int_{Q} w(x) d x\right)^{p}
$$

A few words about the proof. Using a standard dilation argument, it is enough to establish (1.5) for $Q=[0,1]^{n}$. In fact, we will prove the estimate in a wider context of probability spaces equipped with a tree-like structure similar to the dyadic one. Next, while Melas' proof of Theorem 1.1 is combinatorial and rests on a clever linearization of the dyadic maximal operator, our approach will be entirely different and will exploit the properties of a certain special function. In the literature, this type of argument is called the Bellman function method and has been applied recently in various settings: see e.g. [4], [5], [6], [7], [8] and references therein.

The paper is organized as follows. Section 2 contains some preliminary definitions. The description of the Bellman method can be found in Section 3, and it is applied in two final parts of the paper: in Section 4 we present the study of the weak type estimate, while in Section 5 we provide an alternative proof of Melas' result.

2. Measure spaces with a tree-like structure

Assume that (X, \mathcal{F}, μ) is a given non-atomic probability space. We assume that it is equipped with an additional tree structure.

Definition 2.1. Let $\alpha \in(0,1]$ be a fixed number. A sequence $\mathcal{T}=\left(\mathcal{T}_{n}\right)_{n \geq 0}$ of partitions of X is said to be α-splitting, if the following conditions hold.
(i) We have $\mathcal{T}_{0}=\{X\}$ and $\mathcal{T}_{n} \subset \mathcal{F}$ for all n.
(ii) For any $n \geq 0$ and any $E \in \mathcal{T}_{n}$ there are pairwise disjoint sets E_{1}, E_{2}, $\ldots, E_{m} \in \mathcal{T}_{n+1}$ whose union is E and such that $\left|E_{i}\right| /|E| \geq \alpha$ for all i.
Let us stress that the number m in (ii) may be different for different E.
Example. Assume that $X=(0,1]^{n}$ is the unit cube of \mathbb{R}^{n} with Borel subsets and Lebesgue's measure. Let \mathcal{T}_{k} be a collection of all dyadic cubes of volume $2^{-k n}$, contained in X (i.e., products of intervals of the form $\left(a 2^{-k},(a+1) 2^{-k}\right]$, where $\left.a \in\left\{0,1,2, \ldots, 2^{k}-1\right\}\right)$. Then $\mathcal{T}=\left(\mathcal{T}_{n}\right)_{n \geq 0}$ is 2^{-n}-splitting.

In what follows, we will restrict ourselves to $\alpha \leq 1 / 2$, since for $\alpha>1 / 2$ there is only one α-splitting tree: $\mathcal{T}=(\{X\},\{X\},\{X\}, \ldots)$. Let us define the maximal operator and A_{1} class corresponding to the structure \mathcal{T}.

Definition 2.2. Given a probability space (X, \mathcal{F}, μ) with a sequence \mathcal{T} as above, we define the corresponding maximal operator $\mathcal{M}_{\mathcal{T}}$ as

$$
\mathcal{M}_{\mathcal{T}} f(x)=\sup \left\{\frac{1}{\mu(I)} \int_{I}|f| \mathrm{d} \mu: x \in I \in \mathcal{T}\right\}
$$

for any $f \in L^{1}(X, \mathcal{F}, \mu)$. We will also use the notation $\mathcal{M}_{\mathcal{T}}^{n}$ for the truncated maximal operator, associated with $\mathcal{T}^{n}=\left(\mathcal{T}_{0}, \mathcal{T}_{1}, \ldots, \mathcal{T}_{n-1}, \mathcal{T}_{n}, \mathcal{T}_{n}, \mathcal{T}_{n}, \ldots\right)$.

Definition 2.3. A nonnegative integrable function w is an A_{1} weight with respect to \mathcal{T} if there is a finite constant C such that

$$
\frac{1}{|E|} \int_{E} w(x) \mathrm{d} x \leq C \underset{x \in E}{\operatorname{essinf}} w(x)
$$

for any $E \in \mathcal{T}$. This is equivalent to saying that

$$
\mathcal{M}_{\mathcal{T}} w(x) \leq C w(x)
$$

for almost all $x \in X$. The smallest C for which the above holds is called the A_{1} constant of w and will be denoted by $[w]_{1}$.

3. On the method of proof

Now we will describe the technique which will be used to establish the inequalities announced in Introduction. Throughout this section, $c>1, \alpha \in(0,1 / 2]$ are fixed constants. Distinguish the following subset of \mathbb{R}_{+}^{3} :

$$
D=D_{c}=\left\{(x, y, z) \in \mathbb{R}_{+}^{3}: y \leq x \leq c y, z \leq c x\right\}
$$

Let $\Phi, \Psi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be two given functions and assume we want to show that

$$
\begin{equation*}
\int_{X} \Phi\left(M_{\mathcal{T}}^{n} w(x)\right) \mathrm{d} x \leq \Psi\left(\int_{X} w(x) \mathrm{d} x\right), \quad n=0,1,2, \ldots \tag{3.1}
\end{equation*}
$$

for any A_{1} weight w with respect to an α-splitting tree \mathcal{T}, such that $[w]_{1} \leq c$. The key idea in the study of this problem is to construct a special function $B=B_{c, \alpha, \Phi, \Psi}: D \rightarrow \mathbb{R}$, which satisfies the following conditions.
1° We have $B(x, y, x \vee z)=B(x, y, z)$ for any $(x, y, z) \in D$.
2° We have $B(x, y, z) \geq \Phi(z)$ for any $(x, y, z) \in D$.
3° We have $B(x, y, x) \leq \Psi(x)$ for all x, y such that $(x, y, x) \in D$.
4° For any $(x, y, z) \in D$ there exists $A=A(x, y, z) \in \mathbb{R}$ such that whenever $\left(x^{\prime}, y^{\prime}, z\right) \in D$ satisfies $x^{\prime} \leq \frac{c-1+\alpha}{c \alpha} x$ and $y^{\prime} \geq y$, then

$$
\begin{equation*}
B\left(x^{\prime}, y^{\prime}, z\right) \leq B(x, y, z)+A(x, y, z)\left(x^{\prime}-x\right) \tag{3.2}
\end{equation*}
$$

A few remarks concerning these conditions are in order. The condition 1° is a technical assumption which enables the proper handling of the maximal operator. The conditions 2° and 3° are appropriate majorizations. The most complicated (and most mysterious) condition is the last one. To shed some light on it, observe that it yields the following concavity-type property of B.

Lemma 3.1. Let (x, y, z) be a fixed point belonging to D and let $n \geq 2$ be an arbitrary integer. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be positive numbers which sum up to 1 , such that $\alpha_{i} \geq \alpha$ for each i. Assume further that $\left(x_{1}, y_{1}, z\right),\left(x_{2}, y_{2}, z\right), \ldots$, $\left(x_{n}, y_{n}, z\right) \in D$ satisfy

$$
x=\sum_{i=1}^{n} \alpha_{i} x_{i} \quad \text { and } \quad y=\min \left\{y_{1}, y_{2}, \ldots, y_{n}\right\}
$$

Then

$$
\begin{equation*}
B(x, y, z) \geq \sum_{i=1}^{n} \alpha_{i} B\left(x_{i}, y_{i}, z\right) \tag{3.3}
\end{equation*}
$$

Proof. Apply 4° to $x^{\prime}=x_{i}, y^{\prime}=y_{i}, i=1,2, \ldots, n$, multiply both sides by α_{i} and finally sum the obtained inequalities. Then, as the result, we get (3.3). Thus, all we need is to verify whether the requirements for x^{\prime}, y^{\prime} appearing in 4° are fulfilled. The inequality $y_{i} \geq y$ is assumed in the statement of the lemma. Furthermore, by the definition of D,

$$
\begin{aligned}
x=\sum_{i=1}^{n} \alpha_{i} x_{i} & \geq \alpha_{i} x_{i}+\sum_{j \neq i} \alpha_{j} y_{j} \\
& \geq \alpha_{i} x_{i}+\left(1-\alpha_{i}\right) y \geq \alpha x_{i}+(1-\alpha) y \geq \alpha x_{i}+(1-\alpha) x / c
\end{aligned}
$$

which yields the desired bound $x_{i} \leq \frac{c-1+\alpha}{c \alpha} x$.
We turn to the main result of this section.
Theorem 3.2. Suppose that (X, \mathcal{F}, μ) is a probability space equipped with an α-splitting tree \mathcal{T}. If there is a function $B=B_{c, \alpha, \Phi, \Psi}$ satisfying $1^{\circ}-4^{\circ}$, then (3.1) holds for any A_{1} weight w with respect to \mathcal{T} such that $[w]_{1} \leq c$.

Proof. Let w be as in the statement. Define two sequences $\left(w_{n}\right)_{n \geq 0},\left(v_{n}\right)_{n \geq 0}$ of measurable functions on X as follows. Given an integer n, an element E of \mathcal{T}_{n} and a point $x \in E$, set

$$
w_{n}(x)=\frac{1}{\mu(E)} \int_{E} w(t) \mathrm{d} \mu(t) \quad \text { and } \quad v_{n}(x)=\underset{t \in E}{\operatorname{essinf}} w(t)
$$

The following interplay between these objects will be important to us. Let n, E be as above and let $E_{1}, E_{2}, \ldots, E_{m}$ be the elements of \mathcal{T}_{n+1} whose union is E. Then we easily check that

$$
\frac{1}{\mu(E)} \int_{E} w_{n}(t) \mathrm{d} \mu(t)=\sum_{i=1}^{m} \frac{\mu\left(E_{i}\right)}{\mu(E)} \cdot \frac{1}{\mu\left(E_{i}\right)} \int_{E_{i}} w_{n+1}(t) \mathrm{d} \mu(t)
$$

and

$$
\left.v_{n}\right|_{E}=\min \left\{\left.v_{n+1}\right|_{E_{1}},\left.v_{n+1}\right|_{E_{2}}, \ldots,\left.v_{n+1}\right|_{E_{m}}\right\} .
$$

Furthermore, the inequality $[w]_{1} \leq c$ implies that the triple $\left(w_{n}, v_{n}, \mathcal{M}_{\mathcal{T}}^{n} w\right)$ takes values in D. These conditions, combined Lemma 3.1, yield the inequality $\int_{E} B\left(w_{n}(t), v_{n}(t), \mathcal{M}_{\mathcal{T}}^{n} w(t)\right) \mathrm{d} \mu(t) \geq \int_{E} B\left(w_{n+1}(t), v_{n+1}(t), \mathcal{M}_{\mathcal{T}}^{n+1} w(t)\right) \mathrm{d} \mu(t)$. Indeed, we have $\mathcal{M}_{\mathcal{T}}^{n+1} w=\mathcal{M}_{\mathcal{T}}^{n} w \vee w_{n+1}$, so by 1°,
$B\left(w_{n+1}(t), v_{n+1}(t), \mathcal{M}_{\mathcal{T}}^{n+1} w(t)\right)=B\left(w_{n+1}(t), v_{n+1}(t), \mathcal{M}_{\mathcal{T}}^{n} w(t)\right), \quad t \in E$.
It remains to use (3.3) with $x=\left.w_{n}\right|_{E}, y=\left.v_{n}\right|_{E}, z=\mathcal{M}_{\mathcal{T}}^{n} w\left|E, x_{i}=w_{n+1}\right|_{E_{i}}$, $y_{i}=\left.v_{n+1}\right|_{E_{i}}$ and $\alpha_{i}=\mu\left(E_{i}\right) / \mu(E)$. Summing over all $E \in \mathcal{T}_{n}$, we get
$\int_{X} B\left(w_{n}(t), v_{n}(t), \mathcal{M}_{\mathcal{T}}^{n} w(t)\right) \mathrm{d} \mu(t) \geq \int_{X} B\left(w_{n+1}(t), v_{n+1}(t), \mathcal{M}_{\mathcal{T}}^{n+1} w(t)\right) \mathrm{d} \mu(t)$ and therefore, by induction,

$$
\int_{X} B\left(w_{0}(t), v_{0}(t), \mathcal{M}_{\mathcal{T}}^{0} w(t)\right) \mathrm{d} \mu(t) \geq \int_{X} B\left(w_{n}(t), v_{n}(t), \mathcal{M}_{\mathcal{T}}^{n} w(t)\right) \mathrm{d} \mu(t)
$$

However, the left-hand side equals

$$
B\left(\int_{X} w(t) \mathrm{d} t, \operatorname{essinf}_{t \in X} w(t), \int_{X} w(t) \mathrm{d} t\right),
$$

and hence the application of 2° and 3° completes the proof of (3.1).

4. A sharp weak-type estimate

The principal result of this section is the following.
Theorem 4.1. Suppose that (X, \mathcal{F}, μ) is a probability space equipped with an α-splitting tree \mathcal{T}. Then for any A_{1} weight w with respect to \mathcal{T} and any p satisfying

$$
1 \leq p \leq p_{0}\left(\alpha,[w]_{1}\right):=-\frac{\log \alpha}{\log \left(\frac{[w]_{1}+\alpha-1}{[w]_{1} \alpha}\right)}
$$

we have

$$
\begin{equation*}
\mu\left(\left\{x \in X: \mathcal{M}_{\mathcal{T}} w(x)>1\right\}\right) \leq\left(\int_{X} w(x) d x\right)^{p} \tag{4.1}
\end{equation*}
$$

The range of p and the constant 1 are already the best possible in

$$
\begin{equation*}
\mu(\{x \in X: w(x)>1\}) \leq\left(\int_{X} w(x) d x\right)^{p} \tag{4.2}
\end{equation*}
$$

Before we proceed, let us establish the following technical fact.
Lemma 4.2. For any $c \geq 1$ and $\alpha \in(0,1 / 2]$ we have $\left(p_{0}(\alpha, c)-1\right) c \leq p_{0}(\alpha, c)$.
Proof. The claim is equivalent to $1 / p_{0}(\alpha, c) \geq 1-1 / c$, or

$$
\log \left(\frac{c \alpha}{c+\alpha-1}\right) \leq \log \alpha^{1-1 / c}
$$

Substituting $x=1 / c \in[0,1]$ and working a little bit turns this bound into

$$
\alpha^{x} \leq 1+(\alpha-1) x
$$

which is evident: the left-hand side is convex as a function of x, and both sides are equal when $x \in\{0,1\}$.

4.1. Proof of (4.1)

We may assume that $[w]_{1}>1$, since otherwise w is constant and the assertion holds true. If the average $\int_{X} w$ is at least 1 , then the inequality is trivial. So, suppose that $\int_{X} w<1$; then it suffices to prove the weak-type estimate for $p=p_{0}\left(\alpha,[w]_{1}\right)$. In view of Theorem 3.2, all we need is to construct an appropriate special function corresponding to $c=[w]_{1}>1, \alpha \in(0,1 / 2]$, $\Phi(z)=\chi_{\{z \geq 1\}}$ and $\Psi(x)=x^{p}$. Indeed, this will yield (3.1) and letting n go to ∞ will complete the proof. Introduce $B=B_{c, \alpha, \Phi, \Psi}: D \rightarrow \mathbb{R}_{+}$by

$$
B(x, y, z)= \begin{cases}c^{p} y^{p-1}(x-y) /(c-1) & \text { if } y \leq c^{-1} \text { and } x \vee z<1 \\ (x-y) /(1-y) & \text { if } y>c^{-1} \text { and } x \vee z<1 \\ 1 & \text { if } x \vee z \geq 1\end{cases}
$$

We will exploit the following auxiliary property of B.
Lemma 4.3. For fixed $x, z>0$, the function $B(x, \cdot, z): y \mapsto B(x, y, z)$ is nonincreasing on $[x / c, x]$.

Proof. We may assume that $x, z<1$, since otherwise the claim is obvious. Note that for $y \geq x / c$ we have

$$
\frac{\partial}{\partial y}\left[y^{p-1}(x-y)\right]=y^{p-2}((p-1) x-p y) \leq y^{p-1}((p-1) c-p) \leq 0
$$

in light of Lemma 4.2. Furthermore, for any $y<1$,

$$
\frac{\partial}{\partial y}\left[\frac{x-y}{1-y}\right]=\frac{x-1}{(1-y)^{2}}<0
$$

Since B is continuous, this gives the desired monotonicity.

Now we turn to the verification that B satisfies the conditions $1^{\circ}-4^{\circ}$. The first two of them are obvious, so let us look at 3°. By Lemma 4.3, it suffices to prove the majorization for $y=x / c$. But then the estimate is clear: both sides are equal when $x<1$, and for $x \geq 1$ the inequality takes the form $1 \leq x^{p}$. Finally, we will check 4° with

$$
A(x, y, z)= \begin{cases}c^{p} y^{p-1}(c-1) & \text { if } y \leq c^{-1} \text { and } x \vee z<1, \\ 1 /(1-y) & \text { if } y>c^{-1} \text { and } x \vee z<1, \\ 0 & \text { if } x \vee z \geq 1\end{cases}
$$

We may and do assume that $x \vee z<1$, since otherwise the right-hand side of (3.2) is equal to 1 and there is nothing to prove. By the preceding lemma, it suffices to show (3.2) under the assumption that

$$
\begin{equation*}
y^{\prime}=\left(x^{\prime} / c\right) \vee y \tag{4.3}
\end{equation*}
$$

Suppose first that $y>c^{-1}$; then (3.2) becomes

$$
B\left(x^{\prime}, y^{\prime}, z\right) \leq \frac{x^{\prime}-y}{1-y}
$$

If $x^{\prime} \geq 1$, then this bound is clear; if $x^{\prime}<1$, then $y^{\prime}=y$ (see (4.3)) and thus both sides are equal. Finally, assuming that $y \leq c^{-1}$, we see that (3.2) reads

$$
B\left(x^{\prime}, y^{\prime}, z\right) \leq \frac{c^{p}}{c-1} y^{p-1}\left(x^{\prime}-y\right)
$$

If $x^{\prime} \leq c y$, then $y^{\prime}=y$ (see (4.3)) and hence both sides are equal. If $x^{\prime}>c y$, then (4.3) implies that $y^{\prime}=x^{\prime} / c$ and the inequality becomes

$$
\left(x^{\prime}\right)^{p} \leq \frac{c^{p}}{c-1} y^{p-1}\left(x^{\prime}-y\right)
$$

or, after the substitution $t=x^{\prime} / y$,

$$
\begin{equation*}
t^{p} \leq \frac{c^{p}}{c-1}(t-1) \tag{4.4}
\end{equation*}
$$

We have $t>c$, by the assumption we have just made above. On the other hand, exploiting the requirements appearing in 4°, we get

$$
t=\frac{x^{\prime}}{y} \leq \frac{c x^{\prime}}{x} \leq \frac{c-1+\alpha}{\alpha}
$$

It suffices to note that the left-hand side of (4.4) is a convex function of t and both sides are equal for the extremal values of $t: t=c$ and $t=(c-1+\alpha) / \alpha$ (the equality for the latter value of t is just the definition of $p_{0}(\alpha, c)$).

4.2. Sharpness

It is obvious that the constant 1 cannot be improved in (4.2): consider a constant weight $w \equiv \lambda>1$ and let $\lambda \downarrow 1$. To show that the weak-type estimate cannot hold with exponents larger than $p_{0}(\alpha, c)$, we will construct an appropriate example; a related object can be found in [3].

Suppose that (X, \mathcal{F}, μ) is a probability space equipped with an α-splitting tree \mathcal{T}, such that there is a monotone sequence $X=E_{0} \supset E_{1} \supset E_{2} \supset \ldots$,
with $E_{n} \in \mathcal{T}_{n}$ and $\mu\left(E_{n}\right)=\alpha^{n}$. For $x \in X$, put $N(x)=\sup \left\{n \geq 0: x \in E_{n}\right\}$; this is well-defined since $E_{0}=X$. Moreover, $N(x)<\infty$ almost everywhere, because the sets E_{i} shrink to a set of a zero measure. Define a weight w by

$$
w(x)=\left(\frac{c-1+\alpha}{c \alpha}\right)^{N(x)}, \quad x \in X
$$

In other words, we have $w(x)=[(c-1+\alpha) /(c \alpha)]^{n}$, where n is the unique number such that $x \in E_{n} \backslash E_{n+1}$. Then w is in the A_{1} class and $[w]_{1}=c$. To see this, pick $x \in X$ and let n be the unique integer such that $x \in E_{n} \backslash E_{n+1}$. The only elements of \mathcal{T} which contain x are $E_{0}, E_{1}, \ldots, E_{n}$, so

$$
\mathcal{M}_{\mathcal{T}} w(x)=\max _{0 \leq k \leq n}\left\{\frac{1}{\mu\left(E_{k}\right)} \int_{E_{k}} w(t) \mathrm{d} \mu(t)\right\}
$$

However, by the definition of w, we easily compute that

$$
\begin{aligned}
\frac{1}{\mu\left(E_{k}\right)} \int_{E_{k}} w(t) \mathrm{d} \mu(t) & =\frac{1}{\mu\left(E_{k}\right)} \sum_{\ell \geq k} \mu\left(E_{\ell} \backslash E_{\ell+1}\right) \cdot\left(\frac{c-1+\alpha}{c \alpha}\right)^{k} \\
& =c\left(\frac{c-1+\alpha}{c \alpha}\right)^{k}
\end{aligned}
$$

and hence

$$
\mathcal{M}_{\mathcal{T}} w(x)=c\left(\frac{c-1+\alpha}{c \alpha}\right)^{n}=c w(x)
$$

Putting $k=0$ in the above calculation gives $\int_{X} w=c$. Fix $q \geq 1, \lambda>1$ and consider the weight $\tilde{w}=\lambda[c \alpha /(c-1+\alpha)]^{n} w$. It satisfies $[\tilde{w}]_{1}=c$ and

$$
\mu(\{x \in X: \tilde{w}(x)>1\}) \geq \mu\left(E_{n}\right)=\frac{1}{c \lambda}\left[\left(\frac{c-1+\alpha}{c \alpha}\right)^{q} \alpha\right]^{n}\left(\int_{X} w(x) \mathrm{d} x\right)^{q}
$$

Now, if we put $q=p_{0}(\alpha, c)$, then the expression in the square brackets is equal to 1 . Therefore, if q is larger than $p_{0}(\alpha, c)$, then the constant on the right explodes as $n \rightarrow \infty$. This shows that the threshold $p_{0}(\alpha, c)$ in the weak-type estimate cannot be improved.

5. Melas' theorem revisited

Now we use the method developed in Section 3 to obtain the following version of Theorem 1.1. For a fixed $c \geq 1, \alpha \in(0,1 / 2]$ and $1 \leq p<p_{0}(\alpha, c)$, let

$$
C=C_{c, \alpha, p}=\frac{1-\alpha}{1-\alpha\left(\frac{c-1+\alpha}{c \alpha}\right)^{p}}
$$

(when $\alpha=2^{-n}$ and $c=[w]_{1}$, this is exactly the constant appearing in (1.4)).
Theorem 5.1. Suppose that (X, \mathcal{F}, μ) is a probability space equipped with an α-splitting tree \mathcal{T}. Then for any A_{1} weight w with respect to \mathcal{T} we have

$$
\begin{equation*}
\int_{X}\left(\mathcal{M}_{T} w(x)\right)^{p} d x \leq C_{[w]_{1}, \alpha, p}\left(\int_{X} w(x) d x\right)^{p} \tag{5.1}
\end{equation*}
$$

Both the range of p and the constant $C_{c, \alpha, p}$ are best possible.
Proof. We only show (5.1), for the construction of the extremal examples the reader is referred to [3]. We may assume $c=[w]_{1}>1$. Define the functions $\Phi(z)=z^{p}, \Psi(x)=C x^{p}$ and consider $B=B_{c, \alpha, \Phi, \Psi}: D \rightarrow \mathbb{R}$, given by

$$
B(x, y, z)=(c-1)^{-1}(x \vee z)^{p-1}[(C-1) c x+(c-C)(x \vee z)] .
$$

It is easy to show that this function enjoys the conditions $1^{\circ}, 2^{\circ}$ and 3°; we leave the details to the reader. Finally, we will prove 4° with

$$
A(x, y, z)=(c-1)^{-1}(x \vee z)^{p-1}(C-1) c .
$$

The estimate (3.2) can be rewritten in the form

$$
\begin{aligned}
& \left(x^{\prime} \vee z\right)^{p-1}\left[(C-1) c x^{\prime}+(c-C)\left(x^{\prime} \vee z\right)\right] \\
& \quad \leq(x \vee z)^{p-1}\left[(C-1) c x^{\prime}+(c-C)(x \vee z)\right]
\end{aligned}
$$

If $x^{\prime} \leq(x \vee z)$, then both sides are equal; if $x^{\prime}>(x \vee z)$, then the bound becomes

$$
C(c-1)\left(x^{\prime}\right)^{p} \leq(x \vee z)^{p-1}\left((C-1) c x^{\prime}+(c-C)(x \vee z)\right)
$$

or, after substitution $t=x^{\prime} /(x \vee z)$,

$$
\begin{equation*}
C(c-1) t^{p} \leq(C-1) c t+c-C . \tag{5.2}
\end{equation*}
$$

However, we have $t>1$ and $t \leq(c-1+\alpha) /(c \alpha)$ (see the assumptions appearing in $\left.4^{\circ}\right)$. It suffices to note that the left-hand side of (5.2) is a convex function, and that both sides are equal for $t \in\{1,(c-1+\alpha) /(c \alpha)\}$. Thus, (3.1) gives the claim for truncated maximal operator, and letting $n \rightarrow \infty$ completes the proof, by the use of Lebesgue's monotone convergence theorem.

References

[1] B. Bojarski, C. Sbordone and I. Wik, The Muckenhoupt class $A_{1}(\mathbb{R})$, Studia Math. 101 (1992), pp. 155-163.
[2] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), no. 3, 241-250.
[3] A. D. Melas, A sharp inequality for dyadic A_{1} weights in \mathbb{R}^{n}, Bull. London Math. Soc. 37 (2005), 919-926.
[4] F. L. Nazarov, S. R. Treil, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis. (Russian) Algebra i Analiz 8 (1996), no. 5, 32-162; translation in St. Petersburg Math. J. 8 (1997), no. 5, 721-824.
[5] F. L. Nazarov, S. R. Treil and A. Volberg, Bellman function in stochastic control and harmonic analysis, Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000), 393-423, Oper. Theory Adv. Appl., 129, Birkhuser, Basel, 2001.
[6] L. Slavin and A. Volberg, Bellman function and the $H^{1}-$ BMO duality, Harmonic analysis, partial differential equations, and related topics, 113-126, Contemp. Math., 428, Amer. Math. Soc., Providence, RI, 2007.
[7] V. Vasyunin, The sharp constant in the reverse Holder inequality for Muckenhoupt weights, St. Petersburg Math. J., 15 (2004), no. 1, 49-79.
[8] V. Vasyunin and A. Volberg, Monge-Ampére equation and Bellman optimization of Carleson embedding theorems, Linear and complex analysis, 195-238, Amer. Math. Soc. Transl. Ser. 2, 226, Amer. Math. Soc., Providence, RI, 2009.

Adam Osȩkowski
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw
Banacha 2, 02-097 Warsaw
Poland
e-mail: ados@mimuw.edu.pl

